ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration
  • diffuse degassing
  • American Geophysical Union  (3)
  • Blackwell Science Ltd  (1)
Sammlung
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2017-04-04
    Beschreibung: Eastern Sicily (southern Italy) is characterised by the presence of many natural gas emissions (mofettes, mud volcanoes). These gases are mostly carbon dioxide and methane, with minor amounts of helium, hydrogen, carbon monoxide and hydrocarbons. In this study, the extent and orientation of soil gas anomalies (He and CO2) were investigated on a wide area (approximately 110 km2) located just SW of Mt. Etna. From a structural point of view, this area lays on a typical foredeep–foreland system that marks the boundary between the southern part of the Eurasian plate and the northern part of the African plate in the central Mediterranean. No tectonic structure was revealed in this area by surface geological surveys. Very high soil emissions were found, and their spatial pattern reveals the existence of some active faults all directed about N508E. This direction coincides with that of two major fault systems that cut eastern Sicily and are evident, respectively, NE and SW of the study area. Soil gas data suggest that these fault systems are the expression of a single continuous structural line which is probably responsible for the past and present magma uprise in eastern Sicily. Isotopic values of carbon of CO2 suggest a minor contribution of organic carbon. Moreover, in the highest degassing sites the isotopic values of He found in association with CO2 (He abundance¼11–70 p.p.m.; R/Ra between 6.0 and 6.2) suggest that both gases are mantle derived. The extent of the areas affected by high gas emissions and the amounts of deep CO2 emitted in the investigated area (several hundred tonnes per day) may provide additional supporting evidence of a mantle upwelling taking place beneath this region.
    Beschreibung: Gruppo Nazionale per la Vulcanologia Italy.
    Beschreibung: Published
    Beschreibung: 273–284
    Beschreibung: partially_open
    Schlagwort(e): CO2 ; diffuse degassing ; Sicily ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 597 bytes
    Format: 866788 bytes
    Format: text/html
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2017-04-04
    Beschreibung: In November 2007 we conducted a water-column and seafloor mapping study of the submarine volcanoes of the Aeolian Arc in the southern Tyrrhenian Sea aboard the R/V Urania. A total of 26 CTD casts were completed, 13 vertical casts and 13 tows. In addition to in situ measurements of temperature, conductivity, pressure and suspended particles, we also collected discrete samples for helium isotopes, methane, and trace metals. The helium isotope ratio, which is known to be an unambiguous indicator of hydrothermal input, showed a clear excess above background at 5 out of the 10 submarine volcanoes surveyed. We found the strongest helium anomaly over Marsili seamount, where the 3He/4He ratio reached maximum values of 3He = 23% at 610 m depth compared with background values of ~ 7%. We also found smaller but distinct 3He anomalies over Enerato, Eolo, Palinuro, and Secca del Capo. We interpret these results as indicating the presence of hydrothermal activity on these 5 seamounts. Hydrothermal venting has been documented at subsea vents offshore of the islands of Panarea, Stromboli, and Vulcano (Dando et al., 1999; Di Roberto et al., 2008), and hydrothermal deposits have been sampled on many of the submarine volcanoes of the Aeolian Arc (Dekov and Savelli, 2004). However, as far as we know this is the first evidence of present day hydrothermal activity on Marsili, Enerato, and Eolo. Samples collected over Filicudi, Glabro, Lamentini, Sisifo, and Alcioni had 3He very close to the regional background values, suggesting either absence of or very weak hydrothermal activity on these seamounts. Helium isotope measurements from the background hydrocasts positioned between the volcanoes revealed the presence of an excess in 3He throughout the SE Tyrrhenian Sea. These background profiles reach a consistent maximum of about 3He = 11% at 2300 m depth. Historical helium profiles collected in the central and northern Tyrrhenian Sea in 1987 and 1997 do not show this deep 3He maximum (W. Roether and B. Klein, private comm.). Furthermore, the maximum is too deep to be attributed to the volcanoes of the Aeolian Arc, which are active at 〈1000 m depth. We are currently conducting additional measurements to determine whether this deep 3He maximum is from a local hydrothermal source or is somehow related to the deep water mass transient which occurred in the eastern Mediterranean in the 1990’s.
