ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-07-13
    Description: Recent emphasis on the pilot scale production of cellulosic nanomaterials has increased interest in the effective use of these materials as reinforcements for polymer composites. An important, enabling step to realizing the potential of cellulosic nanomaterials in their applications is the materials processing of CNC/polymer composites through multiple routes, i.e. melt, solution, and aqueous processing methods. Therefore, the objective of this research is to characterize the viscoelastic behavior of aqueous nanocomposite suspensions containing cellulose nanocrystals (CNCs) and a water-soluble polymer, poly(vinyl alcohol) (PVA). Specifically, small amplitude oscillatory shear measurements were performed on neat PVA solutions and CNC-loaded PVA suspensions. The experimental results indicated that the methods used in this study were able to produce high-quality nanocomposite suspensions at high CNC loadings, up to 67 wt% with respect to PVA. Additionally, the structure achieved in the nanocomposite suspensions was understood through component attributes and interactions. At CNC loadings near and less than the percolation threshold, a polymer mediated CNC network was present. At loadings well above the percolation threshold, a CNC network was present, indicated by limited molecular weight dependence of the storage modulus. Overall, these results provide increased fundamental understanding of CNC/PVA suspensions that can be leveraged to develop advanced aqueous processing methods for these materials.
    Print ISSN: 0969-0239
    Electronic ISSN: 1572-882X
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...