ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (5)
  • 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects  (3)
  • 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous  (2)
  • EGU  (3)
  • Blackwell Publishing Ltd  (2)
Collection
  • Articles  (5)
Years
  • 1
    Publication Date: 2017-04-04
    Description: Improving the constraints on the atmospheric fate and depletion rates of acidic compounds persistently emitted by non-erupting (quiescent) volcanoes is important for quantitatively predicting the environmental impact of volcanic gas plumes. Here, we present new experimental data coupled with modelling studies to investigate the chemical processing of acidic volcanogenic species during tropospheric dispersion. Diffusive tube samplers were deployed at Mount Etna, a very active open-conduit basaltic volcano in eastern Sicily, and Vulcano Island, a closed-conduit quiescent volcano in the Aeolian Islands (northern Sicily). Sulphur dioxide (SO2), hydrogen sulphide (H2S), hydrogen chloride (HCl) and hydrogen fluoride (HF) concentrations in the volcanic plumes (typically several minutes to a few hours old) were repeatedly determined at distances from the summit vents ranging from 0.1 to 10 km, and under different environmental conditions. At both volcanoes, acidic gas concentrations were found to decrease exponentially with distance from the summit vents (e.g., SO2 decreases from 10 000 μg/m3 at 0.1 km from Etna’s vents down to 7 μg/m3 at 10 km distance), reflecting the atmospheric dilution of the plume within the acid gas-free background troposphere. Conversely, SO2/HCl, SO2/HF, and SO2/H2S ratios in the plume showed no systematic changes with plume aging, and fit source compositions within analytical error. Assuming that SO2 losses by reaction are small during short-range atmospheric transport within quiescent (ash-free) volcanic plumes, our observations suggest that, for these short transport distances, atmospheric reactions for H2S and halogens are also negligible. The one-dimensional model MISTRA was used to simulate quantitatively the evolution of halogen and sulphur compounds in the plume of Mt. Etna. Model predictions support the hypothesis of minor HCl chemical processing during plume transport, at least in cloud-free conditions. Larger variations in the modelled SO2/HCl ratios were predicted under cloudy conditions, due to heterogeneous chlorine cycling in the aerosol phase. The modelled evolution of the SO2/H2S ratios is found to be substantially dependent on whether or not the interactions of H2S with halogens are included in the model. In the former case, H2S is assumed to be oxidized in the atmosphere mainly by OH, which results in minor chemical loss for H2S during plume aging and produces a fair match between modelled and measured SO2/H2S ratios. In the latter case, fast oxidation of H2S by Cl leads to H2S chemical lifetimes in the early plume of a few seconds, and thus SO2 to H2S ratios that increase sharply during plume transport. This disagreement between modelled and observed plume compositions suggests that more in-detail kinetic investigations are required for a proper evaluation of H2S chemical processing in volcanic plumes.
    Description: Published
    Description: 11653–11680
    Description: open
    Keywords: tropospheric processing ; volcanic gas plumes ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The simultaneous presence of SO2 and ash in a volcanic plume can lead to a significant error in the SO2 column abundance retrieval when multispectral Thermal InfraRed (TIR) data are used. The ash particles within the plume with effective radii from 1 to 10μm reduce the Top Of Atmosphere (TOA) radiance in the entire TIR spectral range, including the channels used for SO2 retrieval. The net effect is a significant SO2 overestimation. In this work the interference of ash is discussed and two correction procedures for satellite SO2 volcanic plume retrieval in the TIR spectral range are developed to achieve an higher computational speed and a better accuracy. The ash correction can be applied when the sensor spectral range includes the 7.3 and/or 8.7μm SO2 absorption bands, and the split window bands centered around 11 and 12μm required for ash retrieval. This allows the possibility of simultaneous estimation of both volcanic SO2 and ash in the same data set. The proposed ash correction procedures have been applied to the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Spin Enhanced Visible and Infrared Imager (SEVIRI) measurements. Data collected during the 24 November 2006 Mt. Etna eruption have been used to illustrate the technique. The SO2 and ash estimation is carried out by using a best weighted least squares fit method and the Brightness Temperature Difference (BTD) procedures, respectively. The simulated TOA radiance Look-Up Table (LUT) needed for the SO2 column abundance and the ash retrievals have been computed using the MODTRAN 4 Radiative Transfer Model. The results show the importance of the ash correction on SO2 retrievals at 8.7μm, where the corrected SO2 column abundance values are less than 50% of the uncorrected values. The ash correction on SO2 retrieval at 7.3μm is much less important and only significant for low SO2 column abundances. Results also show that the simplified and faster correction procedure underestimates the ash correction compared with the more time consuming but more accurate correction procedure. Such underestimation is greater for instruments having better ground pixel resolution, i.e. greater for MODIS than for SEVIRI.
