ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,521)
  • Drosophila
  • temperature
  • Springer  (1,431)
  • American Association for the Advancement of Science (AAAS)  (90)
Collection
Keywords
  • 1
    Publication Date: 1998-02-21
    Description: Protein kinase B (PKB) is activated in response to phosphoinositide 3-kinases and their lipid products phosphatidylinositol 3,4, 5-trisphosphate [PtdIns(3,4,5)P3] and PtdIns(3,4)P2 in the signaling pathways used by a wide variety of growth factors, antigens, and inflammatory stimuli. PKB is a direct target of these lipids, but this regulation is complex. The lipids can bind to the pleckstrin homologous domain of PKB, causing its translocation to the membrane, and also enable upstream, Thr308-directed kinases to phosphorylate and activate PKB. Four isoforms of these PKB kinases were purified from sheep brain. They bound PtdIns(3,4,5)P3 and associated with lipid vesicles containing it. These kinases contain an NH2-terminal catalytic domain and a COOH-terminal pleckstrin homologous domain, and their heterologous expression augments receptor activation of PKB, which suggests they are the primary signal transducers that enable PtdIns(3,4,5)P3 or PtdIns- (3,4)P2 to activate PKB and hence to control signaling pathways regulating cell survival, glucose uptake, and glycogen metabolism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stephens, L -- Anderson, K -- Stokoe, D -- Erdjument-Bromage, H -- Painter, G F -- Holmes, A B -- Gaffney, P R -- Reese, C B -- McCormick, F -- Tempst, P -- Coadwell, J -- Hawkins, P T -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 1998 Jan 30;279(5351):710-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Inositide Laboratory, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9445477" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Phosphoinositide-Dependent Protein Kinases ; Alternative Splicing ; Amino Acid Sequence ; Animals ; Cell Line ; Cell Membrane/enzymology ; Cloning, Molecular ; DNA, Complementary ; Drosophila ; Drosophila Proteins ; Enzyme Activation ; Humans ; Liposomes/metabolism ; Molecular Sequence Data ; Open Reading Frames ; Phosphatidylinositol Phosphates/*metabolism ; Phosphorylation ; Platelet-Derived Growth Factor/pharmacology ; Protein-Serine-Threonine Kinases/chemistry/genetics/isolation & ; purification/*metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-akt ; Rats ; Recombinant Proteins/metabolism ; Sheep ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-01-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hardin, P E -- Glossop, N R -- New York, N.Y. -- Science. 1999 Dec 24;286(5449):2460-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Houston, Houston, TX 77204, USA. phardin@uh.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10636810" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Animals ; Basic Helix-Loop-Helix Transcription Factors ; Biological Clocks/*physiology ; CLOCK Proteins ; Cell Cycle Proteins ; Circadian Rhythm/*physiology ; Cryptochromes ; Darkness ; Drosophila ; *Drosophila Proteins ; *Eye Proteins ; Feedback ; Flavoproteins/genetics/*physiology ; Gene Expression Regulation ; Light ; Mice ; Mice, Knockout ; Nuclear Proteins/*genetics/metabolism ; Period Circadian Proteins ; *Photoreceptor Cells, Invertebrate ; Promoter Regions, Genetic ; Receptors, G-Protein-Coupled ; Repressor Proteins/genetics/physiology ; Suprachiasmatic Nucleus/metabolism ; Trans-Activators/physiology ; Transcription Factors/physiology ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-02-19
    Description: A single kinesin molecule can move "processively" along a microtubule for more than 1 micrometer before detaching from it. The prevailing explanation for this processive movement is the "walking model," which envisions that each of two motor domains (heads) of the kinesin molecule binds coordinately to the microtubule. This implies that each kinesin molecule must have two heads to "walk" and that a single-headed kinesin could not move processively. Here, a motor-domain construct of KIF1A, a single-headed kinesin superfamily protein, was shown to move processively along the microtubule for more than 1 micrometer. The movement along the microtubules was stochastic and fitted a biased Brownian-movement model.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okada, Y -- Hirokawa, N -- New York, N.Y. -- Science. 1999 Feb 19;283(5405):1152-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10024239" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Animals ; Catalytic Domain ; Diffusion ; Drosophila ; Kinesin/chemistry/*metabolism ; Kinetics ; Microscopy, Fluorescence ; Microtubules/*metabolism ; Models, Chemical ; Molecular Motor Proteins/chemistry/*metabolism ; Molecular Sequence Data ; Nerve Tissue Proteins/chemistry/*metabolism ; Recombinant Fusion Proteins ; Stochastic Processes ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-24
    Description: The elegant architecture of photoreceptor cells in the retina is dependent on organization of the actin cytoskeleton during eye development. But what drives this organization? In an equally elegant Perspective, Colley explains new findings in fruit flies (Chang and Ready) that point to the photopigment rhodopsin and its signaling molecule the Rho GTPase Drac1 as the orchestrators of actin organization and the consequent assembly of the sensory membrane in the photoreceptor cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Colley, N J -- R01 EY008768/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2000 Dec 8;290(5498):1902-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53706, USA. njcolley@facstaff.wisc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11187046" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/metabolism/*ultrastructure ; Amino Acid Motifs ; Animals ; Drosophila ; *Drosophila Proteins ; Enzyme Activation ; Humans ; Models, Biological ; Morphogenesis ; Photoreceptor Cells, Invertebrate/cytology/*growth & ; development/metabolism/*ultrastructure ; Retina/growth & development/ultrastructure ; Retinitis Pigmentosa/genetics/metabolism/pathology ; Rhodopsin/chemistry/*metabolism ; Signal Transduction ; rac GTP-Binding Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-11-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 2001 Nov 9;294(5545):1269-71.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11701909" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Mapping ; Drosophila ; Mice ; Neurons/*physiology ; Odors ; Olfactory Bulb/metabolism ; Olfactory Pathways/cytology/*physiology ; Olfactory Receptor Neurons/metabolism/*physiology ; Receptors, Odorant/genetics/metabolism ; Smell/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-09-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Verrijzer, C P -- New York, N.Y. -- Science. 2001 Sep 14;293(5537):2010-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, MGC, Centre for Biomedical Genetics, Leiden University Medical Centre, Leiden, Netherlands. verrijzer@lumc.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11557865" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA-Binding Proteins/genetics/*metabolism ; Drosophila ; Drosophila Proteins ; Female ; *Gene Expression Regulation, Developmental ; Humans ; Male ; Mice ; Oligonucleotide Array Sequence Analysis ; Oogenesis ; Organ Specificity ; Ovarian Follicle/cytology/physiology ; Promoter Regions, Genetic ; Spermatogenesis ; *TATA-Binding Protein Associated Factors ; TATA-Box Binding Protein ; Telomeric Repeat Binding Protein 2 ; Transcription Factor TFIID ; Transcription Factors/genetics/*metabolism ; Transcription Factors, TFII/genetics/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2002-09-28
    Description: Polycomb group (PcG) proteins play important roles in maintaining the silent state of HOX genes. Recent studies have implicated histone methylation in long-term gene silencing. However, a connection between PcG-mediated gene silencing and histone methylation has not been established. Here we report the purification and characterization of an EED-EZH2 complex, the human counterpart of the Drosophila ESC-E(Z) complex. We demonstrate that the complex specifically methylates nucleosomal histone H3 at lysine 27 (H3-K27). Using chromatin immunoprecipitation assays, we show that H3-K27 methylation colocalizes with, and is dependent on, E(Z) binding at an Ultrabithorax (Ubx) Polycomb response element (PRE), and that this methylation correlates with Ubx repression. Methylation on H3-K27 facilitates binding of Polycomb (PC), a component of the PRC1 complex, to histone H3 amino-terminal tail. Thus, these studies establish a link between histone methylation and PcG-mediated gene silencing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cao, Ru -- Wang, Liangjun -- Wang, Hengbin -- Xia, Li -- Erdjument-Bromage, Hediye -- Tempst, Paul -- Jones, Richard S -- Zhang, Yi -- New York, N.Y. -- Science. 2002 Nov 1;298(5595):1039-43. Epub 2002 Sep 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12351676" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carrier Proteins/isolation & purification/metabolism ; Cell Cycle Proteins/metabolism ; Chromatin/metabolism ; DNA-Binding Proteins/genetics/metabolism ; Drosophila ; Drosophila Proteins/genetics/*metabolism ; *Gene Silencing ; Genes, Homeobox ; HeLa Cells ; *Histone-Lysine N-Methyltransferase ; Histones/*metabolism ; *Homeodomain Proteins ; Humans ; Lysine/*metabolism ; Methylation ; Methyltransferases/isolation & purification/metabolism ; Nuclear Proteins/metabolism ; Nucleosomes/metabolism ; Peptide Mapping ; Polycomb Repressive Complex 1 ; Polycomb Repressive Complex 2 ; Precipitin Tests ; Protein Methyltransferases ; Proteins/isolation & purification/metabolism ; RNA Interference ; Repressor Proteins/isolation & purification/metabolism ; Response Elements ; Temperature ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1999-11-05
    Description: Peptide-major histocompatibility complex protein complexes (pMHCs) on antigen-presenting cells (APCs) are central to T cell activation. Within minutes of peptide-specific T cells interacting with APCs, pMHCs on APCs formed clusters at the site of T cell contact. Thereafter, these clusters were acquired by T cells and internalized through T cell receptor-mediated endocytosis. During this process, T cells became sensitive to peptide-specific lysis by neighboring T cells (fratricide). This form of immunoregulation could explain the "exhaustion" of T cell responses that is induced by high viral loads and may serve to down-regulate immune responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, J F -- Yang, Y -- Sepulveda, H -- Shi, W -- Hwang, I -- Peterson, P A -- Jackson, M R -- Sprent, J -- Cai, Z -- New York, N.Y. -- Science. 1999 Oct 29;286(5441):952-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉R. W. Johnson Pharmaceutical Research Institute, 3210 Merryfield Row, San Diego, CA 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10542149" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Drosophila ; *Endocytosis ; Flow Cytometry ; Histocompatibility Antigens/*immunology ; Macromolecular Substances ; Peptides/*immunology ; Receptors, Antigen, T-Cell/*immunology ; Recombinant Fusion Proteins/genetics/immunology ; T-Lymphocytes/*immunology/metabolism ; T-Lymphocytes, Cytotoxic/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-08-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1999 Jul 23;285(5427):506-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10447476" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Clocks ; Cell Nucleus/metabolism ; *Circadian Rhythm ; Cryptochromes ; Drosophila ; *Drosophila Proteins ; Evolution, Molecular ; *Eye Proteins ; Feedback ; Flavoproteins/genetics/*metabolism ; Gene Expression Regulation ; Insect Proteins/metabolism ; *Light ; Mice ; Nuclear Proteins/metabolism ; Period Circadian Proteins ; *Photoreceptor Cells, Invertebrate ; Receptors, G-Protein-Coupled
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1999-07-27
    Description: Most organisms have circadian clocks consisting of negative feedback loops of gene regulation that facilitate adaptation to cycles of light and darkness. In this study, CRYPTOCHROME (CRY), a protein involved in circadian photoperception in Drosophila, is shown to block the function of PERIOD/TIMELESS (PER/TIM) heterodimeric complexes in a light-dependent fashion. TIM degradation does not occur under these conditions; thus, TIM degradation is uncoupled from abrogation of its function by light. CRY and TIM are part of the same complex and directly interact in yeast in a light-dependent fashion. PER/TIM and CRY influence the subcellular distribution of these protein complexes, which reside primarily in the nucleus after the perception of a light signal. Thus, CRY acts as a circadian photoreceptor by directly interacting with core components of the circadian clock.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ceriani, M F -- Darlington, T K -- Staknis, D -- Mas, P -- Petti, A A -- Weitz, C J -- Kay, S A -- MH-51573/MH/NIMH NIH HHS/ -- MH-59943/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 23;285(5427):553-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and NSF Center for Biological Timing, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10417378" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Clocks ; Cell Line ; Cell Nucleus/metabolism ; *Circadian Rhythm ; Cryptochromes ; Cytoplasm/metabolism ; Darkness ; Dimerization ; Drosophila ; *Drosophila Proteins ; *Eye Proteins ; Flavoproteins/genetics/*metabolism ; Green Fluorescent Proteins ; Insect Proteins/genetics/*metabolism ; *Light ; Luminescent Proteins ; Mutation ; Nuclear Proteins/genetics/metabolism ; Period Circadian Proteins ; *Photoreceptor Cells, Invertebrate ; Receptors, G-Protein-Coupled ; Recombinant Fusion Proteins/metabolism ; Transfection ; Yeasts/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 1999-09-11
