ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley-AGU  (46)
  • 2020-2023  (46)
Collection
Years
Year
  • 1
    Publication Date: 2022-12-27
    Description: Rupture directivity and its potential frequency dependence is an open issue within the seismological community, especially for small‐to‐moderate events. Here, we provide a statistical overview based on empirical evidence of seismological observations, thanks to the large amount of high‐quality seismic recordings (more than 30,000 waveforms) from Central Italy, which represents an excellent and almost unique natural laboratory of normal faulting earthquakes in the magnitude range between 3.4 and 6.5 within the time frame 2008–2018. In order to detect an anisotropic distribution of ground motion amplitudes due to the rupture directivity, we fit the smoothed Fourier Amplitude Spectra (FAS) cleared of source‐, site‐ and path‐effects. According to our criteria, about 36% of the analyzed events (162 out of 456) are directive and the distribution of rupture direction is aligned with the strikes of the major faults of the Central Apennines. We find that the directivity is a band‐limited phenomenon whose width may extend up to five times the corner frequency. The results of this research provide useful insights to parameterize directivity, to be explicitly implemented in future ground motion modeling and scenario predictions.
    Description: Published
    Description: e2021JB023498
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-28
    Description: We introduce a back-projection method to locate tremor sources using products of cross-correlation envelopes of time series between seismic stations. For a given subset of n stations, we calculate the (n − 1)th-order product of cross-correlation envelopes and we stack the back-projected products over combinations of station subsets.We show that compared to existing correlation methods and for realistic signal and noise characteristics, this way of combining information can significantly reduce the effects of correlated (spurious or irrelevant signals) and uncorrelated noise. Each back-projected product constitutes an individual localized estimate of the source locations, as opposed to a hyperbola for the existing correlation techniques, assuming a uniform velocity in two dimensions. We demonstrate the method with synthetic examples and a real-data example from tremor at Katla Volcano, Iceland, in July 2011. Despite very complex near-surface structure, including strong topography and thick ice cover, the method appears to produce robust estimates of tremor location.
    Description: Published
    Description: 3156–3164
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: 4V. Processi pre-eruttivi
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-24
    Description: Post-orogenic back-arc magmatism is accompanied by hydrothermal ore deposits and mineralizations derived from mantle and crustal sources. We investigate Zannone Island (ZI), back-arc Tyrrhenian basin, Italy, to define the source(s) of mineralizing hydrothermal fluids and their relationships with the regional petrological-tectonic setting. On ZI, early Miocene thrusting was overprinted by late Miocene post-orogenic extension and related hydrothermal alteration. Since active submarine hydrothermal outflow is reported close to the island, Zannone provides an ideal site to determine the P-T-X evolution of the long-lived hydrothermal system. We combined field work with microstructural analyses on syn-tectonic quartz veins and carbonate mineralizations, X-ray diffraction analysis, microthermometry and element mapping of fluid inclusions (FIs), C, O, and clumped isotopes, and analyses of noble gases (He-Ne-Ar) and CO2 content in FIs. Our results document the evolution of a fluid system of magmatic origin with increasing mixing of meteoric fluids. Magmatic fluids were responsible for quartz veins precipitation at ∼125 to 150 MPa and ∼300°C–350°C. With the onset of extensional faulting, magmatic fluids progressively interacted with carbonate rocks and mixed with meteoric fluids, leading to (a) host rock alteration with associated carbonate and minor ore mineral precipitation, (b) progressive fluid neutralization, (c) cooling of the hydrothermal system (from ∼320°C to ∼86°C), and (d) embrittlement and fracturing of the host rocks. Both quartz and carbonate mineralizations show noble gases values lower than those from the adjacent active volcanic areas and submarine hydrothermal systems, indicating that the fossil-to-active hydrothermal history is associated with the emplacement of multiple magmatic intrusions.
    Description: Published
    Description: e2022GC010474
    Description: 1T. Struttura della Terra
    Description: 2T. Deformazione crostale attiva
    Description: 7T. Variazioni delle caratteristiche crostali e "precursori"
    Description: 9T. Geochimica dei fluidi applicata allo studio e al monitoraggio di aree sismiche
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-18
    Description: At Mt. Etna volcano, flank eruptions are often accompanied by seismic swarms with damaging earthquakes; the most recent case-history is the 2018 flank eruption, associated with a destructive earthquake (Mw 5.0). In this paper, we analyze the earthquake and eruptive catalogs from 1800 to 2018, to produce quantitative estimates of the earthquake rate under the influence of flank eruptions. We quantify that 30% of the flank eruption onsets precede a major (i.e., damaging, Ix ≥ V–VI EMS) earthquake by 30 days or less; 18% of the major earthquakes follow a flank eruption onset in 30 days or less. Thus, we show that the probability of major earthquakes increases 5–10 times after the onset of flank eruptions and this effect lasts for 30–45 days. This is also observed after the end of the eruptions. Results indicate different relationships depending on the location of the volcano-tectonic systems considered individually (eruptive fissures, seismogenic faults). For instance, we describe a 10–20 times increased probability of earthquakes for 65–70 days after eruptions on the northeastern flank, and of new flank eruptions for 45–70 days after earthquakes of the Pernicana fault.
    Description: Published
    Description: e2022JB024145
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-13
    Description: This paper is a review of the International Reference Ionosphere (IRI) project and model. IRI is recognized as the official standard for the Earth's ionosphere by the International Standardization Organization, the International Union of Radio Science, the Committee on Space Research, and the European Cooperation for Space Standardization. As requested by these organizations, IRI is an empirical (data-based) model representing the primary ionospheric parameters based on the long data record that exists from ground and space observations of the ionosphere. The core model describes monthly averages of the electron density, electron temperature, ion temperature, and ion composition globally in the altitude range from 60 to 2,000 km. Over time additional parameters were added in response to requests from the user community, this includes the equatorial ion drift, the occurrence probability of spread-F and of an F1 layer, auroral boundaries and the electron content from the bottom of the ionosphere to user-specified altitude. IRI has undergone extensive validations and is used for a wide range of applications in science, engineering, and education. This review is the result of many requests we have received for a comprehensive description of the model. It is also meant as a guide for users who are interested in a deeper understanding of the model architecture and its mathematical formalism.
    Description: Published
    Description: e2022RG000792
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-08-23
    Description: We present the world’s first time series acquired in the summit area of an active volcano with an absolute atom interferometry gravimeter. The device was installed ~2.5 km from the active craters of Mt. Etna volcano and produced a continuous high–quality gravity time series, despite the unfavorable environmental conditions at the installation site and the occurrence of phases of high volcanic tremor during the acquisition interval. Comparison with data from other gravimeters installed elsewhere on Mt. Etna highlights correlated anomalies, demonstrating that the quantum device measured gravity variations driven by bulk mass changes. The latter are reflective of volcanic processes, involving the dynamics of magma and exsolved gas in the upper part of Mt. Etna's plumbing system. Our results confirm the operational possibilities of quantum gravimetry and open new horizons for the application of the gravity method in geophysics.
    Description: NEWTON-g project - H2020, FETOPEN-2016/2017 call (Grant Agreement No 801221)
    Description: Published
    Description: e2022GL097814
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-08-16
    Description: The Calabrian block, along with Alboran, Kabylies, and Peloritani form isolated and enigmatic igneous/metamorphic terranes (AlKaPeCa) stacked over the Meso-Cenozoic sedimentary successions of the Apennines and Maghrebides. They are commonly interpreted as fragments of the Hercynian chain rifted apart from Europe during Jurassic Alpine Tethys spreading, drifted southward during Neogene roll-back of (Neo) Tethyan slab fragments for hundreds of kilometers on top of nappe piles. We report on the paleomagnetism of upper Triassic-lower Miocene sedimentary rocks from the Longobucco succession that is transgressive over the crystalline Sila Massif (NE Calabria). Well-defined magnetization directions carried by hematite were isolated in 10 sites (122 samples) in Jurassic rocks. Nine Toarcian and one Tithonian Ammonitico Rosso sites yielded a dual polarity “A” magnetization component whit a direction over 40° from the geocentric axial dipole (GAD) field direction, that supports a positive fold test. Five sites yielded a “B” normal polarity component NE (〈40°) of the GAD direction characterized by a negative fold test. We interpret the B component as a Miocene magnetic overprint later clockwise rotated by ∼20° during the well-known Pleistocene (1–2 Ma) rotation of Calabria. When corrected for such rotation, the A component defines a ∼160° counterclockwise (CCW) rotation of the Calabrian block with respect to Europe. Of these, ∼90° likely occurred along with Corsica-Sardinia block during its Eocene-Miocene rotation from the Provençal margin. Thus, the Calabrian block underwent an additional Cretaceous-Eocene 70° CCW rotation that we relate to Early-mid Cretaceous 〉500 km left-lateral transcurrent motion between Africa and Europe.
