ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-05-12
    Description: Although CO2 capture and storage in deep, offshore reservoirs is a proven technology, as illustrated by over 15 years of operation of the Sleipner site in the Norwegian North Sea, potential leakage from such sites into the overlying water column remains a concern for some stakeholders. Therefore, we are obliged to carefully assess our ability to predict and monitor the migration, fate, and potential ecosystem impact of any leaked CO2. The release of bubbles from the sea floor, their upward movement, and their dissolution into the surrounding water controls the initial boundary conditions, and thus an understanding of the behavior of CO2 bubbles is critical to address such issues related to monitoring and risk assessment. The present study describes results from an in situ experiment conducted in 12 m deep marine water near the extinct volcanic island of Panarea (Italy). Bubbles of a controlled size were created using natural CO2 released from the sea floor, and their evolution during ascent in the water column was monitored via both video and chemical measurements. The obtained results were modelled and a good fit was obtained, showing the potential of the model as a predictive tool. These preliminary results and an assessment of the difficulties encountered are examined and will be used to improve experimental design for the subsequent phase of this research.
    Description: Published
    Description: 397–403
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: in situ bubble experiment ; CO2 ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Eastern Sicily (southern Italy) is characterised by the presence of many natural gas emissions (mofettes, mud volcanoes). These gases are mostly carbon dioxide and methane, with minor amounts of helium, hydrogen, carbon monoxide and hydrocarbons. In this study, the extent and orientation of soil gas anomalies (He and CO2) were investigated on a wide area (approximately 110 km2) located just SW of Mt. Etna. From a structural point of view, this area lays on a typical foredeep–foreland system that marks the boundary between the southern part of the Eurasian plate and the northern part of the African plate in the central Mediterranean. No tectonic structure was revealed in this area by surface geological surveys. Very high soil emissions were found, and their spatial pattern reveals the existence of some active faults all directed about N508E. This direction coincides with that of two major fault systems that cut eastern Sicily and are evident, respectively, NE and SW of the study area. Soil gas data suggest that these fault systems are the expression of a single continuous structural line which is probably responsible for the past and present magma uprise in eastern Sicily. Isotopic values of carbon of CO2 suggest a minor contribution of organic carbon. Moreover, in the highest degassing sites the isotopic values of He found in association with CO2 (He abundance¼11–70 p.p.m.; R/Ra between 6.0 and 6.2) suggest that both gases are mantle derived. The extent of the areas affected by high gas emissions and the amounts of deep CO2 emitted in the investigated area (several hundred tonnes per day) may provide additional supporting evidence of a mantle upwelling taking place beneath this region.
    Description: Gruppo Nazionale per la Vulcanologia Italy.
    Description: Published
    Description: 273–284
    Description: partially_open
    Keywords: CO2 ; diffuse degassing ; Sicily ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 597 bytes
    Format: 866788 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-29
    Description: According to a model by Cerling (1991, 1999), the carbon isotope composition of calcretes should depend on the soil type and the CO2-concentration in the atmosphere. We have tested Cerling’s model by investigating 14 Palaeozoic sections with soil profiles. A large number of carbonate types of different genetic origin exist in the localities examined. Comparing the Palaeozoic samples with recent and subrecent calcretes, it can be demonstrated that anhedral, cryptocrystalline (〈10 μm) and subhedral microcrystalline (10 - 40 μm) carbonates are clearly of pedogenic origin. Crystals of larger size with a poikilotopic texture are of groundwater or burial diagenetic origin. Macro- and micromorphological features, typical of recent calcretes, occur in several soil profiles, but thin section microscopy reveals a strong diagenetic overprint of most pedogenic carbonates. Time equivalent sections with comparable soil types (protosols, calcisols and vertisols) show large variations in carbon isotope composition. On the other hand, different carbonate generations at one site do not differ much. Therefore Palaeozoic calcretes appear to be unsuitable for a deduction of the Palaeozoic CO2-concentration.