    Description: The cyclic expression of the period (PER) and timeless (TIM) proteins is critical for the molecular circadian feedback loop in Drosophila. The entrainment by light of the circadian clock is mediated by a reduction in TIM levels. To elucidate the mechanism of this process, the sensitivity of TIM regulation by light was tested in an in vitro assay with inhibitors of candidate proteolytic pathways. The data suggested that TIM is degraded through a ubiquitin-proteasome mechanism. In addition, in cultures from third-instar larvae, TIM degradation was blocked specifically by inhibitors of proteasome activity. Degradation appeared to be preceded by tyrosine phosphorylation. Finally, TIM was ubiquitinated in response to light in cultured cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naidoo, N -- Song, W -- Hunter-Ensor, M -- Sehgal, A -- New York, N.Y. -- Science. 1999 Sep 10;285(5434):1737-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10481010" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcysteine/analogs & derivatives/pharmacology ; Animals ; *Biological Clocks ; Cells, Cultured ; *Circadian Rhythm ; Cysteine Endopeptidases/*physiology ; Cysteine Proteinase Inhibitors/pharmacology ; Darkness ; Drosophila ; *Drosophila Proteins ; Feedback ; Insect Proteins/*metabolism ; Leucine/analogs & derivatives/pharmacology ; Leupeptins/pharmacology ; *Light ; Multienzyme Complexes/*physiology ; Neurons/*metabolism ; Phosphorylation ; Phosphotyrosine/metabolism ; Protease Inhibitors/pharmacology ; Proteasome Endopeptidase Complex ; Ubiquitins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-05-25
    Description: Real-time fluorescence microscopy has emerged as a powerful tool for examining chromatin dynamics. The initial lesson is that much of the genome, particularly in yeast, is highly dynamic. Its movement within the interphase nucleus is correlated with metabolic activity. Nonetheless, the nucleus is an organelle with conserved rules of organization. Determining the distribution and regulation of mobile domains in interphase chromosomes, and characterizing sites of anchorage, will undoubtedly shed new light on the function of nuclear order.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gasser, Susan M -- New York, N.Y. -- Science. 2002 May 24;296(5572):1412-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland. susan.gasser@molbio.unige.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12029120" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Nucleus/physiology/*ultrastructure ; Centromere/physiology/ultrastructure ; Chromatin/*physiology/*ultrastructure ; Chromosomes/*physiology/ultrastructure ; DNA/genetics/metabolism ; Drosophila ; Gene Expression Regulation ; *Interphase ; Microscopy, Confocal ; Microscopy, Fluorescence ; Nuclear Envelope/metabolism/ultrastructure ; Repetitive Sequences, Nucleic Acid ; Saccharomyces cerevisiae ; Telomere/physiology/ultrastructure ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-01-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, E -- New York, N.Y. -- Science. 1999 Jan 8;283(5399):168-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9925472" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle ; Cell Nucleus/*chemistry ; Chromosomes/*physiology ; Connectin ; Drosophila ; Humans ; Muscle Proteins/analysis/genetics/*physiology ; Protein Kinases/analysis/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2000-09-23
    Description: The asymmetric localization of messenger RNA (mRNA) and protein determinants plays an important role in the establishment of complex body plans. In Drosophila oocytes, the anterior localization of bicoid mRNA and the posterior localization of oskar mRNA are key events in establishing the anterior-posterior axis. Although the mechanisms that drive bicoid and oskar localization have been elusive, oocyte microtubules are known to be essential. Here we report that the plus end-directed microtubule motor kinesin I is required for the posterior localization of oskar mRNA and an associated protein, Staufen, but not for the anterior-posterior localization of other asymmetric factors. Thus, a complex containing oskar mRNA and Staufen may be transported along microtubules to the posterior pole by kinesin I.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1764218/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1764218/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brendza, R P -- Serbus, L R -- Duffy, J B -- Saxton, W M -- R01 GM046295-09/GM/NIGMS NIH HHS/ -- R01GM46295/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Sep 22;289(5487):2120-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Indiana University, Bloomington, IN 47405, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11000113" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Transport ; Body Patterning ; Drosophila ; *Drosophila Proteins ; Female ; Homeodomain Proteins/genetics ; Insect Proteins/*genetics ; Kinesin/genetics/*metabolism ; Male ; Microtubules/metabolism ; Molecular Motor Proteins/genetics/*metabolism ; Oocytes/*metabolism ; Oogenesis ; RNA, Messenger/genetics/*metabolism ; RNA-Binding Proteins/*metabolism ; Recombinant Fusion Proteins/metabolism ; Trans-Activators/genetics ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2001-08-11
    Description: Double-stranded RNA induces potent and specific gene silencing through a process referred to as RNA interference (RNAi) or posttranscriptional gene silencing (PTGS). RNAi is mediated by RNA-induced silencing complex (RISC), a sequence-specific, multicomponent nuclease that destroys messenger RNAs homologous to the silencing trigger. RISC is known to contain short RNAs ( approximately 22 nucleotides) derived from the double-stranded RNA trigger, but the protein components of this activity are unknown. Here, we report the biochemical purification of the RNAi effector nuclease from cultured Drosophila cells. The active fraction contains a ribonucleoprotein complex of approximately 500 kilodaltons. Protein microsequencing reveals that one constituent of this complex is a member of the Argonaute family of proteins, which are essential for gene silencing in Caenorhabditis elegans, Neurospora, and Arabidopsis. This observation begins the process of forging links between genetic analysis of RNAi from diverse organisms and the biochemical model of RNAi that is emerging from Drosophila in vitro systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hammond, S M -- Boettcher, S -- Caudy, A A -- Kobayashi, R -- Hannon, G J -- R01-GM62534/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 10;293(5532):1146-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11498593" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Argonaute Proteins ; Cell Line ; Drosophila ; *Drosophila Proteins ; Endoribonucleases/metabolism ; *Gene Silencing ; Genes, Insect ; Insect Proteins/chemistry/genetics/isolation & purification/*metabolism ; Molecular Sequence Data ; Multigene Family ; Protein Structure, Tertiary ; RNA, Double-Stranded/genetics/*metabolism ; *RNA-Induced Silencing Complex ; Repetitive Sequences, Nucleic Acid ; Ribonuclease III ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2001-09-05
    Description: Natriuretic peptides (NPs) are vasoactive cyclic-peptide hormones important in blood pressure regulation through interaction with natriuretic cell-surface receptors. We report the hormone-binding thermodynamics and crystal structures at 2.9 and 2.0 angstroms, respectively, of the extracellular domain of the unliganded human NP receptor (NPR-C) and its complex with CNP, a 22-amino acid NP. A single CNP molecule is bound in the interface of an NPR-C dimer, resulting in asymmetric interactions between the hormone and the symmetrically related receptors. Hormone binding induces a 20 angstrom closure between the membrane-proximal domains of the dimer. In each monomer, the opening of an interdomain cleft, which is tethered together by a linker peptide acting as a molecular spring, is likely a conserved allosteric trigger for intracellular signaling by the natriuretic receptor family.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He Xl -- Chow Dc -- Martick, M M -- Garcia, K C -- New York, N.Y. -- Science. 2001 Aug 31;293(5535):1657-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Microbiology and Immunology and Structural Biology, Stanford University School of Medicine, Fairchild D319, 299 Campus Drive, Stanford, CA 93405-5124, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11533490" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Sequence ; Animals ; Atrial Natriuretic Factor/metabolism ; Binding Sites ; Calorimetry ; Cell Line ; Chlorides/metabolism ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Drosophila ; Glycosylation ; Guanylate Cyclase/*chemistry/*metabolism ; Humans ; Hydrogen Bonding ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Natriuretic Peptide, Brain/metabolism ; Natriuretic Peptide, C-Type/chemistry/*metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Atrial Natriuretic Factor/*chemistry/*metabolism ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2002-01-26
    Description: Methods for reproducible in vitro development of the mosquito stages of malaria parasites to produce infective sporozoites have been elusive for over 40 years. We have cultured gametocytes of Plasmodium berghei through to infectious sporozoites with efficiencies similar to those recorded in vivo and without the need for salivary gland invasion. Oocysts developed extracellularly in a system whose essential elements include co-cultured Drosophila S2 cells, basement membrane matrix, and insect tissue culture medium. Sporozoite production required the presence of para-aminobenzoic acid. The entire life cycle of P. berghei, a useful model malaria parasite, can now be achieved in vitro.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Al-Olayan, Ebtesam M -- Beetsma, Annette L -- Butcher, Geoff A -- Sinden, Robert E -- Hurd, Hilary -- New York, N.Y. -- Science. 2002 Jan 25;295(5555):677-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11809973" target="_blank"〉PubMed〈/a〉
    Keywords: 4-Aminobenzoic Acid/pharmacology ; Aedes ; Aerobiosis ; Animals ; Anopheles/parasitology ; Cell Line ; Coculture Techniques ; Collagen ; Culture Media ; Drosophila ; Drug Combinations ; Hydrogen-Ion Concentration ; Laminin ; Life Cycle Stages ; Malaria/parasitology ; Male ; Mice ; Plasmodium berghei/cytology/drug effects/*growth & development ; Proteoglycans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-08-14
    Description: The life history of medflies is characterized by two physiological modes with different demographic schedules of fertility and survival: a waiting mode in which both mortality and reproduction are low and a reproductive mode in which mortality is very low at the onset of egg laying but accelerates as eggs are laid. Medflies stay in waiting mode when they are fed only sugar. When fed protein, a scarce resource in the wild, medflies switch to reproductive mode. Medflies that switch from waiting to reproductive mode survive longer than medflies kept in either mode exclusively. An understanding of the physiological shift that occurs between the waiting and reproductive modes may yield information about the fundamental processes that determine longevity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carey, J R -- Liedo, P -- Muller, H G -- Wang, J L -- Vaupel, J W -- AG-08761/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 1998 Aug 14;281(5379):996-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Entomology, University of California, Davis, CA 95616, USA. jrcarey@ucdavis.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9703516" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*physiology ; Animals ; Dietary Proteins ; Drosophila ; Female ; Longevity ; Male ; Models, Biological ; Reproduction/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miklos, G L -- Hanes, S D -- Maleszka, R -- New York, N.Y. -- Science. 1998 Feb 27;279(5355):1287.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9508696" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Division ; Drosophila ; *Drosophila Proteins ; Fungal Proteins/genetics/physiology ; Humans ; Insect Proteins/genetics/physiology ; Peptidylprolyl Isomerase/*genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-02-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weinmaster, G -- New York, N.Y. -- Science. 1998 Jan 16;279(5349):336-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, University of California, Los Angeles, School of Medicine, Los Angeles, CA 90095-1737, USA. gweinmas@biochem.medsch.ucla.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9454330" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Body Patterning ; Bone Morphogenetic Proteins/metabolism ; Disintegrins/*metabolism ; Drosophila ; *Drosophila Proteins ; Embryo, Nonmammalian/metabolism ; *Embryonic Development ; Glycoproteins/metabolism ; Insect Proteins/*metabolism ; *Intercellular Signaling Peptides and Proteins ; Membrane Proteins/metabolism ; Metalloendopeptidases/*metabolism ; Receptors, Cell Surface/metabolism ; Receptors, Notch ; Signal Transduction ; Tolloid-Like Metalloproteinases ; Xenopus ; *Xenopus Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-01-25
    Description: The Bicoid homeodomain protein controls anterior development in the Drosophila embryo by binding to DNA and regulating gene expression. With the use of genetic assays in yeast, the interaction between the Bicoid homeodomain and a series of mutated DNA sites was studied. These experiments defined important features of homeodomain binding sites, identified specific amino acid-base pair contacts, and suggested a model for interaction of the recognition alpha-helices of Bicoid and Antennapedia-class homeodomain proteins with DNA. The model is in general agreement with results of crystallographic and magnetic resonance studies, but differs in important details. It is likely that genetic studies of protein-DNA interaction will continue to complement conventional structural approaches.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hanes, S D -- Brent, R -- New York, N.Y. -- Science. 1991 Jan 25;251(4992):426-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Massachusetts General Hospital, Boston 02114.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1671176" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; DNA/*metabolism ; DNA-Binding Proteins/*genetics/metabolism ; Drosophila ; Gene Expression Regulation ; Genes, Homeobox/*genetics ; *Homeodomain Proteins ; Insect Hormones/*genetics/metabolism ; *Models, Genetic ; Molecular Sequence Data ; *Trans-Activators ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 1992-07-17