    Description: Published
    Description: e2021TC007156
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-08-16
    Description: Ionospheric irregularities may affect electromagnetic signals propagating through the ionosphere and consequently contribute to the malfunctioning of the Global Navigation Satellite Systems hindering their accuracy and reliability. In this study, we use data recorded on board two of the three satellites of the Swarm constellation (namely, Swarm A and Swarm B) from July 15th, 2014 to December 31st, 2021 to assess the possible dependence of the Global Positioning System (GPS) signals loss of lock on the presence of a specific kind of ionospheric irregularities. To accomplish this task we study the scaling features of the electron density fluctuations through the structure function analysis simultaneously to the occurrence of loss of lock events through measurements recorded by the Langmuir probes and the precise orbit determination antennas on board Swarm A and Swarm B satellites. We find that the plasma density irregularities in a turbulent state characterized by intermittent structures and extremely high values of the Rate Of change of electron Density Index can lead to GPS loss of lock events. This is always true at mid- and high-latitudes, especially inside the auroral oval. In the equatorial belt, this happens in at least 75% of identified GPS loss of lock events that basically coincide with the occurrence of plasma bubbles.
    Description: Published
    Description: e2022SW003129
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Keywords: Turbulence ; ionosphere ; Loss of Lock events ; 01.02. Ionosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-06-17
    Description: The impact of hazardous pyroclastic density currents (PDCs) increases with runout distance, which is strongly influenced by the mass flux. This article shows that the mass flux of a PDC may derive not only from vent discharge during the eruption, but also from partly hot, temporary stores (accumulations) of aerated pyroclastic material perched high on the volcano. The unforeseen PDC at Fuego volcano (Guatemala) on 3 June 2018 happened c.1.5 hr after the eruption climax. It overran the village of San Miguel Los Lotes causing an estimated 400+ fatalities. Analysis of the facies architecture of the deposit combined with video footage shows that a pulsatory block-and-ash flow flowed down the Las Lajas valley and rapidly waxed, the runout briefly increasing to 12.2 km as it filled and then spilled out of river channels, entered a second valley where it devastated the village and became increasingly erosive, prior to waning. Paleomagnetic analysis shows that the PDC contained only 6% very hot (〉590°C) clasts, 39% moderately hot (∼200°C–500°C) clasts, and 51% cool (〈200°C) clasts. This reveals that the block-and-ash flow mostly derived from collapse of loose and partly hot pyroclastic deposits, stored high on the volcano, gradually accumulated during the last 2–3 years. Progressive collapse of unstable deposits supplied the block-and-ash flow, causing a bulk-up process, waxing flow, channel overspill and unexpected runout. The study demonstrates that deposit-derived pyroclastic currents from perched temporary tephra stores pose a particular hazard that is easy to overlook and requires a new, different approach to hazard assessment and monitoring.
    Description: Published
    Description: e2021JB023699
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-05
    Description: This article is composed of two independent opinion pieces about the state of integrated, coordinated, open, and networked (ICON) principles (Goldman et al., 2021, https://doi.org/10.1029/2021EO153180; Goldman et al., 2022, https://doi.org/10.1029/2021ea002099) in Tectonophysics and discussion on the opportunities and challenges of adopting them. Each opinion piece focuses on a different topic: (a) global collaboration, technology transfer and application, reproducibility, and data sharing and infrastructure; and (b) field, experimental, remote sensing, and real-time data research and application. Within tectonophysics science, ICON-FAIR principles are starting to be adopted and implemented, however they have not become frequent and there are still plenty of opportunities for further development. During the last decade, standardization reduced fragmentation, facilitated openly available databases, and enabled different modeling methods to be combined. On the other hand, integration and coordination remained insufficient as exemplified by numerous geophysical interpretation programs running on different platforms, lacking the proper documentation and with diverse output formats. We agree that adapting the principles of ICON-FAIR brings high efforts and risks, but in the end, it has great benefits and potential in the tectonophysics community.
    Description: Published
    Description: e2021EA002144
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: integrated, coordinated, open, and networked (ICON) science ; Databases ; Data sharing ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-03
    Description: Tephra fallout hazard assessment is undertaken with probabilistic maps that rely on numerical models. Regarding maps production, the input parameters of the model (including atmospheric conditions), the physical approximations of the numerical simulations, and the probabilities of occurrence of different eruption types in specific time frames are among the most critical sources of uncertainty. We therefore present a tephra fallout hazard assessment study for two active volcanoes (Cotopaxi and Guagua Pichincha) in Ecuador. We utilize PLUME-MoM/HYSPLIT models, and a procedure for uncertainty quantification where: (a) the uncertainty on eruptive source parameters and eruption type occurrence is quantified through expert elicitation; (b) we implement a new procedure for correlations between the different parameters, and (c) we use correction coefficients to take into account the uncertainty of the numerical model. Maps of exceedance probability given a deposit thickness threshold, and thickness maps given a probability of exceedance, are produced (a) for two eruptive scenarios (sub-Plinian and Plinian) and (b) as a combination of these scenarios in case the next eruption will be sub-Plinian or Plinian. These maps are described according to the uncertainty distribution of eruption type occurrence probabilities, considering their 5th percentile, mean, and 95th percentile values. We finally present hazard curves describing exceeding probabilities in 10 sensitive sites within the city of Quito. Additional information includes the areal extent and the population potentially affected by different isolines of tephra accumulation. This work indicates that full uncertainty quantification helps in providing more robust scientific information, improving the hazard assessment reliability.
    Description: Published
    Description: e2021JB022780
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-04-29
    Description: Moulin and Benedetti (2018), https://doi.org/10.1029/2018tc00495810.1029/2018tc004958 present a new interpretation of the Neogene-Quaternary tectonic evolution of the Eastern Southern Alps (ESA) in Friuli. After the reinterpretation of literature field data by means of remote sensing analysis (Digital Elevation Model interpretation), they calculated deformation rates of the tectonic structures through age interpretation of geomorphological surfaces of the Veneto-Friuli piedmont plain. The authors linked the result of surface analysis to the thrust and fold architecture of the ESA basing on the Castellarin et al. (2006), https://doi.org/10.1016/j.tecto.2005.10.013 interpretation of TRANSALP project and the Friuli geological map at the scale 1:150,000 (Carulli, 2006). Discussing their new architecture of the ESA, the Authors finally yielded rates of Europe-Adria plates convergence and suggest fragmentation of Adria over the last 1–2 Ma. The present comment is aimed at discussing several critical points concerning: the use of the geomorphological and chronological data; the misinterpretation of the Digital Terrain Model; the reconstruction of the balanced geological cross section. Moreover, the application of a structural model defined in a certain area to another without considering peculiar structural complexities available in the literature results is geologically and methodologically questionable.
    Description: Published
    Description: e2019TC005696
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Comment ; active tectonics ; NE Italy ; Eastern Southern Alps ; Geodynamics ; 04.07. Tectonophysics ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-04-01
    Description: Duvalo “volcano” is a site of anomalous geogenic degassing close to Ohrid (North Macedonia) not related to volcanic activity, despite its name. CO2 flux measurements made with the accumulation chamber (321 sites over ∼50,000 m2) showed fluxes up to nearly 60,000 g m−2 d−1, sustaining a total output of ∼67 t d−1. Soil gas samples were taken at 50 cm depth from sites with high CO2 fluxes and analyzed for their chemical and isotope composition. The gas is mainly composed by CO2 (〉90%) with significant concentrations of H2S (up to 0.55%) and CH4 (up to 0.32%). The isotope compositions of He (R/RA 0.10) and of CO2 (δ13C ∼ 0‰) exclude significant mantle contribution, while δ13C-CH4 (∼−35‰) and δ2H-CH4 (∼−170‰) suggest a thermogenic origin for CH4. The area is characterized by intense seismic activity and Duvalo corresponds to an active tectonic structure bordering the Ohrid graben. The production of H2S within the stratigraphic sequence may be explained by thermochemical reduction of sulfate. The uprising H2S is partially oxidized to sulfuric acid that, reacting with carbonate rocks, releases CO2. The tectonic structure of the area favors fluid circulation, sustaining H2S production and oxidation, CO2 production and allowing the escape of the gases to the atmosphere. In the end, Duvalo represents a tectonic-related CO2 degassing area whose gases originate mostly, if not exclusively, in the shallowest part of the crust (〈10 km). This finding highlights that even systems with trivial mantle contribution may sustain intense CO2 degassing (〉1,000 t km−2 d−1).