    Description: Published
    Description: 177–191
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: N/A or not JCR
    Description: open
    Keywords: volcanic ash retrieval ; volcanic so2 retrieval ; ash correction ; remote sensing ; MODIS ; SEVIRI ; Etna volcano ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: During the last twenty years a time-synchronized network of magnetometers has operated in Central Italy along the Apennine chain to monitor the magnetic field anomalies eventually related to the tectonic activity. At present time the network consists of five stations. In the past only few anomalies in the local geomagnetic field, possibly associated to earthquakes, has been observed, not least because the network area has shown a low-moderate seismic activity with the epicentres of the few events with Ml≥5 located away from the network station. During 2007 two Ml≈4 earthquakes occurred in proximity of two stations of the network. Here we report the magnetic anomalies in the geomagnetic field that could be related with these tectonic events. To better investigate these two events a study of ULF (ultra-low-frequency) emissions has been carried out on the geomagnetic field components H, D, and Z measured in L’Aquila Observatory during the period from January 2006 to December 2008. We want to stress that this paper refers to the period before the 2009 L’Aquila seismic sequence which main shock (Ml=5.8) of 6 April heavily damaged the medieval centre of the city and surroundings. At present time the analysis of the 2009 data is in progress.
    Description: Published
    Description: 1567-1572
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: open
    Keywords: seismomagnetism ; geomagnetic field ; magnetic anomalies ; ULF ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Methane soil flux measurements have been made in 38 sites at the geothermal system of Sousaki (Greece) with the closed chamber method. Fluxes range from –47.6 to 29,150 mg m-2 d-1 and the diffuse CH4 output of the system has been estimated at 19 t a-1. Contemporaneous CO2 flux measurements showed a moderate positive correlation between CO2 and CH4 fluxes. Comparison of the CO2/CH4 soil flux ratios with the CO2/CH4 ratio of the gases of the main gas manifestations provided evidence for methanotrophic activity within the soil. Laboratory CH4 consumption experiments confirmed the presence of methanotrophic microorganisms in soil samples collected at Sousaki. Consumption was generally in the range from –4.9 to –38.9 pmolCH4 h-1 g-1 but could sometimes reach extremely high values (–33,000 pmolCH4 h-1 g-1.). These results are consistent with recent studies on other geothermal systems that revealed the existence of thermoacidophilic bacteria exerting methanotrophic activity in hot, acid soils, thereby reducing methane emissions to the atmosphere.
    Description: Published
    Description: 97–107
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Sousaki ; accumulation chamber ; soil degassing ; hydrothermal systems ; methane output ; methanotrophic activity ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Gas seepage from petroleum basins is the second largest natural source of methane to the atmosphere, after wetlands. The uncertainty in global emission estimates should be reduced by extending the flux database which is fundamental for defining the emission factors and the actual area of seepage adopted for up-scaling. As a contribution to this goal, we report a new seepage data-set for the Transylvanian Basin, one of the largest natural gas producing regions of Europe, that is characterized by the widespread occurrence of natural leakages of gas at the surface, including at least 73 mud volcanoes and gas seeps. In this study, methane flux was measured using closed-chambers, from 12 seepage sites, in correspondence with focused gas vents (mud volcano craters, bubbling pools, and flammable gas leaks), in the soil surrounding the vents, and at 15 sites located far from macroseep zones but close to gas fields. Fluxes from individual vents (macro-seeps) were found to reach orders of kg CH4 m)2 day)1 (up to 12 kg m)2 day)1) and diffuse fluxes from soils (miniseepage) were found to be up to a few g CH4 m)2 day)1. Far from seep zones, positive CH4 fluxes (microseepage) may occur locally, typically on the order of tens to hundreds of mg m)2 day)1. The values, as well as the occurrence of seepage even far from vent zones and in mud volcanoes that are apparently extinct, are coherent with results obtained in other countries. Gas fluxes from macro-seeps and soils may change seasonally, but the interannual variation of the average emission factor was found to be minimal. The total CH4 output for Transylvania macro-seeps is estimated conservatively to be around 680 t year)1; the total geo-CH4 seepage emission from the Transylvania petroleum system could be approximately 40 · 103 t year)1, and at least 100 · 103 t year)1 for all Romanian petroleum systems, that is roughly 10% of the total anthropogenic CH4 emission in the country.
    Description: Published
    Description: 463-475
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: gas reservoirs ; methane emissions ; mud volcanoes ; seeps ; Transylvanian Basin ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...