    Description: The transforming growth factors-beta (TGF-beta 1 through -beta 5) are a family of homodimeric cytokines that regulate proliferation and function in many cell types. Family members have 66 to 80% sequence identity and nine strictly conserved cysteines. A crystal structure of a member of this family, TGF-beta 2, has been determined at 2.1 angstrom (A) resolution and refined to an R factor of 0.172. The monomer lacks a well-defined hydrophobic core and displays an unusual elongated nonglobular fold with dimensions of approximately 60 A by 20 A by 15 A. Eight cysteines form four intrachain disulfide bonds, which are clustered in a core region forming a network complementary to the network of hydrogen bonds. The dimer is stabilized by the ninth cysteine, which forms an interchain disulfide bond, and by two identical hydrophobic interfaces. Sequence profile analysis of other members of the TGF-beta superfamily, including the activins, inhibins, and several developmental factors, imply that they also adopt the TGF-beta fold.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Daopin, S -- Piez, K A -- Ogawa, Y -- Davies, D R -- New York, N.Y. -- Science. 1992 Jul 17;257(5068):369-73.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1631557" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Crystallography ; Drosophila ; Humans ; Mice ; Models, Molecular ; Molecular Conformation ; Molecular Structure ; Transforming Growth Factor beta/*chemistry ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 1992-11-13
    Description: The overall sequence similarity between the voltage-activated K+ channels and cyclic nucleotide-gated ion channels from retinal and olfactory neurons suggests that they arose from a common ancestor. On the basis of sequence comparisons, mutations were introduced into the pore of a voltage-activated K+ channel. These mutations confer the essential features of ion conduction in the cyclic nucleotide-gated ion channels; the mutant K+ channels display little selectivity among monovalent cations and are blocked by divalent cations. The property of K+ selectivity is related to the presence of two amino acids that are absent from the pore-forming region of the cyclic nucleotide-gated channels. These data demonstrate that very small differences in the primary structure of an ion channel can account for extreme functional diversity, and they suggest a possible connection between the pore-forming regions of K+, Ca2+, and cyclic nucleotide-gated ion channels.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heginbotham, L -- Abramson, T -- MacKinnon, R -- GM43949/GM/NIGMS NIH HHS/ -- GM47400/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Nov 13;258(5085):1152-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1279807" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Calcium/pharmacology ; Cattle ; Cyclic AMP/pharmacology ; Cyclic GMP/pharmacology ; Drosophila ; Electric Conductivity ; Ion Channel Gating/drug effects ; Ion Channels/drug effects/*physiology ; Magnesium/pharmacology ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oocytes/physiology ; Plants ; Potassium Channels/chemistry/*genetics/*physiology ; Retina/ultrastructure ; Transfection ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1989-07-28
    Description: The activity of an oncoprotein and the secretion of a pheromone can be affected by an unusual protein modification. Specifically, posttranslational modification of yeast a-factor and Ras protein requires an intermediate of the cholesterol biosynthetic pathway. This modification is apparently essential for biological activity. Studies of yeast mutants blocked in sterol biosynthesis demonstrated that the membrane association and biological activation of the yeast Ras2 protein require mevalonate, a precursor of sterols and other isoprenes such as farnesyl pyrophosphate. Furthermore, drugs that inhibit mevalonate biosynthesis blocked the in vivo action of oncogenic derivatives of human Ras protein in the Xenopus oocyte assay. The same drugs and mutations also prevented the posttranslational processing and secretion of yeast a-factor, a peptide that is farnesylated. Thus, the mevalonate requirement for Ras activation may indicate that attachment of a mevalonate-derived (isoprenoid) moiety to Ras proteins is necessary for membrane association and biological function. These observations establish a connection between the cholesterol biosynthetic pathway and transformation by the ras oncogene and offer a novel pharmacological approach to investigating, and possibly controlling, ras-mediated malignant transformations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schafer, W R -- Kim, R -- Sterne, R -- Thorner, J -- Kim, S H -- Rine, J -- CA-45593/CA/NCI NIH HHS/ -- GM21841/GM/NIGMS NIH HHS/ -- GM31105/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1989 Jul 28;245(4916):379-85.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2569235" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cells, Cultured ; Drosophila ; Electrophoresis, Polyacrylamide Gel ; Fungal Proteins/genetics/*metabolism ; *Genes, ras ; Humans ; Hydroxymethylglutaryl CoA Reductases/genetics ; Hydroxymethylglutaryl-CoA Synthase/genetics ; Immunoblotting ; Mevalonic Acid/biosynthesis ; Molecular Sequence Data ; Peptides/genetics/metabolism ; Precipitin Tests ; Protein Processing, Post-Translational ; Proto-Oncogene Proteins/genetics/*metabolism ; Proto-Oncogene Proteins p21(ras) ; Saccharomyces cerevisiae/genetics/physiology ; *Saccharomyces cerevisiae Proteins ; *Suppression, Genetic ; Xenopus ; *ras Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 1989-03-03
    Description: Sindbis virus, an enveloped virus with a single-stranded RNA genome, was engineered to express a bacterial protein, chloramphenicol acetyltransferase (CAT), in cultured insect, avian, and mammalian cells. The vectors were self-replicating and gene expression was efficient and rapid; up to 10(8) CAT polypeptides were produced per infected cell in 16 to 20 hours. CAT expression could be made temperature-sensitive by means of a derivative that incorporated a temperature-sensitive mutation in viral RNA synthesis. Vector genomic RNAs were packaged into infectious particles when Sindbis helper virus was used to supply virion structural proteins. The vector RNAs were stable to at least seven cycles of infection. The expression of CAT increased about 10(3)-fold, despite a 10(15)-fold dilution during the passaging. Sindbis virus vectors should prove useful for expressing large quantities of gene products in a variety of animal cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xiong, C -- Levis, R -- Shen, P -- Schlesinger, S -- Rice, C M -- Huang, H V -- AG05681/AG/NIA NIH HHS/ -- AI11377/AI/NIAID NIH HHS/ -- AI24134/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1989 Mar 3;243(4895):1188-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2922607" target="_blank"〉PubMed〈/a〉
    Keywords: Aedes ; Animals ; Bacteria/enzymology ; Cells, Cultured ; Chick Embryo ; Chloramphenicol O-Acetyltransferase/*genetics ; Codon ; Cricetinae ; DNA/genetics ; Drosophila ; Gene Amplification ; Gene Expression Regulation ; *Genetic Engineering ; *Genetic Vectors ; Humans ; Quail ; RNA, Viral/*genetics ; Sindbis Virus/*genetics ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-03-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1991 Mar 8;251(4998):1176-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1848724" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA-Binding Proteins/*metabolism ; Drosophila ; Mammals ; Models, Structural ; Muscle Proteins/genetics ; MyoD Protein ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 1990-07-06
    Description: Kinesin is a mechanochemical protein that converts the chemical energy in adenosine triphosphate into mechanical force for movement of cellular components along microtubules. The regions of the kinesin molecule responsible for generating movement were determined by studying the heavy chain of Drosophila kinesin, and its truncated forms, expressed in Escherichia coli. The results demonstrate that (i) kinesin heavy chain alone, without the light chains and other eukaryotic factors, is able to induce microtubule movement in vitro, and (ii) a fragment likely to contain only the kinesin head is also capable of inducing microtubule motility. Thus, the amino-terminal 450 amino acids of kinesin contain all the basic elements needed to convert chemical energy into mechanical force.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, J T -- Saxton, W M -- Stewart, R J -- Raff, E C -- Goldstein, L S -- GM35252/GM/NIGMS NIH HHS/ -- HD16739/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1990 Jul 6;249(4964):42-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Developmental Biology, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2142332" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/biosynthesis/genetics/*physiology ; Amino Acid Sequence ; Animals ; Base Sequence ; Cells, Cultured ; Drosophila ; Escherichia coli/genetics/metabolism ; Kinesin ; Male ; Microtubule Proteins/biosynthesis/genetics/*physiology ; Microtubules/*physiology ; Molecular Sequence Data ; Movement ; Peptide Fragments/biosynthesis/genetics/*physiology ; Plasmids ; Recombinant Proteins/biosynthesis/genetics/physiology ; Sea Urchins ; Spermatozoa/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-12-14
    Description: The neurotransmitter acetylcholine (ACh) is bound with 50-micromolar affinity by a completely synthetic receptor (host) comprising primarily aromatic rings. The host provided an overall hydrophobic binding site, but one that could recognize the positive charge of the quaternary ammonium group of ACh through a stabilizing interaction with the electron-rich pi systems of the aromatic rings (cation-pi interaction). Similar interactions may be involved in biological recognition of ACh and other choline derivatives.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dougherty, D A -- Stauffer, D A -- GM36356/GM/NIGMS NIH HHS/ -- GM43936/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Dec 14;250(4987):1558-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena 91125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2274786" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/*metabolism ; Affinity Labels ; Amino Acid Sequence ; Animals ; Binding Sites ; Cations ; Drosophila ; Electrochemistry ; Immunoglobulin Fab Fragments/metabolism ; *Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Phosphorylcholine/metabolism ; Quaternary Ammonium Compounds/*metabolism ; Receptors, Cholinergic/chemistry/*metabolism ; Thermodynamics ; Torpedo
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-05-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Atwood, Harold L -- New York, N.Y. -- Science. 2006 May 19;312(5776):1008-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada. h.atwood@utoronto.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16709774" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium Channels/metabolism ; Drosophila ; Drosophila Proteins/*physiology ; Nerve Tissue Proteins/*physiology ; Presynaptic Terminals/metabolism/ultrastructure ; Synapses/*physiology/ultrastructure ; Synaptic Vesicles/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2007-02-17
    Description: The adult Drosophila midgut contains multipotent intestinal stem cells (ISCs) scattered along its basement membrane that have been shown by lineage analysis to generate both enterocytes and enteroendocrine cells. ISCs containing high levels of cytoplasmic Delta-rich vesicles activate the canonical Notch pathway and down-regulate Delta within their daughters, a process that programs these daughters to become enterocytes. ISCs that express little vesiculate Delta, or are genetically impaired in Notch signaling, specify their daughters to become enteroendocrine cells. Thus, ISCs control daughter cell fate by modulating Notch signaling over time. Our studies suggest that ISCs actively coordinate cell production with local tissue requirements by this mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ohlstein, Benjamin -- Spradling, Allan -- R56 DK090078/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2007 Feb 16;315(5814):988-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Embryology, Carnegie Institution of Washington, 3520 San Martin Drive, Baltimore, MD 21218, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17303754" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/*physiology ; Clone Cells ; Drosophila ; Drosophila Proteins/genetics/*metabolism ; Enterocytes/cytology ; Enteroendocrine Cells/cytology ; Intestines/cytology ; Intracellular Signaling Peptides and Proteins ; Membrane Proteins/metabolism ; Mitosis ; Multipotent Stem Cells/*cytology/metabolism ; Receptors, Notch/genetics/*metabolism ; *Signal Transduction/genetics ; Spindle Apparatus/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2012-11-03