    Description: Published
    Description: e2021GC010198
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Geogenic degassing ; CO2 fluxes ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-03-18
    Description: The Val d'Agri basin hosts an oil-field, the largest in onshore Europe, and it is one of the areas of highest seismic hazard in Italy. In an unproductive marginal portion of the reservoir, wastewater is re-injected by a high-rate well. Since the beginning of re-injection in June 2006, a spatio-temporal correlation between microseismicity (ML ≤ 2.0) and wastewater injection has been observed (suggesting induced seismicity). In this study, we perform a slip-tendency analysis on the fault system involved in the induced seismicity through a coupled fluid-flow and geomechanical numerical model simulating the stress partitioning due to the tectonic forces and to the fluid injection. The model results show that the fluid diffusion is strongly dependent on the active stress field and the geological structure in which fluids are injected, which conditioned the occurrence of seismicity that aligned on a small portion of a NE-dipping fault. However, another fault located closer to the injection well and where no seismicity was detected, is the better well-oriented fault with the active stress field and, also, the one more susceptible to the pore pressure increase. These results suggest different types of fault deformation acting in the Val d'Agri oilfield as response to the fluid injection (i.e., a mixed-mode fault slip behavior). Understanding the stress partitioning in tectonically active regions where underground activities such as fluid injection are ongoing is fundamental to give strong constraints for the discrimination between natural and induced seismicity, and finally for a more reliable and robust definition of seismic hazard.
    Description: Published
    Description: 2019JB019185
    Description: 1T. Struttura della Terra
    Description: 2T. Deformazione crostale attiva
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 7T. Variazioni delle caratteristiche crostali e "precursori"
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-03-17
    Description: Natural gas microseepage in petroleum-bearing sedimentary basins is an important complement to geophysical methods in oil-gas exploration and a natural source of methane (CH4) for the atmosphere. Microseepage, typically occurring in correspondence with petroleum fields throughout the world, is generally lower in summer, due to temperature-driven methanotrophic consumption, and higher in winter. The global estimates of microseepage methane emission have, however, relatively high uncertainties because of limited amounts of flux data, leading to poor knowledge of the spatial distribution and temporal variability of the gas emission factors. We studied the seasonal variation of microseepage flux to the atmosphere from a petroleum field in China (the Dawanqi oilfield), through methane flux measurements performed in summer 2014, winter 2015, and summer 2019. Winter data refer to frozen soil conditions, with snow cover and ice thickness in the soil exceeding 60 cm. Gas concentration (CH4, CO2, C2+ alkanes) and stable C isotopic composition of CH4 and CO2 in shallow (4 m deep) boreholes confirmed the existence of thermogenic gas seepage. Methane microseepage is higher in summer and lower or nil in winter. This seasonal trend is opposite to what was observed in areas where winter soil is not or poorly frozen. Our data suggest that seasonal microseepage variation may not be univocal worldwide, being strongly dependent on the presence of ice and snow cover in winter. The regional increase of temperature due to climate change, already demonstrated for the Tarim Basin over the last 50 years, could, in the future, reduce winter ice and enhance annual methane emission to the atmosphere.
    Description: Published
    Description: e2021JD034637
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-03-16
    Description: Several methods such as paleoseismic trenching, mapping of offset geomorphic markers, and dating of scarp profiles have been used to determine slip rates of normal faults in the central Apennines. Combining measurements obtained with different methods remains challenging because non-tectonic processes can introduce noise or spurious signals that are elusive to quantify, and these influence slip rate estimates. To this end, we meta-analyzed throw measurements with associated ages collected in the central Apennines with several methods to quantify such erratic fluctuations and method-related variances. We show that throw rates are overdispersed with respect to nominal uncertainties in throw and age; therefore, they are commonly affected by unmodeled noise processes. After comparing throw rate distributions sampling the same faults with different techniques, no clear spatiotemporal patterns appear, but only quasi-random noise. Assuming that field investigators sampled real tectonic features (i.e., fault scarps), we find that such erratic throw rates indicate total uncertainties are two to three times greater than the stated observation uncertainties. In this situation, a simple and robust null hypothesis is appropriate. We propose that most faults should be assumed to have uniform throw rate along their traces, except for possible tapering near unconnected ends. We also propose that models in which throw rates are time-dependent (within the last 25 ka) are not yet justified. Then, relying on the estimated total uncertainties, we determine the most probable long-term fault throw rate for each active fault by combining different throw-rate probability density functions.
    Description: Published
    Description: e2021JB023252
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-03-16
    Description: The Campi Flegrei caldera is considered the most dangerous volcano in Europe and is currently in a new phase of unrest (started in 2000 and still ongoing) that has persisted intermittently for several decades (main crisis occurred from 1950-52, 70-72 and 82-84). Here, by combining the petrological and geochemical data collected in recent decades with numerical simulations, we place new constraints on the source(s) of the current dynamics of the volcano. In particular, we show that the measured (N2-He-CO2) geochemical changes at the fumaroles of Solfatara hydrothermal site are the result of massive (about 3 km3) magma degassing in the deep portion (≥ 200 MPa, 8 km of depth) of the plumbing system. This degassing mechanism would be able to flood the overlying hydrothermal system with hot gas, thus heating and fracturing the upper crust inducing shallow seismicity and deformation. This implies that the deep magma transfer process (≥8 km) has been decoupled from the source of deformation and seismicity, localized in the first kilometers (0-4 km) of caldera-filling rocks. This information on magma transfer depth can have important implications for defining the best monitoring strategies and for forecasting a future eruption. Finally, this study highlights how petrological and geochemical data allow us to explore the dynamics of the deep portion of the plumbing system and thus trace the occurrence of recharge episodes, in a portion of the ductile lower crust where magma transfer occurs in the absence of earthquakes. Plain Language Summary Calderas are volcanic depressions formed as the ground collapses during huge volcanic eruptions. They often exhibit pronounced unrest, with frequent earthquakes, ground uplift, and considerable heat and mass flux that are monitored by volcanologists for eruption forecasting. However, as this activity is due to the complex interactions among magma and hydrothermal system stored beneath the volcano, it is always difficult to predict the evolution of the unrest towards critical conditions until to eruption. The Campi Flegrei caldera is among the most dangerous volcanos in Europe and is currently in a new phase of unrest that has lasted for several decades, whose nature (magmatic or not magmatic) has remained unclear. Here, we combine petrological and geochemical observations collected in recent decades with numerical simulations to place new constraints on the source of the recent dynamics of the volcano. In particular, we show that new deep magma has recharged the shallow reservoir beneath the volcano and flooded the overlying hydrothermal system with hot gas; thereby weakening the upper rocks allowing deformation (ground uplift) and fracturing (seismicity). This information is particularly important in the case of high-risk Campi Flegrei caldera, because it can help to improve defense strategies in case of future eruption.
    Description: Published
    Description: e2021JB023773
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-03-02
    Description: Three devastating earthquakes of MW ≥ 5.9 activated a complex system of high-angle normal, antithetic, and sub-horizontal detachment faults during the 2016–2017 central Italy seismic sequence. Waveform cross-correlation based double-difference location of nearly 400,000 aftershocks illuminate complex, fine-scale structures of interacting fault zones. The Mt. Vettore–Mt. Bove (VB) normal fault exhibits wide and complex damage zones, including a system of bookshelf faults that intersects the detachment zone. In the Laga domain, a comparatively narrow, shallow dipping segment of the deep Mt. Gorzano fault progressively ruptures through the detachment zone in four subsequent MW ∼ 5.4 events. Reconstructed fault planes show that the detachment zone is fragmented in four sub-horizontal, partly overlaying shear planes that correlated with the extent of the mainshock ruptures. We find a new, deep reaching seismic barrier that coincides with a bend in the VB fault and may play a role in controlling rupture evolution.
