ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
  • 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
  • Elsevier  (46)
  • Blackwell Publishing Ltd  (4)
  • Periodicals Archive Online (PAO)
Collection
Keywords
Years
  • 1
    Publication Date: 2021-01-07
    Description: The quaternary volcanic complex of Mount Amiata is located in southern Tuscany (Italy) and represents the most recent manifestation of the Tuscan Magmatic Province. The region is characterised by a large thermal anomaly and by the presence of numerous CO2-rich gas emissions and geothermal features, mainly located at the periphery of the volcanic complex. Two geothermal systems are located, at increasing depths, in the carbonate and metamorphic formations beneath the volcanic complex. The shallow volcanic aquifer is separated from the deep geothermal systems by a low permeability unit (Ligurian Unit). A measured CO2 discharge through soils of 1.8 109 mol a 1 shows that large amounts of CO2 move from the deep reservoir to the surface. A large range in d13CTDIC ( 21.07 to +3.65) characterises the waters circulating in the aquifers of the region and the mass and isotopic balance of TDIC allows distinguishing a discharge of 0.3 109 mol a 1 of deeply sourced CO2 in spring waters. The total natural CO2 discharge (2.1 109 mol a 1) is slightly less than minimum CO2 output estimated by an indirect method (2.8 109 mol a 1), but present-day release of 5.8 109 mol a 1 CO2 from deep geothermal wells may have reduced natural CO2 discharge. The heat transported by groundwater, computed considering the increase in temperature from the infiltration area to the discharge from springs, is of the same order of magnitude, or higher, than the regional conductive heat flow (〉200 mWm 2) and reaches extremely high values (up to 2700mWm 2) in the north-eastern part of the study area. Heat transfer occurs mainly by conductive heating in the volcanic aquifer and by uprising gas and vapor along fault zones and in those areas where low permeability cover is lacking. The comparison of CO2 flux, heat flow and geological setting shows that near surface geology and hydrogeological setting play a central role in determining CO2 degassing and heat transfer patterns.
    Description: Published
    Description: 860–875
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Carbon dioxide degassing ; Monte Amiata ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-26
    Description: The volcano–hydrothermal system of El Chichón volcano, Chiapas, Mexico, is characterized by numerous thermal manifestations including an acid lake, steam vents and boiling springs in the crater and acid and neutral hot springs and steaming ground on the flanks. Previous research on major element chemistry reveals that thermal waters of El Chichón can be divided in two groups: (1) neutral waters discharging in the crater and southern slopes of the volcano with chloride content ranging from 1500 to 2200 mg/l and (2) acid-toneutral waters with Cl up to 12,000 mg/l discharging at the western slopes. Our work supports the concept that each group of waters is derived from a separate aquifer (Aq. 1 and Aq. 2). In this study we apply Sr isotopes, Ca/Sr ratios and REE abundances along with the major and trace element water chemistry in order to discriminate and characterize these two aquifers. Waters derived from Aq. 1 are characterized by 87Sr/86Sr ratios ranging from 0.70407 to 0.70419, while Sr concentrations range from 0.1 to 4 mg/l and Ca/Sr weight ratios from 90 to 180, close to average values for the erupted rocks. Waters derived from Aq. 2 have 87Sr/86Sr between 0.70531 and 0.70542, high Sr concentrations up to 80 mg/l, and Ca/Sr ratio of 17–28. Aquifer 1 is most probably shallow, composed of volcanic rocks and situated beneath the crater, within the volcano edifice. Aquifer 2 may be situated at greater depth in sedimentary rocks and by some way connected to the regional oil-gas field brines. The relative water output (l/s) from both aquifers can be estimated as Aq. 1/Aq. 2– 30. Both aquifers are not distinguishable by their REE patterns. The total concentration of REE, however, strongly depends on the acidity. All neutral waters including high-salinity waters from Aq. 2 have very low total REE concentrations (b0.6 μg/l) and are characterized by a depletion in LREE relative to El Chichón volcanic rock, while acid waters from the crater lake (Aq. 1) and acid AS springs (Aq. 2) have parallel profile with total REE concentration from 9 to 98 μg/l. The highest REE concentration (207 μg/l) is observed in slightly acid shallow cold Ca-SO4 ground waters draining fresh and old pyroclastic deposits rich in magmatic anhydrite. It is suggested that the main mechanism controlling the concentration of REE in waters of El Chichón is the acidity. As low pH results from the shallow oxidation of H2S contained in hydrothermal vapors, REE distribution in thermal waters reflects the dissolution of volcanic rocks close to the surface or lake sediments as is the case for the crater lake.