    Description: German Research Foundation (DFG)
    Description: research
    Keywords: 551.9 ; 552.5 ; VKB 350 ; VJJ 110 ; VCA 300 ; VKB 332 ; VKA 300 ; VKB 371 ; VEA 000 ; VKB 372 ; Lithogenese {Sedimentologie} ; Geochemie der Stabilen Isotopen ; Paläozoische Geologie ; Sedimentationsbedingungen ; Petrogenese ; Klastische Sedimentgesteine ; Europa insgesamt {Geologie} ; Karbonatische Sedimentgesteine ; Kohlenstoffkreislauf ; C-isotope ; Jungpaläozoikum ; Paläopedologie ; Kalkkruste ; CO2 ; calcrete ; carbon cycle ; upper Paleozoic ; paleosol ; C-13/C-12 ; Europa ; paläoklima ; Europe ; 38.41 ; 38.61 ; 38.32
    Language: English
    Type: article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: In addition to rhythmic slug-driven Strombolian activity, Stromboli volcano occasionally produces discrete explosive paroxysms (2 per year on average for the most frequent ones) that constitute a major hazard and whose origin remains poorly elucidated. Partial extrusion of the volatile-rich feeding basalt as aphyric pumice during these events has led to consider their triggering by the fast ascent of primitive magma blobs from possibly great depth. Here I examine and discuss the alternative hypothesis that most of the paroxysms could be triggered and driven by the fast upraise of CO2-rich gas pockets generated by bubble foam growth and collapse in the sub-volcano plumbing system. Data for the SO2 and CO2 crater plume emissions are used to show that Stromboli's feeding magma may originally contain as much as 2 wt.% of carbon dioxide and early coexists with an abundant CO2-rich gas phase with high CO2/SO2 molar ratio (≥60 at 10 km depth below the vents, compared to ∼7 in time-averaged crater emissions). Pressure-related modelling indicates that the time-averaged crater gas composition and output are well accounted for by closed system decompression of the basalt–gas mixture until the volcano–crust interface (∼3 km depth), followed by open degassing and crystallization in the volcano conduits. However, both the low viscosity and high vesicularity of the basaltic magma permit bubble segregation and bubble foam growth at deep sill-like feeder discontinuities and at shallower physical boundaries (such as the volcano–crust interface) where the gasrich aphyric basalt interacts with the unerupted crystal-rich and viscous magma drained back from the volcano conduits. Gas pressure build-up and bubble foam collapse at these boundaries will intermittently trigger the sudden upraise of CO2-rich gas blobs that constitute the main driving force of the paroxysms. Deeper-sourced gas blobs, driving the most powerful explosions, will be the richest in CO2 and have highest CO2/SO2 ratios. This mechanism is shown to account well for the dynamic, seismic and petrologic features of Stromboli's paroxysms and, hence, to provide a potential alternative interpretation for their genesis and their forecasting. Enhanced bubble foam leakage prior to a paroxysm, or foam emptying in several steps, should lead indeed to precursory upstream of CO2-rich gas and increasing CO2/SO2 ratio in crater plume emissions. The recent detection of such signals prior to two explosions in December 2006 and March 2007 strongly supports this expectation and the model proposed in this study.
    Description: Published
    Description: 363–374
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: basaltic volcanoes ; magma degassing ; explosive paroxysms ; CO2 ; gas bubbles ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-09-05
    Description: The chemical composition of gases emitted by active volcanoes reflects both magma degassing and shallower processes, such as fluid-rock hydrothermal interaction and mixing with atmospheric-derived fluids. Untangling the magmatic fluid endmember within surface gas emission is therefore challenging, even with the use of well-known magma degassing tracers such as noble gases. Here, we investigate the deep magmatic fluid composition at the Nisyros caldera (Aegean Arc, Greece) by measuring nitrogen and noble gas abundances and isotopes in naturally degassing fumaroles. Gas samples were collected from 32 fumarolic vents at water-boiling temperature between 2018 and 2021. These fumaroles are admixtures of magmatic fluids typical of subduction zones, groundwater (or air saturated water, ASW), and air. The N2, He, and Ar composition of the magmatic endmember is calculated by reverse mixing modeling and shows N2/He = 31.8 ± 4.5, N2/Ar = 281.6, d15N = +7 ± 3 ‰, 3He/4He = 6.2 Ra (where Ra is air 3He/4He), and 40Ar/36Ar = 551.6 ± 19.8. Although N2/He is significantly low with respect to typical values for arc volcanoes (1,000–10,000), the contribution of subducted sediments to the Aegean Arc magma generation is reflected by the positive d15N values of Nisyros fumaroles. The low N2/He ratio indicates N2-depletion due to solubility-controlled differential degassing of an upper-crustal silicic (dacitic/rhyodacitic) melt in a high-crystallinity reservoir. We compare our 2018–2021 data with N2, He, and Ar values collected from the same fumaroles during a hydrothermal unrest following the seismic crisis in 1996–1997. Results show additions of both magmatic fluid and ASW during this unrest. In the same period, fumarolic vents display an increase in magmatic species relative to hydrothermal gas, such as CO2/CH4 and He/CH4 ratios, an increase of 50 C in the equilibrium temperature of the hydrothermal system (up to 325 C), and greater amounts of vapor separation. These variations reflect an episode of magmatic fluid expulsion during the seismic crisis. The excess of heat and mass supplied by the magmatic fluid injection is then dissipated through boiling of deeper and peripheral parts of the hydrothermal system. Reverse mixing modeling of fumarolic N2-He-Ar has therefore important ramifications not only to disentangle the magmatic signature from gases emitted during periods of dormancy, but also to trace episodes of magmatic outgassing and better understand the state of the upper crustal reservoir.
