ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-02-16
    Description:    In this work we consider the entropy-corrected version of interacting holographic dark energy (HDE), in the non-flat universe enclosed by apparent horizon. Two corrections of entropy so-called logarithmic ‘LEC’ and power-law ‘PLEC’ in HDE model with apparent horizon as an IR-cutoff are studied. The ratio of dark matter to dark energy densities u , equation of state parameter w D and deceleration parameter q are obtained. We show that the cosmic coincidence problem is solved for interacting models. By studying the effect of interaction in EoS parameter of both models, we see that the phantom divide may be crossed and also understand that the interacting models can drive an acceleration expansion at the present and future, while in non-interacting case, this expansion can happen only at the early time. The graphs of deceleration parameter for interacting models, show that the present acceleration expansion is preceded by a sufficiently long period deceleration at past. Moreover, the thermodynamical interpretation of interaction between LECHDE and dark matter is described. We obtain a relation between the interaction term of dark components and thermal fluctuation in a non-flat universe, bounded by the apparent horizon. In limiting case, for ordinary HDE, the relation of interaction term versus thermal fluctuation is also calculated. Content Type Journal Article Category Research Article Pages 1-17 DOI 10.1007/s10714-012-1332-9 Authors A. Khodam-Mohammadi, Department of Physics, Faculty of Science, Bu-Ali Sina University, Hamedan, 65178 Iran M. Malekjani, Department of Physics, Faculty of Science, Bu-Ali Sina University, Hamedan, 65178 Iran Journal General Relativity and Gravitation Online ISSN 1572-9532 Print ISSN 0001-7701
    Print ISSN: 0001-7701
    Electronic ISSN: 1572-9532
    Topics: Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...