    Description: Published
    Description: e2021GL092918
    Description: 4T. Sismicità dell'Italia
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-02-28
    Description: Identifying deformation and pre-failure mechanisms preceding faulting is key for fault mechanics and for interpreting precursors to fault rupture. This study presents the results of a new and robust derivation of first motion polarity focal mechanism solutions (FMS) applied to acoustic emission (AE). FMS are solved using a least squares minimization of the fit between projected polarity measurements and the deviatoric stress field induced by dilatational (T-type), shearing (S-type), and compressional (C-type) sources. 4 × 10 cm cylindrical samples of Alzo Granite (AG, porosity 〈1%) and Darley Dale Sandstone (DDS, porosity ≈14%) underwent conventional triaxial tests in order to investigate the relationships between increasing confining pressure (5, 10, 20, and 40 MPa), deformation and failure mode, and role of microstructural features. Results highlight that S-type events occur in very low numbers with poor spatial correlation to fault structure. Instead, deformation is driven by a complex interplay between compactant (C-type) and dilatant (T-type) regions of deformation. C-type events are the earliest precursor related to crack nucleation and T-type events mark new cracks opening, with the onset of fracture growth characterized by periodic cycles of coalescence. For AG a single sequence is able to lead to dynamic failure, while for DDS several cycles are needed for coalescence to take place due to the competition between dilatant and compactant deforming regions induced by multiple fracture nucleation sites. The occurrence of C- and S-type events is also consistent with a quasi-static premonitory phase, or foreshock, before a critical nucleation length allows the development of a planar localization.Identifying deformation and pre-failure mechanisms preceding faulting is key for fault mechanics and for interpreting precursors to fault rupture. This study presents the results of a new and robust derivation of first motion polarity focal mechanism solutions (FMS) applied to acoustic emission (AE). FMS are solved using a least squares minimization of the fit between projected polarity measurements and the deviatoric stress field induced by dilatational (T-type), shearing (S-type), and compressional (C-type) sources. 4 × 10 cm cylindrical samples of Alzo Granite (AG, porosity 〈1%) and Darley Dale Sandstone (DDS, porosity ≈14%) underwent conventional triaxial tests in order to investigate the relationships between increasing confining pressure (5, 10, 20, and 40 MPa), deformation and failure mode, and role of microstructural features. Results highlight that S-type events occur in very low numbers with poor spatial correlation to fault structure. Instead, deformation is driven by a complex interplay between compactant (C-type) and dilatant (T-type) regions of deformation. C-type events are the earliest precursor related to crack nucleation and T-type events mark new cracks opening, with the onset of fracture growth characterized by periodic cycles of coalescence. For AG a single sequence is able to lead to dynamic failure, while for DDS several cycles are needed for coalescence to take place due to the competition between dilatant and compactant deforming regions induced by multiple fracture nucleation sites. The occurrence of C- and S-type events is also consistent with a quasi-static premonitory phase, or foreshock, before a critical nucleation length allows the development of a planar localization.
    Description: Published
    Description: e2020JB021059
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-02-28
    Description: How major crustal-scale seismogenic faults nucleate and evolve in crystalline basements represents a long-standing, but poorly understood, issue in structural geology and fault mechanics. Here, we address the spatio-temporal evolution of the Bolfin Fault Zone (BFZ), a 〉40-km-long exhumed seismogenic splay fault of the 1000-km-long strike-slip Atacama Fault System. The BFZ has a sinuous fault trace across the Mesozoic magmatic arc of the Coastal Cordillera (Northern Chile) and formed during the oblique subduction of the Aluk plate beneath the South American plate. Seismic faulting occurred at 5-7 km depth and ≤ 300°C in a fluid-rich environment as recorded by extensive propylitic alteration and epidote-chlorite veining. Ancient (125-118 Ma) seismicity is attested by the widespread occurrence of pseudotachylytes. Field geologic surveys indicate nucleation of the BFZ on precursory geometrical anisotropies represented by magmatic foliation of plutons (northern and central segments) and andesitic dyke swarms (southern segment) within the heterogeneous crystalline basement. Seismic faulting exploited the segments of precursory anisotropies that were optimal to favorably oriented with respect to the long-term far-stress field associated with the oblique ancient subduction. The large-scale sinuous geometry of the BFZ resulted from the hard linkage of these anisotropy-pinned segments during fault growth.
    Description: European Research Council Project (NOFEAR) 614705
    Description: Published
    Description: e2021TC006818
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Keywords: Atacama Fault System; fault growth; intra‐arc deformation; pseudotachylytes; seismogenic fault; structural inheritance ; Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-02-25
    Description: A gas blowout during an unauthorised well drilling occurred on 9 June 2020 at the Rome-Ciampino boundary at the periphery of Colli Albani quiescent volcano. This zone hosts a shallow confined gas-pressured aquifer, which recently produced further three gas blowouts. Dangerous atmospheric CO2 and H2S concentrations killed some birds and 12 families were evacuated. The helium isotopic composition indicates that the gas has a magmatic origin. It rises toward the surface along leaky faults, pressurizing the shallow confined aquifer and creating a permanent gas blowout hazard. Colli Albani volcano is characterized by anomalous uplift, release of magmatic gas and episodic seismic crises. Should a volcanic unrest occur, gas hazard would increase in this densely inhabited zone of Rome city, as the input of magmatic gas into the confined aquifer might create overpressure conditions leading to a harmful phreatic explosion, or increase the emission of hazardous gas through newly created fractures.
    Description: Published
    Description: e2020GL089797
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: gas blowouts from drillings ; hazardous CO2 and H2S air concentrations ; anomalous soil CO2 flux ; hazard of a possible phreatic explosion ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-02-25
    Description: Most basaltic explosive eruptions intensify abruptly, allowing little time to document processes at the start of eruption. One opportunity came with the initiation of activity from fissure 8 (F8) during the 2018 eruption on the lower East Rift Zone of Kīlauea, Hawaii. F8 erupted in four episodes. We recorded 28 min of high-definition video during a 51-min period, capturing the onset of the second episode on 5 May. From the videos, we were able to analyze the following in-flight parameters: frequency and duration of explosions; ejecta heights; pyroclast exit velocities; in-flight total mass and estimated mass eruption rates; and the in-flight total grain size distributions. The videos record a transition from initial pulsating outgassing, via spaced, but increasingly rapid, discrete explosions, to quasisustained, unsteady fountaining. This transition accompanied waxing intensity (mass flux) of the F8 eruption. We infer that all activity was driven by a combination of the ascent of a coupled mixture of small bubbles and melt, and the buoyant rise of decoupled gas slugs and/or pockets. The balance between these two types of concurrent flow determined the exact form of the eruptive activity at any point in time, and changes to their relative contributions drove the transition we observed at early F8. Qualitative observations of other Hawaiian fountains at Kīlauea suggest that this physical model may apply more generally. This study demonstrates the value of in-flight parameters derived from high-resolution videos, which offer a rapid and highly timesensitive alternative to measurements based on sampling of deposits posteruption.
    Description: Published
    Description: e2020JB020903
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-02-24
    Description: Focal mechanisms of selected earthquakes, recorded in the Mount Pollino region (southern Italy) from 2010 through 2014, are used to infer the pore fluid pressure at hypocenter depths. The 3-D excess pore pressure field provides evidence that the sequence occurs in a fluid-filled volume with values reaching 35 MPa. The mechanisms underlying this swarm-like sequence and the triggering of earthquakes are investigated by computing the cumulative static Coulomb stress change at hypocenter depths and analyzing the pore-pressure diffusion mechanism. The results indicate that static Coulomb stress change was lower than 0.01 MPa, which is the value generally assumed as threshold for the triggering, and seismicity distribution was actually driven by pore-pressure diffusion with relatively low diffusivity value. This latter mechanism could also explain the delayed triggering of the two larger events ML 4.3 and ML 5.0, respectively, that occurred about 150 days apart.