    Description: -
    Description: Published
    Description: 55-66
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: hydrogeochemistry ; geothermal systems ; Sr isotopes ; REE ; El Chichón Volcano ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-05-12
    Description: Today, satellite remote sensing has reached a key role in Earth Sciences. In particular, Synthetic ApertureRadar (SAR) sensors and SAR Interferometry (InSAR) techniques are widely used for the study of dynamicprocesses occurring inside our living planet. Over the past 3 decades, InSAR has been applied for mappingtopography and deformation at the Earth’s surface. These maps are widely used in tectonics, seismology,geomorphology, and volcanology, in order to investigate the kinematics and dynamics of crustal faulting,the causes of postseismic and interseismic displacements, the dynamics of gravity driven slope failures,and the deformation associated with subsurface movement of water, hydrocarbons or magmatic fluids.
    Description: Published
    Description: 58-82
    Description: 1T. Geodinamica e interno della Terra
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: reserved
    Keywords: SAR ; InSAR ; Earth observation ; Surface displacements ; Satellite missions ; Advanced InSAR ; Earthquake studies ; Volcanic studies ; Tectonic process ; Coseismic studies ; Soil liquefaction ; Post-seismic studies ; Interseismic studies ; Volcanic unrest ; Pre-eruptive phase ; Eruptive phase ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-11-16
    Description: Here we report the results of the analysis of a GPS velocity field in the Umbria–Marche Apennines (central Italy) obtained from the integration of diverse geodetic networks. The velocity field obtained shows a high degree of consistency both spatially and in terms of comparison with independent information, despite the limited time span of some GPS stations. Starting from the velocity field we derive a continuous strain rate field applying a spline interpolation technique which provide a smooth estimate of the deformation field. The main feature of the resulting strain rate field is a continuous high (N50 nanostrain/year) strain rate belt coincident with the area of largest historical and instrumental seismic release. The model directions of the principal axes agree with geological and seismological information indicating NE–SW extension. We transform the strain rate field into geodetic moment rate using the Kostrov formula to evaluate the potential seismic activity of the region and compare it with actual seismic release in the last 720 years from MwN5.5 earthquakes. This comparison highlights a large possible deficit in the seismic release with respect to the overall potential seismic activity, particularly concentrated in the northern part of the study area. This discrepancy can be resolved with either a large amount of seismicity to be released in the near future or significant aseismic slip and deformation.
    Description: Published
    Description: 3-12
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Description: reserved
    Keywords: GPS ; crustal deformation ; Northen Apennines ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-12-03
    Description: We use Global Positioning System (GPS) velocities and dislocation modeling to investigate the rate and nature of interseismic strain accumulation in the area affected by the 1908 Mw 7.1 Messina earthquake (southern Italy) within the framework of the complex central Mediterranean microplate kinematics. Our data confirm a change in the velocity trends between Sicily and Calabria, moving from NNW-ward to NE- ward with respect to Eurasia, and detail a fan-like pattern across the Messina Straits where maximum extensional strain rates are ~65 nanostrains/yr. Extension normal to the coast of northern Sicily is consistent with the presence of SW–NE trending normal faults. Half-space dislocation models of the GPS velocities are used to infer the slip-rates and geometric fault parameters of the fault zone that ruptured in the Messina − 1.3 earthquake. The inversion, and the bootstrap analysis of model uncertainties, finds optimal values of 3. 5 + 2.0 − 0.2− 0.7 and 1.6 + 0.3 mm/yr for the dip–slip and strike–slip components, respectively, along a 30 + 1.1° SE-ward dipping normal fault, locked above 7.6−2.9 km depth. By developing a regional elastic block model that + 4.6 accounts for both crustal block rotations and strain loading at block-bounding faults, and adopting two different competing models for the Ionian–Calabria convergence rates, we show that the measured velocity gradient across the Messina Straits may be significantly affected by the elastic strain contribution from other nearby faults. In particular, when considering the contribution of the possibly locked Calabrian subduction interface onto the observed velocity gradients in NE-Sicily and western Calabria, we find that this longer wavelength signal can be presently super-imposed on the observed velocity gradients in NE-Sicily and Calabria. The inferred slip-rate on the Messina Fault is significantly impacted by elastic strain from the subduction thrust. By varying the locking of the subduction thrust fault, in fact, the Messina Fault slip-rate varies from 0 to 9 mm/yr.