    Description: Stem cells can self-renew and generate differentiating daughter cells. It is not known whether these cells maintain their epigenetic information during asymmetric division. Using a dual-color method to differentially label "old" versus "new" histones in Drosophila male germline stem cells (GSCs), we show that preexisting canonical H3, but not variant H3.3, histones are selectively segregated to the GSC, whereas newly synthesized histones incorporated during DNA replication are enriched in the differentiating daughter cell. The asymmetric histone distribution occurs in GSCs but not in symmetrically dividing progenitor cells. Furthermore, if GSCs are genetically manipulated to divide symmetrically, this asymmetric mode is lost. This work suggests that stem cells retain preexisting canonical histones during asymmetric cell divisions, probably as a mechanism to maintain their unique molecular properties.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3532436/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3532436/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tran, Vuong -- Lim, Cindy -- Xie, Jing -- Chen, Xin -- R01 HD065816/HD/NICHD NIH HHS/ -- R01HD065816/HD/NICHD NIH HHS/ -- R21 HD065089/HD/NICHD NIH HHS/ -- R21HD065089/HD/NICHD NIH HHS/ -- T32 GM007231/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Nov 2;338(6107):679-82. doi: 10.1126/science.1226028.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23118191" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; *Asymmetric Cell Division ; Cell Differentiation ; Drosophila ; Drosophila Proteins/*metabolism ; Epigenesis, Genetic ; Germ Cells/*cytology/*metabolism ; Histones/*metabolism ; Male ; Stem Cells/*cytology/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-06-01
    Description: Chromosome segregation during mitosis requires assembly of the kinetochore complex at the centromere. Kinetochore assembly depends on specific recognition of the histone variant CENP-A in the centromeric nucleosome by centromere protein C (CENP-C). We have defined the determinants of this recognition mechanism and discovered that CENP-C binds a hydrophobic region in the CENP-A tail and docks onto the acidic patch of histone H2A and H2B. We further found that the more broadly conserved CENP-C motif uses the same mechanism for CENP-A nucleosome recognition. Our findings reveal a conserved mechanism for protein recruitment to centromeres and a histone recognition mode whereby a disordered peptide binds the histone tail through hydrophobic interactions facilitated by nucleosome docking.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763809/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763809/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kato, Hidenori -- Jiang, Jiansheng -- Zhou, Bing-Rui -- Rozendaal, Marieke -- Feng, Hanqiao -- Ghirlando, Rodolfo -- Xiao, T Sam -- Straight, Aaron F -- Bai, Yawen -- R01 GM074728/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- ZIA AI000960-07/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 May 31;340(6136):1110-3. doi: 10.1126/science.1235532.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23723239" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Autoantigens/metabolism ; Binding Sites ; Centromere/*metabolism ; Chromosomal Proteins, Non-Histone/genetics/*metabolism ; Conserved Sequence ; Drosophila ; Histones/*metabolism ; Humans ; Hydrophobic and Hydrophilic Interactions ; Molecular Sequence Data ; Nucleosomes/*metabolism ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-05-25
    Description: Although intercellular bridges resulting from incomplete cytokinesis were discovered in somatic Drosophila tissues decades ago, the impact of these structures on intercellular communication and tissue biology is largely unknown. In this work, we demonstrate that the ~250-nanometer-diameter somatic ring canals permit diffusion of cytoplasmic contents between connected cells and across mitotic clone boundaries and enable the equilibration of protein between transcriptionally mosaic follicle cells in the Drosophila ovary. We obtained similar, although more restricted, results in the larval imaginal discs. Our work illustrates the lack of cytoplasmic autonomy in these tissues and suggests a role for somatic ring canals in promoting homogeneous protein expression within the tissue.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819220/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819220/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McLean, Peter F -- Cooley, Lynn -- GM043301/GM/NIGMS NIH HHS/ -- GM091791/GM/NIGMS NIH HHS/ -- P41 GM103313/GM/NIGMS NIH HHS/ -- R01 GM043301/GM/NIGMS NIH HHS/ -- RC1 GM091791/GM/NIGMS NIH HHS/ -- T32 GM007499/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jun 21;340(6139):1445-7. doi: 10.1126/science.1234887. Epub 2013 May 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23704373" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle ; Cytoplasm/*metabolism ; Cytoplasmic Structures/*metabolism/*ultrastructure ; Diffusion ; Drosophila ; Drosophila Proteins/*metabolism ; Female ; Giant Cells/ultrastructure ; Green Fluorescent Proteins/*metabolism ; Imaginal Discs/*metabolism/*ultrastructure ; Microscopy, Electron ; Mitosis ; Ovarian Follicle/cytology/metabolism/ultrastructure ; *Protein Transport ; Recombination, Genetic ; Transcription, Genetic ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-12-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hong, Weizhe -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1186. doi: 10.1126/science.1247568.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91106, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24311677" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Awards and Prizes ; Axons/*physiology ; Dendrites/*physiology ; Drosophila ; Drosophila Proteins/*physiology ; History, 21st Century ; Membrane Proteins/physiology ; Olfactory Pathways/physiology ; Olfactory Receptor Neurons/*physiology ; Receptors, Cell Surface/*physiology ; Synapses/*physiology ; Synaptic Transmission ; Tenascin/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 1997-08-01
    Description: Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors are phosphorylated by kinases that mediate agonist-dependent receptor deactivation. Although many receptor kinases have been isolated, the corresponding phosphatases, necessary for restoring the ground state of the receptor, have not been identified. Drosophila RDGC (retinal degeneration C) is a phosphatase required for rhodopsin dephosphorylation in vivo. Loss of RDGC caused severe defects in the termination of the light response as well as extensive light-dependent retinal degeneration. These phenotypes resulted from the hyperphosphorylation of rhodopsin because expression of a truncated rhodopsin lacking the phosphorylation sites restored normal photoreceptor function. These results suggest the existence of a family of receptor phosphatases involved in the regulation of G protein-coupled signaling cascades.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vinos, J -- Jalink, K -- Hardy, R W -- Britt, S G -- Zuker, C S -- New York, N.Y. -- Science. 1997 Aug 1;277(5326):687-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biology, University of California at San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9235891" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Arrestin/metabolism ; *Calcium-Binding Proteins ; Darkness ; Drosophila ; *Drosophila Proteins ; Electroretinography ; GTP-Binding Proteins/*metabolism ; Light ; Mutation ; Phosphoprotein Phosphatases/genetics/*metabolism ; Phosphorylation ; Photoreceptor Cells, Invertebrate/*metabolism ; Retina/metabolism ; Retinal Degeneration ; Rhodopsin/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 1998-06-11
    Description: The circadian oscillator generates a rhythmic output with a period of about 24 hours. Despite extensive studies in several model systems, the biochemical mode of action has not yet been demonstrated for any of its components. Here, the Drosophila CLOCK protein was shown to induce transcription of the circadian rhythm genes period and timeless. dCLOCK functioned as a heterodimer with a Drosophila homolog of BMAL1. These proteins acted through an E-box sequence in the period promoter. The timeless promoter contains an 18-base pair element encompassing an E-box, which was sufficient to confer dCLOCK responsiveness to a reporter gene. PERIOD and TIMELESS proteins blocked dCLOCK's ability to transactivate their promoters via the E-box. Thus, dCLOCK drives expression of period and timeless, which in turn inhibit dCLOCK's activity and close the circadian loop.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Darlington, T K -- Wager-Smith, K -- Ceriani, M F -- Staknis, D -- Gekakis, N -- Steeves, T D -- Weitz, C J -- Takahashi, J S -- Kay, S A -- MH-51573/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1998 Jun 5;280(5369):1599-603.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and NSF Center for Biological Timing, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9616122" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Animals ; Basic Helix-Loop-Helix Transcription Factors ; Biological Clocks ; CLOCK Proteins ; Cell Line ; Cell Nucleus/metabolism ; Circadian Rhythm/genetics/*physiology ; Dimerization ; Drosophila ; *Drosophila Proteins ; Feedback ; Gene Expression ; Helix-Loop-Helix Motifs ; Insect Proteins/*genetics/metabolism ; Nuclear Proteins/*genetics/metabolism ; Period Circadian Proteins ; Promoter Regions, Genetic ; RNA, Messenger/genetics/metabolism ; Trans-Activators/genetics/*metabolism ; Transcription Factors/genetics/*metabolism ; *Transcriptional Activation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2004-04-06
    Description: Huntington's disease (HD) is characterized by the accumulation of a pathogenic protein, Huntingtin (Htt), that contains an abnormal polyglutamine expansion. Here, we report that a pathogenic fragment of Htt (Httex1p) can be modified either by small ubiquitin-like modifier (SUMO)-1 or by ubiquitin on identical lysine residues. In cultured cells, SUMOylation stabilizes Httex1p, reduces its ability to form aggregates, and promotes its capacity to repress transcription. In a Drosophila model of HD, SUMOylation of Httex1p exacerbates neurodegeneration, whereas ubiquitination of Httex1p abrogates neurodegeneration. Lysine mutations that prevent both SUMOylation and ubiquitination of Httex1p reduce HD pathology, indicating that the contribution of SUMOylation to HD pathology extends beyond preventing Htt ubiquitination and degradation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steffan, Joan S -- Agrawal, Namita -- Pallos, Judit -- Rockabrand, Erica -- Trotman, Lloyd C -- Slepko, Natalia -- Illes, Katalin -- Lukacsovich, Tamas -- Zhu, Ya-Zhen -- Cattaneo, Elena -- Pandolfi, Pier Paolo -- Thompson, Leslie Michels -- Marsh, J Lawrence -- CA-62203/CA/NCI NIH HHS/ -- HD36049/HD/NICHD NIH HHS/ -- HD36081/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2004 Apr 2;304(5667):100-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry and Human Behavior, Gillespie 2121, University of California, Irvine, CA 92697, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15064418" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Cell Line ; Cell Nucleus/metabolism ; Corpus Striatum/cytology ; Cytoplasm/metabolism ; Drosophila ; Genes, MDR ; HeLa Cells ; Humans ; Huntington Disease/metabolism/*pathology ; Lysine/genetics/metabolism ; Mutation ; Nerve Degeneration ; Nerve Tissue Proteins/chemistry/genetics/*metabolism ; Neurons/metabolism ; Nuclear Proteins/chemistry/genetics/*metabolism ; Proline/genetics/metabolism ; Promoter Regions, Genetic ; Rats ; Recombinant Fusion Proteins/metabolism ; SUMO-1 Protein/genetics/*metabolism ; Transcription, Genetic ; Transfection ; Ubiquitin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-05-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, Jocelyn -- New York, N.Y. -- Science. 2003 May 9;300(5621):879.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12738819" target="_blank"〉PubMed〈/a〉
    Keywords: Academies and Institutes/*organization & administration ; Animals ; Drosophila ; Facility Design and Construction ; History, 21st Century ; Research Personnel ; Virginia
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2005-01-08
    Description: Many herbivores and omnivores adjust their food selection behavior to regulate the intake of multiple nutrients. Carnivores, however, are generally assumed to optimize the rate of prey capture rather than select prey according to nutrient composition. We showed experimentally that invertebrate predators can forage selectively for protein and lipids to redress specific nutritional imbalances. This selection can take place at different stages of prey handling: The predator may select among foods of different nutritional composition, eat more of a prey if it is rich in nutrients that the predator is deficient in, or extract specific nutrients from a single prey item.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mayntz, David -- Raubenheimer, David -- Salomon, Mor -- Toft, Soren -- Simpson, Stephen J -- New York, N.Y. -- Science. 2005 Jan 7;307(5706):111-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. david.mayntz@zoology.oxford.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15637278" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Beetles/*physiology ; Diet ; Dietary Proteins/administration & dosage ; Drosophila ; Feeding Behavior ; Female ; Food ; Grasshoppers ; Lipids/administration & dosage ; Male ; Nutritional Physiological Phenomena ; Predatory Behavior ; Spiders/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2003-09-13
    Description: RNA interference (RNAi) spreads systemically in plants and nematodes to silence gene expression distant from the site of initiation. We previously identified a gene, sid-1, essential for systemic but not cell-autonomous RNAi in Caenorhabditis elegans. Here, we demonstrate that SID-1 is a multispan transmembrane protein that sensitizes Drosophila cells to soaking RNAi with a potency that is dependent on double-stranded RNA (dsRNA) length. Further analyses revealed that SID-1 enables passive cellular uptake of dsRNA. These data indicate that systemic RNAi in C. elegans involves SID-1-mediated intercellular transport of dsRNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feinberg, Evan H -- Hunter, Craig P -- R01 GM069891/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 12;301(5639):1545-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12970568" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Biological Transport ; Caenorhabditis elegans/*genetics ; Caenorhabditis elegans Proteins/chemistry/*metabolism ; Cell Line ; Diffusion ; Drosophila ; Membrane Proteins/chemistry/*metabolism ; *RNA Interference ; RNA, Double-Stranded/chemistry/genetics/*metabolism ; Recombinant Proteins/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2005-04-09