    Description: Published
    Description: e2021GL094552
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-02-21
    Description: Seismological constraints obtained from receiver function (RF) analysis provide important information about the crust and mantle structure. Here, we explore the utility of the free-surface multiple of the P-wave (PP) and the corresponding conversions in RF analysis. Using earthquake records, we demonstrate the efficacy of PPs-RFs before illustrating how they become especially useful when limited data is available in typical planetary missions. Using a transdimensional hierarchical Bayesian deconvolution approach, we compute robust P-to-S (Ps)- and PPs-RFs with InSight recordings of five marsquakes. Our Ps-RF results verify the direct Ps converted phases reported by previous RF analyses with increased coherence and reveal other phases including the primary multiple reverberating within the uppermost layer of the Martian crust. Unlike the Ps-RFs, our PPs-RFs lack an arrival at 7.2 s lag time. Whereas Ps-RFs on Mars could be equally well fit by a two- or three-layer crust, synthetic modeling shows that the disappearance of the 7.2 s phase requires a three-layer crust, and is highly sensitive to velocity and thickness of intra-crustal layers. We show that a three-layer crust is also preferred by S-to-P (Sp)-RFs. While the deepest interface of the three-layer crust represents the crust-mantle interface beneath the InSight landing site, the other two interfaces at shallower depths could represent a sharp transition between either fractured and unfractured materials or thick basaltic flows and pre-existing crustal materials. PPs-RFs can provide complementary constraints and maximize the extraction of information about crustal structure in data-constrained circumstances such as planetary missions.
    Description: Published
    Description: e2021JE006983
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: InSight; Mars; Martian crust; Receiver function; Seismology; Transdimensional hierarchical Bayesian
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-02-14
    Description: Active faulting and deep-seated gravitational slope deformation (DGSD) are common geological hazards in mountain belts worldwide. In the Italian central Apennines, kilometer-thick carbonate sedimentary sequences are cut by major active normal faults that shape the landscape, generating intermontane basins. Geomorphological observations suggest that the DGSDs are commonly located in fault footwalls. We selected five mountain slopes affected by DGSD and exposing the footwall of active seismogenic normal faults exhumed from 2 to 0.5 km depth. Field structural analysis of the slopes shows that DGSDs exploit preexisting surfaces formed both at depth and near the ground surface by tectonic faulting and, locally, by gravitational collapse. Furthermore, the exposure of sharp scarps along mountain slopes in the central Apennines can be enhanced either by surface seismic rupturing or gravitational movements (e.g., DGSD) or by a combination of the two. At the microscale, DGSDs accommodate deformation mechanisms similar to those associated with tectonic faulting. The widespread compaction of micro-grains (e.g., clast indentation), observed in the matrix of both normal faults and DGSD slip zones, is consistent with clast fragmentation, fluid-infiltration, and congruent pressuresolution active at low ambient temperatures (〈60°C) and lithostatic pressures (〈80 MPa). Although clast comminution is more intense in the slip zones of normal faults because of the larger displacement accommodated, we are not able to find microstructural markers that allow us to uniquely distinguish faults from DGSDs.
    Description: Published
    Description: e2021TC006698
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Tettonofisica ; Geologia
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-02-11
    Description: Seismic event detection and phase picking are the base of many seismological workflows. In recent years, several publications demonstrated that deep learning approaches significantly outperform classical approaches, achieving human-like performance under certain circumstances. However, as studies differ in the datasets and evaluation tasks, it is unclear how the different approaches compare to each other. Furthermore, there are no systematic studies about model performance in cross-domain scenarios, that is, when applied to data with different characteristics. Here, we address these questions by conducting a large-scale benchmark. We compare six previously published deep learning models on eight data sets covering local to teleseismic distances and on three tasks: event detection, phase identification and onset time picking. Furthermore, we compare the results to a classical Baer-Kradolfer picker. Overall, we observe the best performance for EQTransformer, GPD and PhaseNet, with a small advantage for EQTransformer on teleseismic data. Furthermore, we conduct a cross-domain study, analyzing model performance on data sets they were not trained on. We show that trained models can be transferred between regions with only mild performance degradation, but models trained on regional data do not transfer well to teleseismic data. As deep learning for detection and picking is a rapidly evolving field, we ensured extensibility of our benchmark by building our code on standardized frameworks and making it openly accessible. This allows model developers to easily evaluate new models or performance on new data sets. Furthermore, we make all trained models available through the SeisBench framework, giving end-users an easy way to apply these models.
    Description: This work was supported by the Helmholtz Association Initiative and Networking Fund on the HAICORE@KIT partition. J. Münchmeyer acknowledges the support of the Helmholtz Einstein International Berlin Research School in Data Science (HEIBRiDS). The authors thank the Impuls-und Vernetzungsfonds of the HGF to support the REPORT-DL project under the grant agreement ZT-I-PF-5-53. This work was also partially supported by the project INGV Pianeta Dinamico 2021 Tema 8 SOME (CUP D53J1900017001) funded by Italian Ministry of University and Research “Fondo finalizzato al rilancio degli investimenti delle amministrazioni centrali dello Stato e allo sviluppo del Paese, legge 145/2018.” Open access funding enabled and organized by Projekt DEAL.
    Description: Published
    Description: e2021JB023499
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Keywords: seismic phase recognition ; deep learnig ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-02-11
    Description: Volcanism has played a major role in modifying the Martian surface. The Tharsis volcanic province dominates the western hemisphere of the planet with numerous effusive volcanic constructs and deposits. Here, we present the results of an in-depth study aimed at characterizing and modeling the emplacement conditions of 40 lava flows in the Tharsis volcanic province. These lava flows display a range of lengths (∼15–310 km), widths (∼0.5–29 km), and thicknesses (∼11–91 m). The volumes and flow masses range from ∼1 to 440 km3 and ∼1011 to 1014 kg, respectively. Using three different models, we calculated a range of eruption rates (0.3–3.5 × 104 m3/s), viscosities (104–107 Pa s), yield strengths (800–104 Pa), and emplacement times (8 h–11 years). While the flow lengths and volumes are typically larger than terrestrial lava flows by an order of magnitude, rheologies and eruption rates are similar based on our findings. Emplacement times suggest that eruptions were active for long periods of time, which implies the presence and persistence of open subsurface pathways. Differences in flow morphology and emplacement conditions across localities within Tharsis highlight different pathways and volumes of available material between the central volcanoes and the plains. The scale of the eruptions suggests there could have been eruption-driven local, regional, and perhaps, global impacts on the Martian climate. The relatively recent age of the eruptions implies that Mars has retained the capability of producing significant localized volcanism.
    Description: Published
    Description: e2020JE006791
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Lava flows ; 05.07. Space and Planetary sciences ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-02-11
    Description: Knowledge of the global distribution of Earth volcanism is critical in many fields of the Geosciences involving large-scale assessments, such as plate tectonics, global volcanic hazards, and climate change. Recent analysis has revealed that global eruption inter-event times are exponentially distributed, implying that on the global scale volcanic eruptions are Poisson distributed. Here, we employ those findings to calibrate a continuous frequency-volume distribution for subaerial eruptions of any size on Earth from small lava flows to super-eruptions. Obtaining such a continuous global distribution implies considering the existing data and the way they are collected and categorized into databases, as well as extending the available eruption volume data to eruption VEI classes less than 4. The continuous global distribution shows an initial log-normal section up to volumes of about 170 Mm3, followed by a power-law section, tapered on its extreme right-end side, encompassing about five orders of magnitude of eruption volumes. The potential implications are discussed in terms of short-term eruption forecasts of the size of an impending eruption, critical for volcanic emergency management.