    Description: Published
    Description: 347-360
    Description: 1.9. Rete GPS nazionale
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Messina Straits ; Global Positioning System ; strain accumulation ; plate kinematics ; dislocation modeling ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-06-25
    Description: We report in this paper a systematic investigation of the chemical and isotopic composition of groundwaters flowing in the volcanic aquifer of Mt. Vesuvius during its current phase of dormancy, including the first data on dissolved helium isotope composition and tritium content. The relevant results on dissolved He and C presented in this paper reveal that an extensive interaction between rising magmatic volatiles and groundwaters currently takes place at Vesuvius. Vesuvius groundwaters are dilute (mean TDS 2800 mg/L) hypothermal fluids (mean T 17.7°C) with a prevalent alkaline-bicarbonate composition. Calcium-bicarbonate groundwaters normally occur on the surrounding Campanian Plain, likely recharged from the Apennines. D and 18O data evidence an essentially meteoric origin of Vesuvius groundwaters, the contribution from either Tyrrhenian seawater or 18O-enriched thermal water appearing to be small or negligible. However, the dissolution of CO2-rich gases at depth promotes acid alteration and isochemical leaching of the permeable volcanic rocks, which explains the generally low pH and high total carbon content of waters. Attainment of chemical equilibrium between the rock and the weathering solutions is prevented by commonly low temperature (10 to 28°C) and acid-reducing conditions. The chemical and isotope (C and He) composition of dissolved gases highlights the magmatic origin of the gas phase feeding the aquifer. We show that although the pristine magmatic composition may vary upon gas ascent because of either dilution by a soil-atmospheric component or fractionation processes during interaction with the aquifer, both 13C/12C and 3He/4He measurements indicate the contribution of a magmatic component with a 13C 0‰ and R/Ra of 2.7, which is consistent with data from Vesuvius fumaroles and phenocryst melt inclusions in olivine phenocrysts. A main control of tectonics on gas ascent is revealed by data presented in this paper. For example, two areas of high CO2 release and enhanced rock leaching are recognized on the western (Torre del Greco) and southwestern (Torre Annunziata–Pompeii) flanks of Vesuvius, where important NE-SW and NW-SE tectonic structures are recognized. In contrast, waters flowing through the northern sector of the volcano are generally colder, less saline, and CO2 depleted, despite in some cases containing significant concentrations of magmaderived helium. The remarkable differences among the various sectors of the volcano are reconciled in a geochemical interpretative model, which is consistent with recent structural and geophysical evidences on the structure of Somma-Vesuvius volcanic complex.
    Description: -European Union, -Ministero dell’Universita’ e della Ricerca Scientifica e Tecnologica; -CNR–Gruppo Nazionale per la Vulcanologia.
    Description: Published
    Description: 963–981
    Description: partially_open
    Keywords: isotopes ; water chemistry ; dissolved gases ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1032453 bytes
    Format: 539 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-11-16
    Description: The present-day tectonic setting of the Italian peninsula is very complex and involves competing geodynamic processes. In this context, southern peninsular Italy is characterised by extension along the Apenninic belt and in the Tyrrhenian margin and by transpression in the Apulia-Gargano region. The extension is well defined by means of geological, seismological, and contemporary stress data. For the latter only few data are available in the Apulia-Gargano region, leaving the state of stress in that area unresolved. Here we develop a finite-element model of the southern Italian region in order to predict the contemporary stress field. Our model predictions are constrained by model-independent observations of the orientation of maximum horizontal stress (SHmax), the tectonic regime, and the horizontal velocities derived from GPS observations. We performed a blind test with 31 newly acquired SHmax orientations in the Southern Apennines. These new data come from the analysis of borehole breakouts performed in 46 deep oil exploration wells ranging in depth from 1300 to 5500 m. The model results agree with the stress data that define a prevailing NW-SE SHmax orientation along the Apenninic belt and foredeep and thus are capable to predict the stress field where no stress information is available. We first analyse how much model predictions, based on older data, deviate from present-day stress data and then recalibrate the models based on our new stress data, giving insight into the resolution of both models and data. In the studied region, which is affected by low deformation rates, we find that geodetic data alone cannot resolve such low levels of deformation due to the high relative measurement errors. We conclude that both GPS and stress data are required to constrain model results.