    Description: We used fluorescence imaging with one nanometer accuracy (FIONA) to analyze organelle movement by conventional kinesin and cytoplasmic dynein in a cell. We located a green fluorescence protein (GFP)-tagged peroxisome in cultured Drosophila S2 cells to within 1.5 nanometers in 1.1 milliseconds, a 400-fold improvement in temporal resolution, sufficient to determine the average step size to be approximately 8 nanometers for both dynein and kinesin. Furthermore, we found that dynein and kinesin do not work against each other in vivo during peroxisome transport. Rather, multiple kinesins or multiple dyneins work together, producing up to 10 times the in vitro speed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kural, Comert -- Kim, Hwajin -- Syed, Sheyum -- Goshima, Gohta -- Gelfand, Vladimir I -- Selvin, Paul R -- AR44420/AR/NIAMS NIH HHS/ -- GM 068625/GM/NIGMS NIH HHS/ -- GM52111/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Jun 3;308(5727):1469-72. Epub 2005 Apr 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysics Center, University of Illinois, Urbana, IL 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15817813" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Transport ; Cell Line ; Drosophila ; Dyneins/*physiology ; Fluorescence ; Green Fluorescent Proteins ; Kinesin/*physiology ; Molecular Motor Proteins/*physiology ; Peroxisomes/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 1993-07-23
    Description: Transcription initiation factor TFIIB recruits RNA polymerase II to the promoter subsequent to interaction with a preformed TFIID-promoter complex. The domains of TFIIB required for binding to the TFIID-promoter complex and for transcription initiation have been determined. The carboxyl-terminal two-thirds of TFIIB, which contains two direct repeats and two basic residue repeats, is sufficient for interaction with the TFIID-promoter complex. An extra 84-residue amino-terminal region, with no obvious known structural motifs, is required for basal transcription activity. Basic residues within the second basic repeat of TFIIB are necessary for stable interaction with the TFIID-promoter complex, whereas the basic character of the first basic repeat is not. Functional roles of other potential structural motifs are discussed in light of the present study.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamashita, S -- Hisatake, K -- Kokubo, T -- Doi, K -- Roeder, R G -- Horikoshi, M -- Nakatani, Y -- AI27397/AI/NIAID NIH HHS/ -- CA42567/CA/NCI NIH HHS/ -- GM45258/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jul 23;261(5120):463-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8332911" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; DNA-Binding Proteins/*metabolism ; Drosophila ; Molecular Sequence Data ; Mutation ; *Promoter Regions, Genetic ; Protein Binding ; Transcription Factor TFIIB ; Transcription Factor TFIID ; Transcription Factors/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2002-02-02
    Description: The motor enzyme kinesin makes hundreds of unidirectional 8-nanometer steps without detaching from or freely sliding along the microtubule on which it moves. We investigated the kinesin stepping mechanism by immobilizing a Drosophila kinesin derivative through the carboxyl-terminal end of the neck coiled-coil domain and measuring orientations of microtubules moved by single enzyme molecules at submicromolar adenosine triphosphate concentrations. The kinesin-mediated microtubule-surface linkage was sufficiently torsionally stiff (〉/=2.0 +/- 0.9 x 10(-20) Newton meters per radian2) that stepping by the hypothesized symmetric hand-over-hand mechanism would produce 180 degree rotations of the microtubule relative to the immobilized kinesin neck. In fact, there were no rotations, a finding that is inconsistent with symmetric hand-over-hand movement. An alternative "inchworm" mechanism is consistent with our experimental results.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hua, Wei -- Chung, Johnson -- Gelles, Jeff -- New York, N.Y. -- Science. 2002 Feb 1;295(5556):844-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysics and Structural Biology Program, Biochemistry Department, Brandeis University, Waltham, MA 02454-9110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11823639" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Adenylyl Imidodiphosphate/pharmacology ; Animals ; Binding Sites ; Catalysis ; Dimerization ; Drosophila ; Enzymes, Immobilized ; Kinesin/chemistry/metabolism/*physiology ; Microtubules/enzymology/*physiology ; Models, Biological ; Molecular Motor Proteins/chemistry/metabolism/*physiology ; Movement ; Protein Structure, Tertiary ; Rotation ; Streptavidin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-09-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spiegel, Allen -- New York, N.Y. -- Science. 2003 Sep 5;301(5638):1338-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA. spiegela@extra.niddk.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12958351" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Animals ; Arrestins/*metabolism ; Cell Line ; Cell Membrane/metabolism ; Clathrin/metabolism ; Coated Pits, Cell-Membrane/metabolism ; Down-Regulation ; Drosophila ; *Endocytosis ; Frizzled Receptors ; GTP-Binding Proteins/metabolism ; Humans ; Mice ; Phosphoproteins/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases ; Proteins/*metabolism ; Proteoglycans/metabolism ; Proto-Oncogene Proteins/metabolism ; Receptors, Cell Surface/*metabolism ; Receptors, Transforming Growth Factor beta/metabolism ; *Signal Transduction ; Transforming Growth Factor beta/metabolism ; Wnt Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2006-06-24
    Description: Alpha-synuclein (alphaSyn) misfolding is associated with several devastating neurodegenerative disorders, including Parkinson's disease (PD). In yeast cells and in neurons alphaSyn accumulation is cytotoxic, but little is known about its normal function or pathobiology. The earliest defect following alphaSyn expression in yeast was a block in endoplasmic reticulum (ER)-to-Golgi vesicular trafficking. In a genomewide screen, the largest class of toxicity modifiers were proteins functioning at this same step, including the Rab guanosine triphosphatase Ypt1p, which associated with cytoplasmic alphaSyn inclusions. Elevated expression of Rab1, the mammalian YPT1 homolog, protected against alphaSyn-induced dopaminergic neuron loss in animal models of PD. Thus, synucleinopathies may result from disruptions in basic cellular functions that interface with the unique biology of particular neurons to make them especially vulnerable.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1983366/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1983366/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cooper, Antony A -- Gitler, Aaron D -- Cashikar, Anil -- Haynes, Cole M -- Hill, Kathryn J -- Bhullar, Bhupinder -- Liu, Kangning -- Xu, Kexiang -- Strathearn, Katherine E -- Liu, Fang -- Cao, Songsong -- Caldwell, Kim A -- Caldwell, Guy A -- Marsischky, Gerald -- Kolodner, Richard D -- Labaer, Joshua -- Rochet, Jean-Christophe -- Bonini, Nancy M -- Lindquist, Susan -- P50 NS038372/NS/NINDS NIH HHS/ -- R01-HG002923/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2006 Jul 21;313(5785):324-8. Epub 2006 Jun 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16794039" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Caenorhabditis elegans ; Cell Survival ; Cells, Cultured ; Disease Models, Animal ; Dopamine/physiology ; Drosophila ; Endoplasmic Reticulum/*metabolism ; Gene Expression ; Gene Library ; Golgi Apparatus/*metabolism ; Humans ; Mice ; Nerve Degeneration ; Neurons/cytology/*physiology ; Parkinsonian Disorders/metabolism/pathology/*physiopathology ; Proteasome Endopeptidase Complex/metabolism ; Protein Folding ; *Protein Transport ; Proteins/chemistry/metabolism ; Rats ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae/genetics/metabolism ; Saccharomyces cerevisiae Proteins/genetics/metabolism ; alpha-Synuclein/chemistry/genetics/*metabolism ; rab GTP-Binding Proteins/genetics/metabolism ; rab1 GTP-Binding Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 1993-12-24
    Description: The elongated proteins of the spectrin family (dystrophin, alpha-actinin, and spectrin) contain tandemly repeated segments and form resilient cellular meshworks by cross-linking actin filaments. The structure of one of the repetitive segments of alpha-spectrin was determined at a 1.8 angstrom resolution. A segment consists of a three-helix bundle. A model of the interface between two tandem segments suggests that hydrophobic interactions between segments may constrain intersegment flexibility. The helix side chain interactions explain how mutations that are known to produce hemolytic anemias disrupt spectrin associations that sustain the integrity of the erythrocyte membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yan, Y -- Winograd, E -- Viel, A -- Cronin, T -- Harrison, S C -- Branton, D -- CA 13202/CA/NCI NIH HHS/ -- HL 17411/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1993 Dec 24;262(5142):2027-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8266097" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Crystallization ; Drosophila ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Spectrin/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 1994-12-23
    Description: GAL4-VP16-mediated nucleosome reconfiguration and transcriptional activation were observed with preassembled chromatin templates that contained regular and physiological nucleosome spacing. Both processes were dependent on adenosine triphosphate (ATP), although binding of GAL4-VP16 to the chromatin was ATP-independent. Factor-mediated nucleosome reconfiguration was not, however, sufficient for transcriptional activation. These experiments recreate in vitro the active participation of nucleosomal cores in the regulation of transcription that occurs in vivo, and they suggest a multistep pathway for transcriptional activation in which factor- and ATP-dependent nucleosome reconfiguration is followed by facilitation by the DNA-bound activator of transcription from the repressed chromatin template.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pazin, M J -- Kamakaka, R T -- Kadonaga, J T -- New York, N.Y. -- Science. 1994 Dec 23;266(5193):2007-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of California, San Diego, La Jolla 92093-0347.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7801129" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/*metabolism ; Animals ; Chromatin/chemistry/*metabolism ; DNA/metabolism ; DNA-Binding Proteins ; Drosophila ; Fungal Proteins/metabolism ; Models, Genetic ; Nucleosomes/chemistry/*metabolism ; *Saccharomyces cerevisiae Proteins ; Templates, Genetic ; Trans-Activators/metabolism ; Transcription Factors/metabolism ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 1994-05-13
    Description: In Drosophila and human cells, the TATA binding protein (TBP) of the transcription factor IID (TFIID) complex is tightly associated with multiple subunits termed TBP-associated factors (TAFs) that are essential for mediating regulation of RNA polymerase II transcription. The Drosophila TAFII150 has now been molecularly cloned and biochemically characterized. The deduced primary amino acid sequence of dTAFII150 reveals a striking similarity to the essential yeast gene, TSM-1. Furthermore, like dTAFII150, the TSM-1 protein is found associated with the TBP in vivo, thus identifying the first yeast homolog of a TAF associated with TFIID. Both the product of TSM-1 and dTAFII150 bind directly to TBP and dTAFII250, demonstrating a functional similarity between human and yeast TAFs. Surprisingly, DNA binding studies indicate that purified recombinant dTAFII150 binds specifically to DNA sequences overlapping the start site of transcription. The data demonstrate that at least one of the TAFs is a sequence-specific DNA binding protein and that dTAFII150 together with TBP are responsible for TFIID interactions with an extended region of the core promoter.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Verrijzer, C P -- Yokomori, K -- Chen, J L -- Tjian, R -- New York, N.Y. -- Science. 1994 May 13;264(5161):933-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, Berkeley 94720-3202.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8178153" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cloning, Molecular ; DNA/*metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Drosophila ; *Drosophila Proteins ; Genes, Fungal ; Genes, Insect ; Histone Acetyltransferases ; Humans ; Molecular Sequence Data ; Nuclear Proteins/metabolism ; *Promoter Regions, Genetic ; RNA Polymerase II/metabolism ; Recombinant Proteins/metabolism ; Saccharomyces cerevisiae/genetics ; *Saccharomyces cerevisiae Proteins ; Sequence Alignment ; TATA Box ; *TATA-Binding Protein Associated Factors ; TATA-Box Binding Protein ; Transcription Factor TFIID ; Transcription Factors/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 1996-06-07
