ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 58 (1997), S. 557-565 
    ISSN: 1432-0819
    Keywords: Key words Pyroclastic flows ; Erosion ; Lascar ; Chile
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Pyroclastic flows generated in the 19–20 April 1993 eruption of Lascar Volcano, Chile, produced spectacular erosion features. Scree and talus were stripped from the channels and steep slopes on the flanks of the volcano. Exposed bedrock and boulders suffered severe abrasion, producing smoothed surfaces on coarse breccias and striations and percussion marks on bedrock and large boulders. Erosional furrows developed with wavelengths of 0.5–2 m and depths of 0.1–0.3 m. Furrows commonly nucleated downstream of large boulders or blocks, which are striated on the upstream side, and thereby produced crag-and-tail structures. Erosive features were produced where flows accelerated through topographic restrictions or where they moved over steep slopes. The pyroclastic flows are inferred to have segregated during movement into lithic-rich and pumice-rich parts. Lithic-rich deposits occur on slopes up to 14°, whereas pumice-rich deposits occur only on slopes less than 4°, and mainly at the margins and distal parts of the 1993 fan. The lithic-rich deposits contain large (up to 1 m) lithic clasts eroded from the substrate and transported from the vent, whereas pumice-rich deposits contain only small (typically 〈2 cm) lithic clasts. These observations suggest that lithic clasts segregated to the base of the flows and were responsible for much of the erosive phenomena. The erosive features, distribution of lithic clasts and deposit morphology indicate that the 1993 flows were highly concentrated avalanches dominated by particle interactions. In some places the flows slid over the bedrock causing abrasion and long striations which imply that large blocks were locked in fixed positions for periods of about 1 s. However, shorter striae at different angles, impact marks, segregation of the deposits into pumice- and lithic-rich parts, and mixing of bedrock-derived lithic clasts throughout the deposits indicate that clasts often had some freedom of movement and that jostling of particles allowed internal mixing and density segregation to occur within the flows.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...