ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Potassium transport ; Ammonium transport ; Kdp ; Escherichia coli ; Futile cycling ; Chemostat culture ; Energy requirement
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Escherichia coli Frag1 was grown under various nutrient limitations in chemostat culture at a fixed temperature, dilution rate and pH both in the presence and the absence of a high concentration of ammonium ions by using either ammonium chloride or dl-alanine as the sole nitrogen source. The presence of high concentrations of ammonium ions in the extracellular fluids of potassium-limited cultures of E. coli Frag1 caused an increase of the specific rate of oxygen consumption of these cultures. In contrast, under phosphate-, sulphate- or magnesium-limited growth conditions no such increase could be observed. The presence of high concentrations of ammonium ions in potassium-limited cultures of E. coli Frag5, a mutant strain of E. coli Frag1 which lacks the high affinity potassium uptake system (Kdp), did not increase the specific rate of oxygen consumption. These results indicate that ammonium ions, very similar to potassium ions both in charge and size, are transported via the K dp leading to a futile cycle of ammonium ions and ammonia molecules (plus protons) across the cytoplasmic membrane. Both the uptake of ammonium ions and the extrusion of protons would increase the energy requirement of the cells and therefore increase their specific rate of oxygen consumption. The involvement of a (methyl)ammonium transport system in this futile cycle could be excluded.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...