ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A series of one-, two-, and three-dimensional (1-D, 2-D, and 3-D) resistive magnetohydrodynamic models are used to build up a composite model of the different phases of wire array Z-pinch implosions. 1-D(r) and 2-D(r,z) "cold-start" simulations of single wire experiments are used to illustrate some of the important processes in the plasma formation phase of wire arrays. Detailed comparison of the simulation results with data from single wire experiments provides an excellent method of code verification. 2-D simulations in the r–θ or x–y plane show how the combination of the core–corona structure of the wire plasmas and the magnetic field topology result in the formation of radial plasma streams and a precursor plasma on axis well before the implosion phase commences. The same 2-D(x–y) model is also used to illustrate how the implosion trajectories of nested wire arrays are controlled by the levels of momentum, energy, and magnetic flux which are transferred during their collision. Preliminary results showing the evolution of a single wire in the array in 3-D are presented. These results suggest that the dynamics and structure of imploding wire arrays at Imperial College can potentially be explained in terms of the current breaking through the wire cores rather than in terms of the Rayleigh–Taylor instability. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...