ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 19 (1992), S. 240-245 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract The frequency-dependence of the shear viscosity and modulus of rhyolite melt has been determined over a 10–14 log10 Pa s viscosity range and a 0.03–63 rad s−1 angular frequency range. The frequency-dependent viscosity determined at high frequencies is 5 orders of magnitude lower than the Newtonian viscosity. At lower frequencies, a frequency-independent viscosity identical with the Newtonian viscosity is observed. The measured shear modulus increases from zero to 30.5 ± 2.5 GPa with increasing frequency. The viscoelastic regime consists of a maximum in viscous loss centered on the Max-well relaxation time. The width and height of the loss modulus as a function of frequency is inconsistent with a single relaxation-time. The frequency-dependent shear modulus is best described by a distribution of relaxation-times with a sharp cutoff at times slightly longer than the Maxwell relaxation time, and a long tail at shorter times extending up to 5 orders of magnitude less than the Maxwell relaxation time. This distribution of relaxation-times is in contrast with the single-relaxation-time behavior observed in low viscosity silicate melts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...