ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-01-29
    Description: We performed a detailed study on the carbon build-up over the 140 year long chronosequence of the Damma glacier forefield, Switzerland, to gain insights in the organic carbon dynamics during the initial stage of soil formation and ecosystem development. We determined soil carbon and nitrogen contents and their stable isotopic compositions, as well as molecular-level composition of the bulk soils, and recalcitrance parameters of carbon in different fractions. The chronosequence was divided into three age groups, separated by small end moraines that resulted from two glacier re-advances. The net ecosystem carbon balance (NECB) showed an exponential increase over the last decades, with mean annual values that range from 100 g C m −2 yr −1 in the youngest part to over 300 g C m −2 yr −1 in a 60-80 year old part. However, over the entire 140 year chronosequence the NECB is only 20 g C m −2 yr −1 , similar to results of other glacier forefield studies. The difference between the short and long term NECB appears to be caused by reductions in ecosystem carbon accumulation during periods with a colder climate. We propose that two complementary mechanisms have been responsible: 1) Reductions of net primary productivity (NPP) down to 50% below the long term mean, which we estimated using reconstructed effective temperature sums. 2) Disturbance of sites near the terminus of the re-advanced glacier front. Stabilization of soil organic matter appeared to play only a minor role in the coarse-grained forefield. We conclude that the forefield ecosystem, especially primary productivity, reacts rapidly to climate changes. Ecosystem carbon gained at warm periods is easily lost again in a cooling climate. Our conclusions may also be valid for other high mountain ecosystems and possibly arctic ecosystems.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...