ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Upon inundation, the soils in a hydroelectric reservoir are subjected to several years of physical, biological, and chemical changes as the transition from a terrestrial to an aquatic ecosystem is achieved. It is suspected that changes in soil Eh and pH alter the metal binding capacity of organic matter, reactive iron (Fe) oxides/oxyhydroxides, and clay minerals, and may cause the mercury associated with these phases to be remobilized. Four cores were collected along a transect from an unflooded forest soil to a pre-impoundment lake bottom sediment. They were subjected to a customized sequential extraction procedure to determine the distribution of Hg between three operationally-defined solid compartments: organic carbon, reactive Fe oxides/hydroxides, and the solid (clay and sulfide) residue. Results indicate that up to 80% of the Hg in the O-horizon of forest soils and flooded soils and up to 85% of the Hg in lake sediments is bound to the NaOH-extractable organic carbon fraction. Furthermore, it was observed that the highest Hg concentrations are associated with degraded organic matter. In the B-horizon of a podzol, 40–60% of the total Hg was found associated with reactive Fe minerals. In contrast, the flooded podzol contains almost no reactive Fe at any depth and associated Hg concentrations are low. We propose that upon inundation, Fe oxides are reduced and Hg released to the pore waters where it is rapidly bound to other available substrates. Analyses of the extractions residues suggest that there is an enrichment of Hg in this fraction immediately above the B-horizon in a flooded soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...