    Description: The myogenic basic helix-loop-helix (bHLH) and MEF2 transcription factors are expressed in the myotome of developing somites and cooperatively activate skeletal muscle gene expression. The bHLH protein Twist is expressed throughout the epithelial somite and is subsequently excluded from the myotome. Ectopically expressed mouse Twist (Mtwist) was shown to inhibit myogenesis by blocking DNA binding by MyoD, by titrating E proteins, and by inhibiting trans-activation by MEF2. For inhibition of MEF2, Mtwist required heterodimerization with E proteins and an intact basic domain and carboxyl-terminus. Thus, Mtwist inhibits both families of myogenic regulators and may regulate myotome formation temporally or spatially.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spicer, D B -- Rhee, J -- Cheung, W L -- Lassar, A B -- 5-F32-AR08214-02/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jun 7;272(5267):1476-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8633239" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors ; Cell Differentiation ; Cell Line ; Creatine Kinase/genetics ; DNA/metabolism ; DNA-Binding Proteins/*antagonists & inhibitors/chemistry/genetics/metabolism ; Drosophila ; Drosophila Proteins ; Helix-Loop-Helix Motifs/*physiology ; Inhibitor of Differentiation Protein 1 ; MEF2 Transcription Factors ; Mice ; Muscle, Skeletal/*cytology/metabolism ; MyoD Protein/metabolism/physiology ; Myogenic Regulatory Factors ; Nuclear Proteins/chemistry/metabolism/*physiology ; *Repressor Proteins ; TCF Transcription Factors ; Transcription Factor 7-Like 1 Protein ; Transcription Factors/*antagonists & ; inhibitors/chemistry/genetics/metabolism/physiology ; Transcriptional Activation ; Transfection ; Twist Transcription Factor
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-02-23
    Description: The pleiotropic biological activities of interleukin-1 (IL-1) are mediated by its type I receptor (IL-1RI). When the ligand binds, IL-1RI initiates a signaling cascade that results in the activation of the transcription regulator nuclear factor kappa B (NF-kappa B). A protein kinase designated IRAK (IL-1 receptor-associated kinase) was purified, and its complementary DNA was molecularly cloned. When human embryonic kidney cells (cell line 293) over-expressing IL-1RI or HeLa cells were exposed to IL-1, IRAK rapidly associated with the IL-1RI complex and was phosphorylated. The primary amino acid sequence of IRAK shares similarity with that of Pelle, a protein kinase that is essential for the activation of a NF-kappa B homolog in Drosophila.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cao, Z -- Henzel, W J -- Gao, X -- New York, N.Y. -- Science. 1996 Feb 23;271(5252):1128-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Department, Tularik, Incorporated, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8599092" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cloning, Molecular ; DNA, Complementary/genetics ; Drosophila ; *Drosophila Proteins ; HeLa Cells ; Humans ; Interleukin-1/*metabolism/pharmacology ; Interleukin-1 Receptor-Associated Kinases ; Molecular Sequence Data ; Phosphorylation ; Protein Kinases/chemistry/genetics/isolation & purification/*metabolism ; Protein-Serine-Threonine Kinases/chemistry ; Receptors, Interleukin-1/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 1996-05-17
    Description: The adenomatous polyposis coli gene (APC) is mutated in familial adenomatous polyposis and in sporadic colorectal tumors, and its product binds to the adherens junction protein beta-catenin. Overexpression of APC blocks cell cycle progression. The APC-beta-catenin complex was shown to bind to DLG, the human homolog of the Drosophila discs large tumor suppressor protein. This interaction required the carboxyl-terminal region of APC and the DLG homology repeat region of DLG. APC colocalized with DLG at the lateral cytoplasm in rat colon epithelial cells and at the synapse in cultured hippocampal neurons. These results suggest that the APC-DLG complex may participate in regulation of both cell cycle progression and neuronal function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsumine, A -- Ogai, A -- Senda, T -- Okumura, N -- Satoh, K -- Baeg, G H -- Kawahara, T -- Kobayashi, S -- Okada, M -- Toyoshima, K -- Akiyama, T -- New York, N.Y. -- Science. 1996 May 17;272(5264):1020-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Oncogene Research, Institute for Microbial Diseases, Osaka University, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8638125" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein ; Amino Acid Sequence ; Animals ; Cell Cycle ; Cells, Cultured ; Colon/chemistry/cytology ; Cytoskeletal Proteins/analysis/chemistry/*metabolism ; Drosophila ; *Drosophila Proteins ; Epithelial Cells ; Epithelium/chemistry ; Fluorescent Antibody Technique ; Hippocampus/chemistry/cytology ; Humans ; Insect Hormones/analysis/chemistry/*metabolism ; Mice ; Molecular Sequence Data ; Neurons/chemistry/cytology ; Protein Binding ; Recombinant Fusion Proteins/metabolism ; Synapses/chemistry ; *Trans-Activators ; *Tumor Suppressor Proteins ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-11-25
    Description: Light absorption by rhodopsin generates metarhodopsin, which activates heterotrimeric guanine nucleotide-binding proteins (G proteins) in photoreceptor cells of vertebrates and invertebrates. In contrast to vertebrate metarhodopsins, most invertebrate metarhodopsins are thermally stable and regenerate rhodopsin by absorption of a second photon. In experiments with Rh1 Drosophila rhodopsin, the thermal stability of metarhodopsin was found not to be an intrinsic property of the visual pigment but a consequence of its interaction with arrestin (49 kilodaltons). The stabilization of metarhodopsin resulted in a large decrease in the efficiency of G protein activation. Light absorption by thermally stable metarhodopsin initially regenerated an inactive rhodopsin-like intermediate, which was subsequently converted in the dark to active rhodopsin. The accumulation of inactive rhodopsin at higher light levels may represent a mechanism for gain regulation in the insect visual cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kiselev, A -- Subramaniam, S -- New York, N.Y. -- Science. 1994 Nov 25;266(5189):1369-73.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7973725" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens/*metabolism ; Arrestin ; Darkness ; Drosophila ; Eye Proteins/*metabolism ; GTP-Binding Proteins/*metabolism ; *Light ; Models, Biological ; Phosphorylation ; Photoreceptor Cells, Invertebrate/*metabolism ; Rhodopsin/*analogs & derivatives/chemistry/*metabolism ; Spectrophotometry, Ultraviolet ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-10-11
    Description: Hedgehog (Hh) proteins comprise a family of secreted signaling molecules essential for patterning a variety of structures in animal embryogenesis. During biosynthesis, Hh undergoes an autocleavage reaction, mediated by its carboxyl-terminal domain, that produces a lipid-modified amino-terminal fragment responsible for all known Hh signaling activity. Here it is reported that cholesterol is the lipophilic moiety covalently attached to the amino-terminal signaling domain during autoprocessing and that the carboxyl-terminal domain acts as an intramolecular cholesterol transferase. This use of cholesterol to modify embryonic signaling proteins may account for some of the effects of perturbed cholesterol biosynthesis on animal development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Porter, J A -- Young, K E -- Beachy, P A -- New York, N.Y. -- Science. 1996 Oct 11;274(5285):255-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8824192" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cells, Cultured ; Cholesterol/*metabolism ; Dithiothreitol/pharmacology ; Drosophila ; *Drosophila Proteins ; *Embryonic Induction ; Embryonic and Fetal Development ; Hedgehog Proteins ; Humans ; Protein Processing, Post-Translational ; Proteins/genetics/*metabolism ; Signal Transduction ; *Trans-Activators
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 1995-05-26
    Description: In higher eukaryotes, the polypyrimidine-tract (Py-tract) adjacent to the 3' splice site is recognized by several proteins, including the essential splicing factor U2AF65, the splicing regulator Sex-lethal (Sxl), and polypyrimidine tract-binding protein (PTB), whose function is unknown. Iterative in vitro genetic selection was used to show that these proteins have distinct sequence preferences. The uridine-rich degenerate sequences selected by U2AF65 are similar to those present in the diverse array of natural metazoan Py-tracts. In contrast, the Sxl-consensus is a highly specific sequence, which can help explain the ability of Sxl to regulate splicing of transformer pre-mRNA and autoregulate splicing of its own pre-mRNA. The PTB-consensus is not a typical Py-tract; it can be found in certain alternatively spliced pre-mRNAs that undergo negative regulation. Here it is shown that PTB can regulate alternative splicing by selectively repressing 3' splice sites that contain a PTB-binding site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Singh, R -- Valcarcel, J -- Green, M R -- New York, N.Y. -- Science. 1995 May 26;268(5214):1173-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Program in Molecular Medicine, University of Massachusetts Medical Center, Worcester 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7761834" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Consensus Sequence ; DNA, Complementary ; Drosophila ; *Drosophila Proteins ; Female ; Humans ; Insect Hormones/metabolism ; Male ; Molecular Sequence Data ; *Nuclear Proteins ; Polypyrimidine Tract-Binding Protein ; *RNA Splicing ; RNA-Binding Proteins/*metabolism ; Ribonucleoproteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 1996-07-05
    Description: The chromosomal requirements for achiasmate (nonexchange) homolog disjunction in Drosophila female meiosis I have been identified with the use of a series of molecularly defined minichromosome deletion derivatives. Efficient disjunction requires 1000 kilobases of overlap in the centric heterochromatin and is not affected by homologous euchromatin or overall size differences. Disjunction efficiency decreases linearly as heterochromatic overlap is reduced from 1000 to 430 kilobases of overlap. Further observations, including rescue experiments with nod kinesin-like protein transgenes, demonstrate that heterochromatin does not act solely to promote chromosome movement or spindle attachment. Thus, it is proposed that centric heterochromatin contains multiple pairing elements that act additively to initiate or maintain the proper alignment of achiasmate chromosomes in meiosis I. How heterochromatin could act to promote chromosome pairing is discussed here.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karpen, G H -- Le, M H -- Le, H -- New York, N.Y. -- Science. 1996 Jul 5;273(5271):118-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology and Virology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8658180" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Chromosome Deletion ; Chromosomes/*physiology ; Drosophila ; *Drosophila Proteins ; Female ; Genes, Insect ; Heterochromatin/*physiology ; Kinesin ; *Meiosis ; Microtubule Proteins/genetics ; Nondisjunction, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 1995-04-28
    Description: The Son of sevenless (Sos) protein functions as a guanine nucleotide transfer factor for Ras and interacts with the receptor tyrosine kinase Sevenless through the protein Drk, a homolog of mammalian Grb2. In vivo structure-function analysis revealed that the amino terminus of Sos was essential for its function in flies. A molecule lacking the amino terminus was a potent dominant negative. In contrast, a Sos fragment lacking the Drk binding sites was functional and its activity was dependent on the presence of the Sevenless receptor. Furthermore, membrane localization of Sos was independent of Drk. A possible role for Drk as an activator of Sos is discussed and a Drk-independent interaction between Sos and Sevenless is proposed that is likely mediated by the pleckstrin homology domain within the amino terminus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karlovich, C A -- Bonfini, L -- McCollam, L -- Rogge, R D -- Daga, A -- Czech, M P -- Banerjee, U -- GM-07104/GM/NIGMS NIH HHS/ -- GM-08375/GM/NIGMS NIH HHS/ -- R01EY08152-06/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1995 Apr 28;268(5210):576-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Molecular Biology Institute, University of California, Los Angeles 90024, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7725106" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Membrane/metabolism ; Drosophila ; *Drosophila Proteins ; Eye Proteins/*metabolism ; Guanine Nucleotide Exchange Factors ; Insect Hormones/physiology ; Membrane Glycoproteins/*metabolism ; Membrane Proteins/chemistry/*metabolism ; Photoreceptor Cells, Invertebrate/cytology/metabolism ; Proteins/*metabolism ; Receptor Protein-Tyrosine Kinases/*metabolism ; Signal Transduction ; Son of Sevenless Proteins ; ras Guanine Nucleotide Exchange Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 1996-06-14
    Description: The basal cell nevus syndrome (BCNS) is characterized by developmental abnormalities and by the postnatal occurrence of cancers, especially basal cell carcinomas (BCCs), the most common human cancer. Heritable mutations in BCNS patients and a somatic mutation in a sporadic BCC were identified in a human homolog of the Drosophila patched (ptc) gene. The ptc gene encodes a transmembrane protein that in Drosophila acts in opposition to the Hedgehog signaling protein, controlling cell fates, patterning, and growth in numerous tissues. The human PTC gene appears to be crucial for proper embryonic development and for tumor suppression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, R L -- Rothman, A L -- Xie, J -- Goodrich, L V -- Bare, J W -- Bonifas, J M -- Quinn, A G -- Myers, R M -- Cox, D R -- Epstein, E H Jr -- Scott, M P -- AR3995/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jun 14;272(5268):1668-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, California 94305-5427, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8658145" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Amino Acid Sequence ; Animals ; Basal Cell Nevus Syndrome/*genetics ; Base Sequence ; Cloning, Molecular ; DNA, Neoplasm ; Drosophila ; *Drosophila Proteins ; Female ; Frameshift Mutation ; *Genes, Tumor Suppressor ; Humans ; Insect Hormones/genetics ; Male ; Membrane Proteins/*genetics ; Middle Aged ; Molecular Sequence Data ; Polymerase Chain Reaction ; Polymorphism, Single-Stranded Conformational ; Protein Conformation ; Receptors, Cell Surface