    Description: Published
    Description: e2021JB021763
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-02-07
    Description: We study the drivers behind the global atmospheric methane (CH4) increase observed after 2006. Candidate emission and sink scenarios are constructed based on proposed hypotheses in the literature. These scenarios are simulated in the TM5 tracer transport model for 1984-2016 to produce three-dimensional fields of CH4 and δ 13C-CH4, which are compared with observations to test the competing hypotheses in the literature in one common model framework. We find that the fossil fuel (FF) CH4 emission trend from the Emissions Database for Global Atmospheric Research 4.3.2 inventory does not agree with observed δ 13C-CH4. Increased FF CH4 emissions are unlikely to be the dominant driver for the post-2006 global CH4 increase despite the possibility for a small FF emission increase. We also find that a significant decrease in the abundance of hydroxyl radicals (OH) cannot explain the post-2006 global CH4 increase since it does not track the observed decrease in global mean δ 13C-CH4. Different CH4 sinks have different fractionation factors for δ 13C-CH4, thus we can investigate the uncertainty introduced by the reaction of CH4 with tropospheric chlorine (Cl), a CH4 sink whose abundance, spatial distribution, and temporal changes remain uncertain. Our results show that including or excluding tropospheric Cl as a 13 Tg/year CH4 sink in our model changes the magnitude of estimated fossil emissions by ∼20%. We also found that by using different wetland emissions based on a static versus a dynamic wetland area map, the partitioning between FF and microbial sources differs by 20 Tg/year, ∼12% of estimated fossil emissions.
    Description: Published
    Description: e2021GB007000
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: atmospheric methane; atmospheric modeling; greenhouse gas; methane budget; source attribution; stable isotope of methane
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-01-03
    Description: The increase of available seismic data prompts the need for automatic processing procedures to fully exploit them. A good example is aftershock sequences recorded by temporary seismic networks, whose thorough analysis is challenging because of the high seismicity rate and station density. Here, we test the performance of two recent Deep Learning algorithms, the Generalized Phase Detection and Earthquake Transformer, for automatic seismic phases identification. We use data from the December 2019 Mugello basin (Northern Apennines, Italy) swarm, recorded on 13 permanent and nine temporary stations, applying these automatic procedures under different network configurations. As a benchmark, we use a catalog of 279 manually repicked earthquakes reported by the Italian National Seismic Network. Due to the ability of deep learning techniques to identify earthquakes under poor signal-to-noise-ratio (SNR) conditions, we obtain: (a) a factor 3 increase in the number of locations with respect to INGV bulletin and (b) a factor 4 increase when stations from the temporary network are added. Comparison between deep learning and manually picked arrival times shows a mean difference of 0.02–0.04 s and a variance in the range 0.02–0.07 s. The improvement in magnitude completeness is ∼0.5 units. The deep learning algorithms were originally trained using data sets from different regions of the world: our results indicate that these can be successfully applied in our case, without any significant modification. Deep learning algorithms are efficient and accurate tools for data reprocessing in order to better understand the space-time evolution of earthquake sequences.
    Description: Published
    Description: e2021JB023405
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    Wiley-AGU
    In:  Lei, J., Wang, W., Burns, A. G., Zhang, S.-R., & Dang, T. (2021). Comments on “poststorm thermospheric NO overcooling?” by Mikhailov and Perrone (2020). Journal of Geophysical Research: Space Physics, 126, e2020JA027992. https://doi.org/10.1029/2020JA027992
    Publication Date: 2021-12-24
    Description: Recently, our paper “Poststorm Thermospheric NO Overcooling?” has been published in JGR. Lei with colleagues (2012) who have proposed the “NO overcooling” concept have written Comments on this paper. Below is given our reply. Everywhere MP20 means the reference to the paper by Mikhailov and Perrone (2020). In the beginning to avoid misunderstanding, it is necessary to stress that in MP20 we did not touch on the well-documented process of the thermosphere NO cooling (e.g., Gordiets et al., 1982; Maeda et al., 1989; Mlynczak et al., 2018; Prölss, 2004, 2011; Roble, 1995; Weimer et al., 2011) which mainly takes place in the lower thermosphere. We only explained a decrease of neutral gas density at F2-layer heights during the recovery storm phase. The effect manifests seasonal dependence which is not explained by the “NO overcooling” mechanism
    Description: Published
    Description: e2020JA028096
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2021-12-23
    Description: The SW Iberian margin is one of the most seismogenic and tsunamigenic areas in W-Europe, where large historical and instrumental destructive events occurred. To evaluate the sensitivity of the tsunami impact on the coast of SW Iberia and NW Morocco to the fault geometry and slip distribution for local earthquakes, we carried out a set of tsunami simulations considering some of the main known active crustal faults in the region: the Gorringe Bank (GBF), Marquês de Pombal (MPF), Horseshoe (HF), North Coral Patch (NCPF) and South Coral Patch (SCPF) thrust faults, and the Lineament South strike-slip fault. We started by considering for all of them relatively simple planar faults featuring with uniform slip distribution; we then used a more complex 3D fault geometry for the faults constrained with a large 2D multichannel seismic dataset (MPF, HF, NCPF, and SCPF); and finally, we used various heterogeneous slip distributions for the HF. Our results show that using more complex 3D fault geometries and slip distributions, the peak wave height at the coastline can double compared to simpler tsunami source scenarios from planar fault geometries. Existing tsunami hazard models in the region use homogeneous slip distributions on planar faults as initial conditions for tsunami simulations and therefore underestimate tsunami hazard. Complex 3D fault geometries and non-uniform slip distribution should be considered in future tsunami hazard updates. The tsunami simulations also support the finding that submarine canyons attenuate the wave height reaching the coastline, while submarine ridges and shallow shelves have the opposite effect.
    Description: Published
    Description: e2021JB022127
    Description: 2T. Deformazione crostale attiva
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: tsunami ; earthquake ; complex fault geometry ; heterogeneous slip distribution ; tsunami numerical modeling ; seismic and tsunami hazard ; 04.04. Geology ; 04.06. Seismology ; 05.08. Risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2021-12-23
    Description: Abstract The Lisbon Metropolitan Area, Portugal, has been affected by several destructive earthquakes nucleating both along the offshore Africa-Eurasia plate boundary and on onshore inherited intraplate faults. Using a dense GNSS dataset coupled with PSInSAR analysis, we provide new evidence of sinistral simple shear driven by a NNE-SSW first-order tectonic lineament. PSInSAR vertical velocities corroborate qualitatively the GNSS strain-rate field, showing uplift/subsidence where the GNSS data indicate contraction/extension. We propose the presence of a small block to the W of Lisbon moving independently toward the SW with a relative velocity of 0.96 ± 0.20 mm/yr, whose boundaries are part of a complex and as yet poorly constrained strike-slip fault system, possibly rooting at depth into a simpler basement fault. Comparison between geodetic and seismic moment-rates indicates a high seismic coupling. We show that the contribution of intraplate faults to the seismic hazard in the LMA is more important than currently assumed.
    Description: FCT - Fundação para a Ciência e a Tecnologia, Lisbon. Grant Number: EXCL/GEO-FIQ/0411/2012 Agencia Española de Investigacion. Grant Number: RTI2018-093874-B-100 AGEO - Platform for Atlantic Geohazard Risk Management. Grant Number: EAPA_884/2018
    Description: Published
    Description: e2021GL096862
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Deformation ; Intraplate ; PISinSAR ; GNSS ; Portugal ; 04. Solid Earth ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2021-12-23
    Description: The tsunami source of the 2021 MW 8.1 Raoul Island earthquake in the Kermadec subduction zone was estimated by inverting the tsunami signals recorded by Deep-ocean Assessment and Reporting of Tsunamis (DART) bottom pressure sensors and coastal tide-gauges. The main asperity aftershock distribution and rapid back-projection analysis. Three earthquakes of M ∼8 or larger which also produced moderate tsunamis happened in the 20th century in the same portion of the subduction zone. This is the first great tsunamigenic event captured by the new New Zealand DART network in the South West Pacific, which proved valuable to estimate a robust image of the tsunami source. We also show a first proof of concept of the capability of this network to reduce the uncertainty associated with tsunami forecasting and to increase the lead time available for evacuation for future alerts.
