ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-24
    Description: Using a case study from the island of Elba, Italy, we seek to test the hypothesis that the presence of minerals with low frictional strengths can explain prolonged slip on low-angle normal faults. The central core of the Zuccale low-angle normal fault contains a distinctive fault rock zonation that developed during progressive exhumation. Most fault rock components preserve microstructural evidence for having accommodated deformation entirely, or partly, by frictional mechanisms. One millimeter thick sample powders of all the major fault rock components were deformed in a triaxial deformation apparatus under water-saturated conditions, at room temperature, and at constant effective normal stresses of 25, 50, and 75 MPa. Pore fluid pressure was maintained at 50 MPa throughout. Overall, the coefficient of friction (m) of the fault rocks varies between 0.25 and 0.8, emphasizing the marked strength heterogeneity that may exist within natural fault zones. Also, m is strongly dependent on fault rock mineralogy and is 〈0.45 for fault rocks containing talc, chlorite, and kaolinite and 〉0.6 for fault rocks dominated by quartz, dolomite, calcite, and amphibole. Localization of frictional slip within talc-rich portions of the fault core can potentially explain movements along the Zuccale fault over a wide range of depths within the upper crust, although the mechanical importance of the talc-bearing fault rocks likely decreased following their dismemberment into a series of poorly connected fault rock lenses. Additionally, slip within clay-bearing fault gouges with m between 0.4 and 0.5 may have facilitated movements in the uppermost (〈2 km) crust. For several other fault rock components, m varies between 0.5 and 0.8, and mineralogical weakening alone is insufficient to account for low-angle slip. In the latter fault rock components, other weakening mechanisms such as the development of high fluid pressures, or dissolution-precipitation creep, may have been particularly important in reducing fault strength.
    Description: Published
    Description: B02407
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Friction ; Low-Angle Normal Fault ; Elba ; Zuccale Fault ; Microstructure ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...