ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 37 (2001), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : Increased carbon dioxide in the atmosphere has the secondary effect on plants of reducing transpiration. The degree of reduction in transpiration has been studied mostly at the leaf scale and as such, has not taken feedbacks into account that come into play when the plant canopy or the atmosphere as a whole is considered. The objective of this paper is to examine the role of negative feedback processes that act through the dynamics of the canopy and the atmosphere. This is done through the application of two canopy models, one of which is later coupled to a full Atmospheric General Circulation Model (AGCM) called GENESIS. The results suggest that the reduction in transpiration in a double CO2 environment compared to present day will not be as considerable as the leaf scale experiments suggest - a 7 percent reduction compared to 15 to 57 percent when feedbacks are considered. At the regional scale, precipitation patterns appear to be the primary factor in determining evapotranspiration. The implications for agriculture, in terms of water usage, would therefore not seem to be as acute as the leaf scale experiments depict. Regarding climate change, there is a suggestion that regional water usage may vary from present day values in certain areas.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...