    Description: Published
    Description: 68-84
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Noble gases ; Nitrogen isotope ; Mixing modeling ; Magmatic degassing ; High-crystallinity mush ; Caldera ; Unrest ; CO2 ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-04-07
    Description: South Matese, Apennines, is a hydrothermally and seismically active extensional area characterized by CO2outgassing and Mw≤7.1 earthquakes. There, meters-sized pockets of incohesive pulverized dolostone are hosted within Mesozoic carbonates at the hanging wall of seismically active normal faults. The aim of this paper is to understand the pulverization process. The pulverized dolostone is finely comminuted (down to a few microns), but primary structures, mainly bedding, are preserved. The grain size distribution is similar to that of previously studied pulverized rocks associated with active faults and dissimilar to that of carbonate cataclasites and fault gouges. The pulverized pockets are surrounded by zones (halos), in which the loose grains are cemented, in their original position, by microcrystalline calcite, resulting in a cemented micro-mosaic breccia. Stable isotopes from the cement are compatible with calcite precipitation from rapidly CO2-degassing shallow waters. Comparing our observations with results of laboratory experiments on carbonate pulverization through rapid decompression of pore-hosted CO2, the best explanation for the pulverized dolostone may lie on local accumulations of pressurized CO2-rich gas, suddenly decompressed during earthquakes. The limited permeability of the gas-saturated dolostone must have prevented a prompt escape of the gas from the rock, which was therefore anhydrously pulverized by the rapid expansion of the trapped gas. The sudden decompression must have suctioned bicarbonate-rich groundwaters, from which microcrystalline calcite rapidly precipitated, fossilizing the freshly pulverized dolostone. Calcite precipitation formed an impermeable shield around the pulverized pockets, which, therefore, remained internally uncemented. This process may have occurred over multiple cycles at depths shallower than the CO2subcritical–supercritical boundary (ca. -800m). Although hypothetical, the proposed mechanism is for the first time suggested for an active tectonic environment. The gas rapid decompression could have been triggered by coseismic processes (e.g., dynamic unloading or transient tensile pulses) previously proposed for the formation of other pulverized rocks. The presented case may improve our knowledge of possible chemical-physical processes connected with the subsurface storage of CO2in seismically active areas.
    Description: Published
    Description: 117996
    Description: 9T. Geochimica dei fluidi applicata allo studio e al monitoraggio di aree sismiche
    Description: JCR Journal
    Keywords: CO2 ; earthquakes ; pulverization ; carbonatic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-11-16
    Description: We present the first isotopic (noble gases and CO2) characterization of fluid inclusions coupled to Raman microspectroscopy analyses in mantle xenoliths from Central Mexico, a geodynamically complex area where the Basin and Range extension was superimposed on the Farallon subduction (terminated at 28 Ma). To characterize the isotopic signature of the Central Mexican lithospheric mantle, we focus on fluid inclusions entrapped in mantle xenoliths found in deposits of the Joya Honda maar (JH), a Quaternary monogenetic volcano belonging to the Ventura Espiritu Santo Volcanic Field (VESVF) in the state of San Luis Potosí (central Mexico). Thirteen ultramafic plagioclase-free xenoliths were selected, all exhibiting a paragenesis Ol 〉 Opx 〉 Cpx 〉 〉 Sp, and being classified as spinel-lherzolites and harzburgites. All xenoliths bring textural evidence of interstitial glass veins bearing dendritic trails of secondary melt and fluid inclusions (composed of silicate glass ± CO2 ± Mg-Ca carbonates ± pyrite). These are related to pervasive mantle metasomatism driven by carbonate-rich silicate melt. The Ar and Ne systematics reflect mixing between MORB-like upper mantle and atmospheric fluids, the latter interpreted as reflecting a recycled air component possibly inherited from the Farallon plate subduction. The 3He/4He ratios vary between 7.13 and 7.68 Ra, within the MORB range (7–9 Ra), and the 4He/40Ar* ratios (0.4–3.11) are similarly close to the expected range of the fertile mantle (1–5). Taken together, these pieces of evidence suggest that (i) either the mantle He budget was scarcely modified by the Farallon plate subduction, and/or (ii) that any (large) crustal contribution was masked by a later metasomatism/refertilization episode, possibly during the subsequent Basin and Range extension. A silicate melt-driven metasomatism/refertilization (revealed by the association between glass veins and fluid inclusions) is consistent with calculated helium residence time for the Mexican lithospheric mantle (20 to 60 Ma) that overlaps the timing of the above geodynamic events. We propose that, after the refertilization event (e.g., over the last ~20 Ma), the lithospheric mantle has evolved in a steady-state, becoming slightly more radiogenic. We also estimated 3He fluxes (0.027–0.080 mol/g), 4He production rates (340–1000 mol/yr), and mantle CO2 fluxes (3.93 × 107 mol/yr to 1.18 × 108 mol/yr) using the helium isotopic values measured in JH mantle xenoliths. Finally, the JH xenoliths exhibit CO2/3He ratios comparable to those of the upper mantle (from 3.38 × 108 to 3.82 × 109) but more positive δ13C values (between - 1.0 and - 2.7‰), supporting the involvement of a crustal carbonate component. We propose that the metasomatic silicate melts recycled a crustal carbonate component, inherited by the Farallon plate subduction.
    Description: Published
    Description: 120270
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Mexican mantle xenoliths ; Fluid inclusions ; Noble gases ; CO2 ; mantle refertilization ; Carbonate recycling ; 04.01. Earth Interior ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...