    Description: Published
    Description: e2021GL094449
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 8T. Sismologia in tempo reale e Early Warning Sismico e da Tsunami
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2021-12-22
    Description: A comprehensive surface displacement monitoring system installed in the recently deglaciated bedrock slopes of the Aletsch Valley shows systematic reversible motions at the annual scale. We explore potential drivers for this deformation signal and demonstrate that the main driver is pore pressure changes of groundwater in fractured granitic mountain slopes. The spatial pattern of these reversible annual deformations shows similar magnitudes and orientations for adjacent monitoring points, leading to the hypothesis that the annually reversible deformation is caused by slope-scale groundwater elevation changes and rock mass properties. Conversely, we show that the ground reaction to infiltration from snowmelt and summer rainstorms can be highly heterogeneous at local scale, and that brittle-ductile fault zones are key features for the groundwater pressure-related rock mass deformations. We also observe irreversible long-term trends (over the 6.5 years data set) of deformation in the Aletsch valley composed of a larger uplift than observed at our reference GNSS station in the Rhone valley, and horizontal displacements of the slopes towards the valley. These observations can be attributed respectively to the elastic bedrock rebound in response to current glacier mass downwasting of the Great Aletsch Glacier and gravitational slope deformations enabled by cyclic groundwater pressure-related rock mass fatigue in the fractured rock slopes.
    Description: Published
    Description: e2021JF006353
    Description: 7A. Geofisica per il monitoraggio ambientale
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2021-12-22
    Description: Explosive basaltic eruptions pose significant threats to local communities, regional infrastructures and international airspace. They produce tephra plumes that are often associated with a lava fountain, complicating their dynamics. Consequently, source parameters cannot be easily constrained using traditional formulations. Particularly, mass flow rates (MFRs) derived from height observations frequently differ from field deposit-derived MFRs. Here, we investigate this discrepancy using a novel integral plume model that explicitly accounts for a lava fountain, which is represented as a hot, coarse-grained inner plume co-flowing with a finer-grained outer plume. The new model shows that a plume associated with a lava fountain has higher variability in rise height than a standard plume for the same initial MFR depending on initial conditions. The initial grain-size distribution and the relative size of the lava fountain compared to the surrounding plume are primary controls on the final plume height as they determine the strength of coupling between the two plumes. We apply the new model to the August 29, 2011 paroxysmal eruption of Mount Etna, Italy. The modeled MFR profile indicates that the field-derived MFR does not correspond to that at the vent, but rather the MFR just above the lava fountain top. High fallout from the lava fountain results in much of the erupted solid material not reaching the top of the plume. This material deposits to form the proximal cone rather than dispersing in the atmosphere. With our novel model, discrepancies between the two types of observation-derived MFR can be investigated and understood.
    Description: Published
    Description: e2020JB021360
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2021-12-16
    Description: Experiments that systematically explore rock friction under crustal earthquake conditions reveal that faults undergo abrupt dynamic weakening. Processes related to heating and weakening of fault surfaces have been invoked to explain pronounced velocity weakening. Both contact asperity temperature Ta and background temperature T of the slip zone evolve significantly during high-velocity slip due to heat sources (frictional work), heat sinks (e.g., latent heat of decomposition processes), and diffusion. Using carefully calibrated High-Velocity Rotary Friction experiments, we test the compatibility of thermal weakening models: (1) a model of friction based only on T in an extremely simplified, Arrhenius-like thermal dependence; (2) a flash heating model which accounts for the evolution of both V and T; (3) same but including heat sinks in the thermal balance; and (4) same but including the thermal dependence of diffusivity and heat capacity. All models reflect the experimental results but model (1) results in unrealistically low temperatures and model (2) reproduces the restrengthening phase only by modifying the parameters for each experimental condition. The presence of dissipative heat sinks in stage (3) significantly affects T and reflects on the friction, allowing a better joint fit of the initial weakening and final strength recovery across a range of experiments. Temperature is significantly altered by thermal dependence of (4). However, similar results can be obtained by (3) and (4) by adjusting the energy sinks. To compute temperature in this type of problem, we compare the efficiency of three different numerical approximations (finite difference, wavenumber summation, and discrete integral).
    Description: The authors acknowledge the support by ERC CoG No. 6145705 NOFEAR.
    Description: Published
    Description: e2020JB020652
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2021-12-16
    Description: Tectonic pseudotachylytes are thought to be unique to certain water-deficient seismogenic environments and their presence is considered to be rare in the geological record. Here, we present field and experimental evidence that frictional melting can occur in hydrothermal fluid-rich faults hosted in the continental crust. Pseudotachylytes were found in the 〉40 km-long Bolfín Fault Zone of the Atacama Fault System, within two ca. 1 m-thick (ultra)cataclastic strands hosted in a damage-zone made of chlorite-epidote-rich hydrothermally altered tonalite. This alteration state indicates that hydrothermal fluids were active during the fault development. Pseudotachylytes, characterized by presenting amygdales, cut and are cut by chlorite-, epidote- and calcite-bearing veins. In turn, crosscutting relationship with the hydrothermal veins indicates pseudotachylytes were formed during this period of fluid activity. Rotary shear experiments conducted on bare surfaces of hydrothermally altered rocks at seismic slip velocities (3 m s-1) resulted in the production of vesiculated pseudotachylytes both at dry and water-pressurized conditions, with melt lubrication as the primary mechanism for fault dynamic weakening. The presented evidence challenges the common hypothesis that pseudotachylytes are limited to fluid-deficient environments, and gives insights into the ancient seismic activity of the system. Both field observations and experimental evidence, indicate that pseudotachylytes may easily be produced in hydrothermal environments, and could be a common co-seismic fault product. Consequently, melt lubrication could be considered one of the most efficient seismic dynamic weakening mechanisms in crystalline basement rocks of the continental crust.
    Description: The authors would like to acknowledge the support of ERC CoG No 614705 NOFEAR. R. Gomila has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska- Curie grant agreement No 896346 – FRICTION.
    Description: Published
    Description: e2021GC009743
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Keywords: Atacama fault system; fluid‐rich faults; frictional melting; tectonic pseudotachylytes; vesiculation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2021-12-16
    Description: Theoretical studies predict that during earthquake rupture faults slide at non-constant slip velocity, however it is not clear which source time functions are compatible with the high velocity rheology of earthquake faults. Here we present results from high velocity friction experiments with nonconstant velocity history, employing a well-known seismic source solution compatible with earthquake source kinematics. The evolution of friction in experiments shows a strong dependence on the applied slip history, and parameters relevant to the energetics of faulting scale with the impulsiveness of the applied slip function. When comparing constitutive models of strength against our experimental results we demonstrate that the evolution of fault strength is directly controlled by the temperature evolution on and off the fault. Flash heating predicts weakening behavior at short timescales, but at larger timescales strength is better predicted by a viscous creep rheology. We use a steady-state slip pulse to test the compatibility of our strength measurements at imposed slip rate history with the stress predicted from elastodynamic equilibrium. Whilst some compatibility is observed, the strength evolution indicates that slip acceleration and deceleration might be more rapid than that imposed in our experiments.
    Description: This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no 804685/“RockDEaF”) and under the European Community's Seventh Framework Programme (grant agreement n 614705/“NOFEAR”)
    Description: Published
    Description: e2021JB022149
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2021-12-16
    Description: Phreatic and hydrothermal eruptions are small energetic explosive events that generally have few to no precursors and represent a considerable hazard in tourist and urban areas. At the Campi Flegrei caldera, these events have occurred at the Solfatara volcano and have likely occurred at the nearby Pisciarelli site, where the most powerful hydrothermal phenomena are located. Here, increased hydrothermal activity has caused relevant morphological changes that has led local authorities to deny access to the site. Stratigraphic, structural, and geophysical investigations have allowed us to reconstruct the volcano-tectonic setting of the area. In particular, we have recognized a fault system and related damage zones that act as the preferred pathway for hydrothermal fluids in the caldera. At the surface, these faults control the migration and/or accumulation of deep-seated gases into the subsoil and the formation of fumaroles and mud pools. We have recognized two main fault systems with different ages that show variable displacements. The electrical anomalies identified by electrical resistivity tomography further highlight the main fault pattern and show the interplay between volcano-tectonic structures and fluid circulation. Host rocks and fault zones may be involved in self-sealing processes and/or rock failure phenomena capable of modifying the fluid pathways and establishing favorable conditions, leading to overpressure and/or rapid decompression of fluids and triggering an explosive event. Furthermore, stratigraphic mapping shows fossil mud pool sediments embedded in an old debris flow located above the modern hydrothermal system. This implies that they were at a higher elevation when they formed. The morphotectonic evolution and intense rock alterations in the area could promote further landslide episodes, producing debris-flow deposits that can cover the active area and possibly trigger hydrothermal/ phreatic events.