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-10-29
    Description: Shaker potassium channels from Drosophila are composed of four identical subunits. The contribution of a single subunit to the inactivation gating transition was investigated. Channels carrying a specific mutation in a single subunit can be labeled in a heterogeneous population and studied quantitatively with scorpion toxin sensitivity as a selection tag. Linkage within a single subunit of a mutation that removes the inactivation gate to a second mutation that affects scorpion toxin sensitivity demonstrates that only a single gate is necessary to produce inactivation. The inactivation rate constant for channels with a single gate was one-fourth that of channels with four gates. In contrast, the rate of recovery from inactivation was independent of the number of gates. It appears that each of the four open inactivation gates in a Shaker potassium channel is independent, but only one of the four gates closes in a mutually exclusive manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉MacKinnon, R -- Aldrich, R W -- Lee, A W -- NS23294/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1993 Oct 29;262(5134):757-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7694359" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Charybdotoxin ; Drosophila ; Ion Channel Gating/drug effects/genetics/*physiology ; Models, Biological ; Mutagenesis, Site-Directed ; Potassium Channels/drug effects/genetics/*physiology ; Scorpion Venoms/pharmacology ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 1993-06-25
    Description: Arrestins have been implicated in the regulation of many G protein-coupled receptor signaling cascades. Mutations in two Drosophila photoreceptor-specific arrestin genes, arrestin 1 and arrestin 2, were generated. Analysis of the light response in these mutants shows that the Arr1 and Arr2 proteins are mediators of rhodopsin inactivation and are essential for the termination of the phototransduction cascade in vivo. The saturation of arrestin function by an excess of activated rhodopsin is responsible for a continuously activated state of the photoreceptors known as the prolonged depolarized afterpotential. In the absence of arrestins, photoreceptors undergo light-dependent retinal degeneration as a result of the continued activity of the phototransduction cascade. These results demonstrate the fundamental requirement for members of the arrestin protein family in the regulation of G protein-coupled receptors and signaling cascades in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dolph, P J -- Ranganathan, R -- Colley, N J -- Hardy, R W -- Socolich, M -- Zuker, C S -- R01 EY008768/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1993 Jun 25;260(5116):1910-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, La Jolla, CA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8316831" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; *Arrestins ; Drosophila ; Drosophila Proteins ; Eye Proteins/genetics/*physiology ; Female ; GTP-Binding Proteins/*metabolism ; Genes, Insect ; Kinetics ; Male ; Molecular Sequence Data ; Mutation ; Phosphoproteins/genetics/*physiology ; Photic Stimulation ; Photoreceptor Cells/cytology/*physiology ; Rhodopsin/analogs & derivatives/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 1993-07-09
    Description: Complementary DNAs (cDNAs) from mSlo, a gene encoding calcium-activated potassium channels, were isolated from mouse brain and skeletal muscle, sequenced, and expressed in Xenopus oocytes. The mSlo-encoded channel resembled "maxi" or BK (high conductance) channel types; single channel conductance was 272 picosiemens with symmetrical potassium concentrations. Whole cell and single channel currents were blocked by charybdotoxin, iberiotoxin, and tetraethylammonium ion. A large number of variant mSlo cDNAs were isolated, indicating that several diverse mammalian BK channel types are produced by a single gene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Butler, A -- Tsunoda, S -- McCobb, D P -- Wei, A -- Salkoff, L -- R01 NS24785-01/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jul 9;261(5118):221-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7687074" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Amino Acid Sequence ; Animals ; Calcium/metabolism/*pharmacology ; Charybdotoxin ; DNA/genetics ; Drosophila ; Electric Conductivity ; Large-Conductance Calcium-Activated Potassium Channels ; Membrane Proteins/chemistry/*genetics ; Mice ; Molecular Sequence Data ; Oocytes/metabolism ; Peptides/pharmacology ; Potassium/metabolism ; Potassium Channels/chemistry/drug effects/*genetics/metabolism ; *Potassium Channels, Calcium-Activated ; RNA/genetics ; RNA, Complementary ; Scorpion Venoms/pharmacology ; Sodium/metabolism ; Tetraethylammonium ; Tetraethylammonium Compounds/pharmacology ; Transcription, Genetic ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-10-28
    Description: The polarized microtubule cytoskeleton of the Drosophila oocyte directs the localization of the maternal determinants which establish the anterior-posterior (AP) axis of the embryo. Because the formation of this microtubule array is dependent on signals from the follicle cells that surround the oocyte, it has been proposed that AP polarity originates in the follicle cells. Here it is shown that the movement of the oocyte to the posterior of the egg chamber early in oogenesis determines AP polarity in the follicle cell layer, and also in the oocyte. Moreover, the generation of AP asymmetry requires signaling from the germ line to the soma and back again.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gonzalez-Reyes, A -- St Johnston, D -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 1994 Oct 28;266(5185):639-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome/CRC Institute, University of Cambridge, England.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939717" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Drosophila ; Embryo, Nonmammalian/*physiology ; Genes, Insect ; *Homeodomain Proteins ; Insect Hormones/genetics ; Microtubules/*physiology ; Models, Biological ; Mutation ; Oocytes/*physiology ; Oogenesis ; RNA, Messenger/genetics/metabolism ; Signal Transduction ; *Trans-Activators
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 1993-11-12
    Description: Calmodulin is a highly conserved regulatory protein found in all eukaryotic organisms which mediates a variety of calcium ion-dependent signalling pathways. In the Drosophila retina, calmodulin was concentrated in the photoreceptor cell microvillar structure, the rhabdomere, and was found in lower amounts in the sub-rhabdomeral cytoplasm. This calmodulin localization was dependent on the NINAC (neither inactivation nor afterpotential C) unconventional myosins. Mutant flies lacking the rhabdomere-specific p174 NINAC protein did not concentrate calmodulin in the rhabdomere, whereas flies lacking the sub-rhabdomeral p132 isoform had no detectable cytoplasmic calmodulin. Furthermore, a defect in vision resulted when calmodulin was not concentrated in the rhabdomeres, suggesting a role for calmodulin in the regulation of fly phototransduction. A general function of unconventional myosins may be to control the subcellular distribution of calmodulin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Porter, J A -- Yu, M -- Doberstein, S K -- Pollard, T D -- Montell, C -- EY08117/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 12;262(5136):1038-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235618" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Calmodulin/*metabolism ; Drosophila ; *Drosophila Proteins ; Electroretinography ; Eye Proteins/*metabolism ; Mutation ; *Myosin Heavy Chains ; Myosins/*metabolism ; Nerve Degeneration ; Photoreceptor Cells, Invertebrate/*metabolism ; Retina/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 1992-08-28
    Description: The functional heterogeneity of potassium channels in eukaryotic cells arises not only from the multiple potassium channel genes and splice variants but also from the combinatorial mixing of different potassium channel polypeptides to form heteromultimeric channels with distinct properties. One structural element that determines the compatibility of different potassium channel polypeptides in subunit assembly has now been localized to the hydrophilic amino-terminal domain. A Drosophila Shaker B (ShB) potassium channel truncated polypeptide that contains only the hydrophilic amino-terminal domain can form a homomultimer; the minimal requirement for the homophilic interaction has been localized to a fragment of 114 amino acids. Substitution of the amino-terminal domain of a distantly related mammalian potassium channel polypeptide (DRK1) with that of ShB permits the chimeric DRK1 polypeptide to coassemble with ShB.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, M -- Jan, Y N -- Jan, L Y -- New York, N.Y. -- Science. 1992 Aug 28;257(5074):1225-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, San Francisco 94143-0724.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1519059" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Aplysia ; Baculoviridae ; Biological Transport/drug effects ; Drosophila ; Electrophoresis, Polyacrylamide Gel ; Genes/*genetics ; Models, Biological ; Molecular Sequence Data ; Peptides/*genetics/physiology ; Polymerase Chain Reaction ; Potassium/pharmacokinetics ; Potassium Channels/*chemistry/drug effects/physiology ; Recombinant Fusion Proteins ; Sequence Homology, Nucleic Acid ; Shaker Superfamily of Potassium Channels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2006-04-15
    Description: The molecular organization of presynaptic active zones during calcium influx-triggered neurotransmitter release is the focus of intense investigation. The Drosophila coiled-coil domain protein Bruchpilot (BRP) was observed in donut-shaped structures centered at active zones of neuromuscular synapses by using subdiffraction resolution STED (stimulated emission depletion) fluorescence microscopy. At brp mutant active zones, electron-dense projections (T-bars) were entirely lost, Ca2+ channels were reduced in density, evoked vesicle release was depressed, and short-term plasticity was altered. BRP-like proteins seem to establish proximity between Ca2+ channels and vesicles to allow efficient transmitter release and patterned synaptic plasticity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kittel, Robert J -- Wichmann, Carolin -- Rasse, Tobias M -- Fouquet, Wernher -- Schmidt, Manuela -- Schmid, Andreas -- Wagh, Dhananjay A -- Pawlu, Christian -- Kellner, Robert R -- Willig, Katrin I -- Hell, Stefan W -- Buchner, Erich -- Heckmann, Manfred -- Sigrist, Stephan J -- New York, N.Y. -- Science. 2006 May 19;312(5776):1051-4. Epub 2006 Apr 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Neuroscience Institute Gottingen, Grisebachstrasse 5, 37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16614170" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Calcium Channels/*metabolism ; Drosophila ; Drosophila Proteins/genetics/*physiology ; Female ; Larva ; Male ; Models, Neurological ; Mutation ; Nerve Tissue Proteins/metabolism/*physiology ; Presynaptic Terminals/metabolism ; Synapses/metabolism/*physiology/ultrastructure ; Synaptic Vesicles/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2007-06-26
    Description: Although classical genetic and biochemical approaches have identified hundreds of proteins that function in the dynamic remodeling of cell shape in response to upstream signals, there is currently little systems-level understanding of the organization and composition of signaling networks that regulate cell morphology. We have developed quantitative morphological profiling methods to systematically investigate the role of individual genes in the regulation of cell morphology in a fast, robust, and cost-efficient manner. We analyzed a compendium of quantitative morphological signatures and described the existence of local signaling networks that act to regulate cell protrusion, adhesion, and tension.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bakal, Chris -- Aach, John -- Church, George -- Perrimon, Norbert -- New York, N.Y. -- Science. 2007 Jun 22;316(5832):1753-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17588932" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Movement/genetics/physiology ; Cell Shape/*genetics/physiology ; Drosophila ; Green Fluorescent Proteins ; Metabolic Networks and Pathways/*genetics ; Phenotype ; RNA Interference ; Signal Transduction/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2007-06-16
