ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-11-01
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(5),(2022): 65-979, https://doi.org/10.1175/jpo-d-21-0174.1.
    Description: The mechanisms of wind-forced variability of the zonal overturning circulation (ZOC) are explored using an idealized shallow water numerical model, quasigeostrophic theory, and simple analytic conceptual models. Two wind-forcing scenarios are considered: midlatitude variability in the subtropical/subpolar gyres and large-scale variability spanning the equator. It is shown that the midlatitude ZOC exchanges water with the western boundary current and attains maximum amplitude on the same order of magnitude as the Ekman transport at a forcing period close to the basin-crossing time scale for baroclinic Rossby waves. Near the equator, large-scale wind variations force a ZOC that increases in amplitude with decreasing forcing period such that wind stress variability on annual time scales forces a ZOC of O(50) Sv (1 Sv ≡ 106 m3 s−1). For both midlatitude and low-latitude variability the ZOC and its related heat transport are comparable to those of the meridional overturning circulation. The underlying physics of the ZOC relies on the influences of the variation of the Coriolis parameter with latitude on both the geostrophic flow and the baroclinic Rossby wave phase speed as the fluid adjusts to time-varying winds.
    Description: This study was supported by National Science Foundation Grants OCE-1947290 and OCE-2122633.
    Description: 2022-11-01
    Keywords: Ekman pumping/transport ; Mass fluxes/transport ; Planetary waves ; Rossby waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...