    Description: Published
    Description: e2020TC006227
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: fault system ; hydrothermal fluids ; geoelectrical image ; volcanic hazard ; 04.08. Volcanology ; 04.02. Exploration geophysics ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2021-12-15
    Description: Mapping lava flows frequently during effusive eruptions provides crucial parameters to better understand their dynamics, in turn improving our ability to model lava flow behavior. New photogrammetric methods have recently been developed, shifting the paradigm of photogrammetry from pure method to a multidisciplinary approach able to reduce the cost of volcanic monitoring and widen the potential spectrum of application. In this work, we demonstrate how multi-view and singleview photogrammetry methods can be used effectively to extract accurate quantitative information from photographs taken during routine surveys over an active lava flow. One intriguing advantage of these methods is that they can re-use images acquired previously to extract new data from past eruptions. In particular, we reconstructed quantitatively the evolution of the lava flow field emplaced during 2004–2005 at Mt. Etna, subdivided in five eruptive phases from the earliest simple lava flows to the final compound lava field about 6 months later. Our results show that, in the first week of eruption, lava field formation was characterized by an increasing lava length that followed a power law growth and by a decreasing front velocity that followed a power law as well. Thereafter, the length increasing became almost constant until the developed lava tube system was able to drain the lava for long distances, with the area inundated by lava that grew linearly in the first 20 days. Finally, we demonstrate the crucial role that the syn-eruptive DEMs acquisition could have to improve our understanding of the emplacement dynamics of complex lava fields.
    Description: Published
    Description: e2020JB020499
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2021-12-15
    Description: The Moon is not volcanically active at present, therefore, we rely on data from lunar samples, remote sensing, and numerical modeling to understand past lunar volcanism. The role of different volatile species in propelling lunar magma ascent and eruption remains unclear. We adapt a terrestrial magma ascent model for lunar magma ascent, considering different compositions of picritic magmas and various abundances of H 2 , H 2 O, and CO (measured and estimated) for these magmas. We also conduct a sensitivity analysis to investigate the relationship between selected input parameters (pre-eruptive pressure, temperature, conduit radius, and volatile content) and given outputs (exit gas volume fraction, velocity, pressure, and mass eruption rate). We find that, for the model simulations containing H2O and CO, CO was more significant than H2O in driving lunar magma ascent, for the range of volatile contents considered here. For the simulations containing H2 and CO, H2 had a similar or slightly greater control than CO on magma ascent dynamics. Our results showed that initial H2 and CO content has a strong control on exit velocity and pressure, two factors that strongly influence the formation of an eruption plume, pyroclast ejection, and overall deposit morphology. Our results highlight the importance of (a) quantifying and determining the origin of CO, and (b) understanding the abundance of different H-species present within the lunar mantle. Quantifying the role of volatiles in driving lunar volcanism provides an important link between the interior volatile content of the Moon and the formation of volcanic deposits on the lunar surface.
    Description: Published
    Description: e2021JE006939
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2021-12-15
    Description: 13 pages, 4 figures
    Description: We develop a Lagrangian stochastic model (LSM) of a volcanic plume in which the mean flow is provided by an integral plume model of the eruption column and fluctuations in the vertical velocity are modelled by a suitably constructed stochastic differential equation. The LSM is applied to the two eruptions considered by Costa et al. (2016) for the volcanic-plume intercomparison study. Vertical profiles of the mass concentration computed from the LSM are compared with equivalent results from a large-eddy simulation (LES) for the case of no ambient wind. The LSM captures the order of magnitude of the LES mass concentrations and some aspects of their profiles. In contrast with a standard integral plume model, i.e. without fluctuations, the mass concentration computed from the LSM decays (to zero) towards the top of the plume which is consistent with the LES plumes. In the lower part of the plume, we show that the presence of ash leads to a peak in the mass concentration at the level at which there is a transition from a negatively buoyant jet to a positively buoyant plume. The model can also account for the ambient wind and moisture.
    Description: Published
    Description: e2020JD033699
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Physics - Geophysics; Physics - Geophysics; Physics - Atmospheric and Oceanic Physics; Physics - Fluid Dynamics ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2021-12-14
    Description: The 2016–2017 Central Italy earthquake sequence struck the central Apennines between August 2016 and October 2016 with Mw ∈ [5.9; 6.5], plus four earthquakes occurring in January 2017 with Mw ∈ [5.0; 5.5]. We study Global Positioning System time series including near- and far-field domains. We use a variational Bayesian independent component analysis technique to separate the post-seismic deformation from signals caused by variation of the water content in aquifers at hundreds of meters of depth and of the soil moisture. For each independent component, realistic uncertainties and a plausible physical explanation are provided. We focus on the study of afterslip on the main structures surrounding the mainshock, highlighting the role played by faults that were not activated during the co-seismic phase in accommodating the post-seismic deformation. We report aseismic deformation occurring on the Paganica fault, which hosted the Mw 6.1 2009 L'Aquila earthquake, suggesting that static stress transfer and aseismic slip influence the recurrence time of nearby (∼50 km further south of the mainshocks) segments. A ∼2–3 km thick subhorizontal shear-zone, clearly illuminated by seismicity, which bounds at depth the west-dipping normal faults where the mainshocks nucleated, also shows aseismic slip. Since afterslip alone underestimates the displacement in the far-field domain, we consider the possibility that the shear zone marks the brittle-ductile transition, assuming the viscoelastic relaxation of the lower crust as a mechanism contributing to the post-seismic displacement. Our results suggest that multiple deformation processes are active in the first 2 years after the mainshocks.
    Description: Published
    Description: e2021JB022200
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2021-12-14
    Description: We present a full characterization of a 20 cm-thick tephra layer found intercalated in the marine sediments recovered at Site U1524 during International Ocean Discovery Program (IODP) Expedition 374, in the Ross Sea, Antarctica. Tephra bedforms, mineral paragenesis, and major- and trace element composition on individual glass shards were investigated and the tephra age was constrained by 40Ar-39Ar on sanidine crystals. The 40Ar-39Ar data indicate that sanidine grains are variably contaminated by excess Ar, with the best age estimate of 1.282 ± 0.012 Ma, based on both single-grain total fusion analyses and step-heating experiments on multi-grain aliquots. The tephra is characterized by a very homogeneous rhyolitic composition and a peculiar mineral assemblage, dominated by sanidine, quartz, and minor aenigmatite and arfvedsonite-riebeckite amphiboles. The tephra from Site U1524 compositionally matches with a ca. 1.3 Ma, rhyolitic pumice fall deposit on the rim of the Chang Peak volcano summit caldera, in the Marie Byrd Land, located ca. 1,300 km from Site U1524. This contribution offers important volcanological data on the eruptive history of Chang Peak volcano and adds a new tephrochronologic marker for the dating, correlation, and synchronization of marine and continental early Pleistocene records of West Antarctica.
    Description: Published
    Description: e2021GC009739
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2021-12-14
    Description: Velocity variations obtained from ambient seismic noise are sensitive to many factors. We aimed to disentangle these processes in a 10-year-long recording of seismic noise from a single station in the Pollino region, in southern Italy. This region is characterized by aquifers and by a relatively short period of high seismic activity that included slow slip events and a urn:x-wiley:15252027:media:ggge22677:ggge22677-math-0001 earthquake that occurred on October 25, 2012. We apply two models that estimate the water level inside an aquifer, which show a good correlation with the measured urn:x-wiley:15252027:media:ggge22677:ggge22677-math-0002, showing that the velocity variations are inversely proportional to the pore pressure inside the aquifer. Our interpretation is further confirmed by geodetic measurements that show that in a direction parallel to the strike angle of the fault rupture, the expansion-contraction displacement of the zone follows the same patterns observed in the models and in the velocity variations, as a result of the pressure generated by the water on its interior. Going one step further, we analyze the nature of the small discrepancies between the measured and modeled velocity variations. These correlate well with the rainfall and with the vertical geodetic measures, which indicates an elastic response of the zone to the loading generated by the rainwater. Comparisons between these variables allow us to clearly identify the period of the seismic activity in the zone, which is represented by the characteristic drop in the seismic velocity in the period from the beginning of 2012 to mid-2013.
    Description: Published
    Description: e2021GC009742
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...