    Description: This research was supported by the Italian Presidenza del Consiglio dei Ministri - Dipartimento della Protezione Civile (DPC) through the INGV-DPC project S1.
    Description: Published
    Description: 193-204
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Description: open
    Keywords: Neotectonics ; Borehole-breakouts ; Southern Apennines ; Finite-element models ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: This work presents the results of hydrogeochemical studies carried out at Vesuvius during the period May 1998 - December 2001, mostly focusing on compositional time variations observed during this time. Based on their chemistry, groundwater samples are distinguished into two groups, 1 and 2, representative of water circulation in the southern and northern sectors of the volcano, respectively. Waters from group 1 are typically more acidic, warmer,and more saline than those of group 2. They also have higher CO2 and CH4 contents, attributed to enhanced input of deep-rising volatiles and prolonged water-rock interactions. Time-series highlight the fairly constant chemical composition of the entire aquifer. Groundwater temperature, pH, bicarbonate content and dissolved CO2 display quite stable values in the study period, particularly in deep wells (piezometric level more than 100 m deep). Shallower water bodies present more evident temporal variations, related to seasonal and anthropogenic effects. This paper also describes some important variations in water chemistry which had occurred by the time of the seismic event in early October 1999, particularly in the Olivella spring located on the northern flank of the volcano. At this site, a great decrease in water pH and redox potential, and increased dissolved CO2 contents and 3He/4He ratios were observed. These changes in chemical and isotope composition support the hypothesis of an input of magma-derived helium and carbon dioxide into the aquifer feeding the Olivella spring by the time of the earthquake.
    Description: Published
    Description: 81-104
    Description: partially_open
    Keywords: Vesuvius ; volcanic surveillance ; groundwater ; hydro-geochemistry ; oxygen-18 ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1457387 bytes
    Format: 539 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: The 1982-84 unrest episode at Campi Flegrei (CF) caldera, Italy, was characterized by huge deformation (more than 1.5 m uplift) concentrated inside the caldera. According to point source isotropic models in homogeneous elastic and visco-elastic half-spaces, the source depth is very shallow (about 3 km). If the source radius is about 1 km this implies that magma is at a depth of 2 km depth. However, several independent observations show that the top of the magma chamber at CF must be deeper than 4 km. This paper investigates how the inferred source depth increases when rigidity heterogeneities (obtained through seismic tomography at CF) are considered and when the long-term deformation takes place under drained conditions. Finite element models indicate that overpressure needed at the source to reproduce the 1.5 m maximum uplift is however beyond typical rock strength values. This evidence, together with the high thermal anomalies, the presence of fluids and the low cohesion of tuffs filling the caldera, suggests the use of elastoplastic constitutive laws. For elastoplastic behavior, the same deformation is obtained using a deeper source (with center at 5 km depth) and a lower overpressure (than required by elastic models). The plastic deformation concentrates both at the source boundaries and above the source, where seismic activity has been recorded. These results indicate that the rheological properties of the shallow crust of CF have important implications for hazard estimate during unrest episodes.
    Description: INGV-Gruppo Nazionale per la Vulcanologia; Ministero dell'Istruzione Università e Ricerca- FIRB Project
    Description: Published
    Description: 14
    Description: reserved
    Keywords: finite element modelling ; Campi Flegrei ; surface deformation ; plasticity ; rheological layering ; overpressure source ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 330510 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Colli Albani is a volcanic complex close to the city of Rome. Here we show results from GPS campaigns performed in the time span 1995-1996.
    Description: Published
    Description: 55-65
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: crustal deformation, GPS, Colli Albani ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...