    Beschreibung: American Geophysical Union
    Beschreibung: Published
    Beschreibung: San Francisco
    Beschreibung: 4.6. Oceanografia operativa per la valutazione dei rischi in aree marine
    Beschreibung: open
    Schlagwort(e): submarine ; hydrothermalism ; helium isotopes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: Conference paper
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2017-04-04
    Beschreibung: Piton de la Fournaise (PdF) is recognised as one of the world’s most active volcanoes in terms of eruptive frequency and the substantial quantity of lava produced. Yet, with the sole exception of rather modest intracrateric fumarole activity, this seems to be in contrast with an apparent absence of any type of natural fluid emission during periods of quiescence. Measurement campaigns were undertaken during a long-lasting quiescent period (2012-2014) and just after a short lived summit eruption (June 2014) in order to identify potential degassing areas in relation to the main structural features of the volcano (ex. rift zones) with the aim of developing a broader understanding of the geometry of the plumbing and degassing system. In order to assess the possible existence of anomalous soil CO2 flux, 513 measurements were taken along transects roughly orthogonal to the known tectonic lineaments crossing PdF edifice. In addition, 53 samples of gas for C isotope analysis were taken at measurement points that showed a relatively high CO2 concentration in the soil. CO2 flux values range from 10 to 1300 g m-2 d-1 while 13C are between -26.6 to -8‰. The results of our investigation clearly indicate that there is a strong spatial correlation between the anomalous high values of diffusive soil emissions and the main rift zones cutting the PdF massif and, moreover, that generally high soil CO2 fluxes show a d13C signature clearly related to a magmatic origin.
    Beschreibung: INSU (CNRS) and La Réunion Préfecture (Projet pour la quantification de l’aléa volcanique à La Réunion)
    Beschreibung: Published
    Beschreibung: 4388–4404
    Beschreibung: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): CO2 soil degassing anomalies at Piton de la Fournaise ; d13C magmatic signature ; Close link between anomalous CO2 degassing and the main seismotectonic structures ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2024-05-09
    Beschreibung: Here we report on the first assessment of volatile fluxes from the hyperacid crater lake hosted within the summit crater of Copahue, a very active volcano on the Argentina-Chile border. Our observations were performed using a variety of in situ and remote sensing techniques during field campaigns in March 2013, when the crater hosted an active fumarole field, and in March 2014, when an acidic volcanic lake covered the fumarole field. In the latter campaign, we found that 566 to 1373 t d−1 of SO2 were being emitted from the lake in a plume that appeared largely invisible. This, combined with our derived bulk plume composition, was converted into flux of other volcanic species (H2O ~ 10989 t d−1, CO2 ~ 638 t d−1, HCl ~ 66 t d−1, H2 ~ 3.3 t d−1, and HBr ~ 0.05 t d−1). These levels of degassing, comparable to those seen at many open-vent degassing arc volcanoes, were surprisingly high for a volcano hosting a crater lake. Copahue's unusual degassing regime was also confirmed by the chemical composition of the plume that, although issuing from a hot (65°C) lake, preserves a close-to-magmatic signature. EQ3/6 models of gas-water-rock interaction in the lake were able to match observed compositions and demonstrated that magmatic gases emitted to the atmosphere were virtually unaffected by scrubbing of soluble (S and Cl) species. Finally, the derived large H2O flux (10,988 t d−1) suggested a mechanism in which magmatic gas stripping drove enhanced lake water evaporation, a process likely common to many degassing volcanic lakes worldwide.
    Beschreibung: Published
    Beschreibung: 6071–6084
    Beschreibung: 3V. Dinamiche e scenari eruttivi
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): water/rock interaction ; volcanic lakes ; volcanic/hydrothermal gases ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...