ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Fire and Materials 1 (1976), S. 85-89 
    ISSN: 0308-0501
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The chemical mechanisms for the action of flame retardants are often mentioned in the literature but the physical modes of action are seldom. Discussed. This article presents one way to quantify their efficiency. The technique is based on literature data for the physical and thermal properties of flams retardants for temperatures from 25°C up to 1000°C. The prolongation of the time to ignition by heat absorption by the retardant and the amount of inert gas evolved by the retardant are calculated at a given radiation for a material flame-proofed with a given amount of the flame retardant. The ability to form an insulating surface layer is considered but not quantified. It is assumed that a medium density wood fibre building boards is treated with 2 kg of flame retardant per m2. The flame retardants included are borates, boric acid, phosphates and silicates. The board is assumed to be irradiated with an intensity of 15 k W m-2. Under these conditions an untreated board ignites after 6-7 min. The time to ignition is prolonged by 1-5 min through heat absorption by the different retardants, and the amount of inert gases evolved may be as high as 2.6 m3 per m2 board. The formation of an insulating surface layer is more difficult to quantify. The results confirm the importance of the physical modes of action of flame retardants and the technique could form the basis for evaluating materials in simulated fire situations.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...