    Description: Multiple signaling pathways, including Wnt signaling, participate in animal development, stem cell biology, and human cancer. Although many components of the Wnt pathway have been identified, unresolved questions remain as to the mechanism by which Wnt binding to its receptors Frizzled and Low-density lipoprotein receptor-related protein 6 (LRP6) triggers downstream signaling events. With live imaging of vertebrate cells, we show that Wnt treatment quickly induces plasma membrane-associated LRP6 aggregates. LRP6 aggregates are phosphorylated and can be detergent-solubilized as ribosome-sized multiprotein complexes. Phospho-LRP6 aggregates contain Wnt-pathway components but no common vesicular traffic markers except caveolin. The scaffold protein Dishevelled (Dvl) is required for LRP6 phosphorylation and aggregation. We propose that Wnts induce coclustering of receptors and Dvl in LRP6-signalosomes, which in turn triggers LRP6 phosphorylation to promote Axin recruitment and beta-catenin stabilization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bilic, Josipa -- Huang, Ya-Lin -- Davidson, Gary -- Zimmermann, Timo -- Cruciat, Cristina-Maria -- Bienz, Mariann -- Niehrs, Christof -- MC_U105192713/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Jun 15;316(5831):1619-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Embryology, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17569865" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*metabolism ; Animals ; Axin Protein ; Cell Line ; Cell Line, Tumor ; Cell Membrane/metabolism ; Centrifugation, Density Gradient ; Cytoplasm/metabolism ; Drosophila ; Glycogen Synthase Kinase 3/analysis/metabolism ; HeLa Cells ; Humans ; LDL-Receptor Related Proteins/analysis/genetics/*metabolism ; Low Density Lipoprotein Receptor-Related Protein-6 ; Mice ; Models, Biological ; Phosphoproteins/*metabolism ; Phosphorylation ; Repressor Proteins/analysis/metabolism ; *Signal Transduction ; Transfection ; Wnt Proteins/*metabolism ; Wnt3 Protein ; beta Catenin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-04-21
    Description: Small noncoding RNAs have emerged as potent regulators of gene expression at both transcriptional and posttranscriptional levels. Recently, a class of small RNAs that interact with Piwi proteins has been discovered in the mammalian germ line and Drosophila. These Piwi-interacting RNAs (piRNAs) represent a distinct small RNA pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Haifan -- New York, N.Y. -- Science. 2007 Apr 20;316(5823):397.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA. haifan.lin@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17446387" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins ; Drosophila ; Drosophila Proteins/metabolism ; Epigenesis, Genetic ; Gene Expression Regulation, Developmental ; Germ Cells/cytology/*metabolism ; Mice ; Peptide Initiation Factors/metabolism ; Protein Biosynthesis ; Proteins/*metabolism ; RNA Stability ; RNA, Untranslated/genetics/*metabolism ; RNA-Induced Silencing Complex
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2008-11-22
    Description: It is unknown why females mate with multiple males when mating is frequently costly and a single copulation often provides enough sperm to fertilize all a female's eggs. One possibility is that remating increases the fitness of offspring, because fertilization success is biased toward the sperm of high-fitness males. We show that female Drosophila pseudoobscura evolved increased remating rates when exposed to the risk of mating with males carrying a deleterious sex ratio-distorting gene that also reduces sperm competitive ability. Because selfish genetic elements that reduce sperm competitive ability are generally associated with low genetic fitness, they may represent a common driver of the evolution of polyandry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Price, T A R -- Hodgson, D J -- Lewis, Z -- Hurst, G D D -- Wedell, N -- New York, N.Y. -- Science. 2008 Nov 21;322(5905):1241-3. doi: 10.1126/science.1163766.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19023079" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Drosophila ; Female ; Male ; *Repetitive Sequences, Nucleic Acid ; *Sexual Behavior, Animal ; Sperm Count
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2011-11-05
    Description: The mTOR complex 1 (mTORC1) protein kinase is a master growth regulator that is stimulated by amino acids. Amino acids activate the Rag guanosine triphosphatases (GTPases), which promote the translocation of mTORC1 to the lysosomal surface, the site of mTORC1 activation. We found that the vacuolar H(+)-adenosine triphosphatase ATPase (v-ATPase) is necessary for amino acids to activate mTORC1. The v-ATPase engages in extensive amino acid-sensitive interactions with the Ragulator, a scaffolding complex that anchors the Rag GTPases to the lysosome. In a cell-free system, ATP hydrolysis by the v-ATPase was necessary for amino acids to regulate the v-ATPase-Ragulator interaction and promote mTORC1 translocation. Results obtained in vitro and in human cells suggest that amino acid signaling begins within the lysosomal lumen. These results identify the v-ATPase as a component of the mTOR pathway and delineate a lysosome-associated machinery for amino acid sensing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3211112/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3211112/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zoncu, Roberto -- Bar-Peled, Liron -- Efeyan, Alejo -- Wang, Shuyu -- Sancak, Yasemin -- Sabatini, David M -- AI47389/AI/NIAID NIH HHS/ -- CA103866/CA/NCI NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA103866-07/CA/NCI NIH HHS/ -- R01 CA103866-08/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- R37 AI047389-11/AI/NIAID NIH HHS/ -- R37 AI047389-12/AI/NIAID NIH HHS/ -- R37 AI047389-13/AI/NIAID NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Nov 4;334(6056):678-83. doi: 10.1126/science.1207056.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22053050" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/*metabolism ; Animals ; Cell Line ; Drosophila ; GTP Phosphohydrolases/metabolism ; Humans ; Lysosomes/*metabolism ; Multiprotein Complexes ; Proteins/*metabolism ; RNA Interference ; Signal Transduction ; TOR Serine-Threonine Kinases ; Vacuolar Proton-Translocating ATPases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2011-11-26
    Description: Different types of cell behavior, including growth, motility, and navigation, require actin proteins to assemble into filaments. Here, we describe a biochemical process that was able to disassemble actin filaments and limit their reassembly. Actin was a specific substrate of the multidomain oxidation-reduction enzyme, Mical, a poorly understood actin disassembly factor that directly responds to Semaphorin/Plexin extracellular repulsive cues. Actin filament subunits were directly modified by Mical on their conserved pointed-end, which is critical for filament assembly. Mical posttranslationally oxidized the methionine 44 residue within the D-loop of actin, simultaneously severing filaments and decreasing polymerization. This mechanism underlying actin cytoskeletal collapse may have broad physiological and pathological ramifications.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612955/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612955/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hung, Ruei-Jiun -- Pak, Chi W -- Terman, Jonathan R -- DK 091074/DK/NIDDK NIH HHS/ -- F32 DK091074/DK/NIDDK NIH HHS/ -- NS073968/NS/NINDS NIH HHS/ -- R01 NS073968/NS/NINDS NIH HHS/ -- R01 NS073968-01/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2011 Dec 23;334(6063):1710-3. doi: 10.1126/science.1211956. Epub 2011 Nov 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Neuroscience and Pharmacology and Neuroscience Graduate Program, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22116028" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/chemistry/*metabolism ; Actins/chemistry/genetics/*metabolism ; Amino Acid Sequence ; Animals ; Cell Adhesion Molecules/metabolism ; DNA-Binding Proteins/*metabolism ; Drosophila ; Drosophila Proteins/chemistry/genetics/*metabolism ; Methionine/metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; NADP/metabolism ; Nerve Tissue Proteins/metabolism ; Oxidation-Reduction ; Protein Processing, Post-Translational ; Protein Structure, Tertiary ; Rabbits ; Semaphorins/metabolism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2011-12-17
    Description: The molecular machinery mediating the fusion of synaptic vesicles (SVs) at presynaptic active zone (AZ) membranes has been studied in detail, and several essential components have been identified. AZ-associated protein scaffolds are viewed as only modulatory for transmission. We discovered that Drosophila Rab3-interacting molecule (RIM)-binding protein (DRBP) is essential not only for the integrity of the AZ scaffold but also for exocytotic neurotransmitter release. Two-color stimulated emission depletion microscopy showed that DRBP surrounds the central Ca(2+) channel field. In drbp mutants, Ca(2+) channel clustering and Ca(2+) influx were impaired, and synaptic release probability was drastically reduced. Our data identify RBP family proteins as prime effectors of the AZ scaffold that are essential for the coupling of SVs, Ca(2+) channels, and the SV fusion machinery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Karen S Y -- Siebert, Matthias -- Mertel, Sara -- Knoche, Elena -- Wegener, Stephanie -- Wichmann, Carolin -- Matkovic, Tanja -- Muhammad, Karzan -- Depner, Harald -- Mettke, Christoph -- Buckers, Johanna -- Hell, Stefan W -- Muller, Martin -- Davis, Graeme W -- Schmitz, Dietmar -- Sigrist, Stephan J -- New York, N.Y. -- Science. 2011 Dec 16;334(6062):1565-9. doi: 10.1126/science.1212991.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Institute for Biology, Free University Berlin, 14195 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22174254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium Channels/physiology ; Carrier Proteins/*physiology ; Drosophila ; Drosophila Proteins/genetics/*physiology ; Male ; Mutation ; Neurotransmitter Agents/*metabolism ; Presynaptic Terminals/*physiology ; Synapses
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2012-04-14
    Description: The Drosophila dorsal-ventral (DV) axis is polarized when the oocyte nucleus migrates from the posterior to the anterior margin of the oocyte. Prior work suggested that dynein pulls the nucleus to the anterior side along a polarized microtubule cytoskeleton, but this mechanism has not been tested. By imaging live oocytes, we find that the nucleus migrates with a posterior indentation that correlates with its direction of movement. Furthermore, both nuclear movement and the indentation depend on microtubule polymerization from centrosomes behind the nucleus. Thus, the nucleus is not pulled to the anterior but is pushed by the force exerted by growing microtubules. Nuclear migration and DV axis formation therefore depend on centrosome positioning early in oogenesis and are independent of anterior-posterior axis formation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3459055/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3459055/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Tongtong -- Graham, Owen S -- Raposo, Alexandre -- St Johnston, Daniel -- 080007/Wellcome Trust/United Kingdom -- 092096/Wellcome Trust/United Kingdom -- A14492/Cancer Research UK/United Kingdom -- Cancer Research UK/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2012 May 25;336(6084):999-1003. doi: 10.1126/science.1219147. Epub 2012 Apr 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22499806" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Patterning ; Cell Nucleus/*physiology/ultrastructure ; Cell Polarity ; Centrosome/physiology ; Drosophila ; Drosophila Proteins/physiology ; Dyneins/physiology ; Microtubule-Organizing Center/physiology/ultrastructure ; Microtubules/*physiology/ultrastructure ; Movement ; Mutation ; Nuclear Envelope/physiology/ultrastructure ; Oocytes/*physiology/ultrastructure ; *Oogenesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2014-06-14
    Description: Accurate chromosome segregation during mitosis requires the physical separation of sister chromatids before nuclear envelope reassembly (NER). However, how these two processes are coordinated remains unknown. Here, we identified a conserved feedback control mechanism that delays chromosome decondensation and NER in response to incomplete chromosome separation during anaphase. A midzone-associated Aurora B gradient was found to monitor chromosome position along the division axis and to prevent premature chromosome decondensation by retaining Condensin I. PP1/PP2A phosphatases counteracted this gradient and promoted chromosome decondensation and NER. Thus, an Aurora B gradient appears to mediate a surveillance mechanism that prevents chromosome decondensation and NER until effective separation of sister chromatids is achieved. This allows the correction and reintegration of lagging chromosomes in the main nuclei before completion of NER.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Afonso, Olga -- Matos, Irina -- Pereira, Antonio J -- Aguiar, Paulo -- Lampson, Michael A -- Maiato, Helder -- New York, N.Y. -- Science. 2014 Jul 18;345(6194):332-6. doi: 10.1126/science.1251121. Epub 2014 Jun 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal. ; Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal. Center for Mathematics, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal. ; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal. Cell Division Unit, Department of Experimental Biology, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernani Monteiro, 4200-319 Porto, Portugal. maiato@ibmc.up.pt.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24925910" target="_blank"〉PubMed〈/a〉
    Keywords: *Anaphase ; Animals ; Aurora Kinase B/antagonists & inhibitors/genetics/*metabolism ; Cell Line ; Cell Line, Tumor ; Chromosome Segregation/genetics/*physiology ; Drosophila ; *Feedback, Physiological ; Humans ; Nuclear Envelope/genetics/*metabolism ; Protein Phosphatase 1/metabolism ; Protein Phosphatase 2/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-11-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Underwood, Emily -- New York, N.Y. -- Science. 2015 Nov 20;350(6263):895. doi: 10.1126/science.350.6263.895.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26586738" target="_blank"〉PubMed〈/a〉
    Keywords: *Action Potentials ; Animals ; *Biosensing Techniques ; Brain/*cytology/*physiology ; Drosophila ; Luminescent Proteins/chemistry/genetics ; Microscopy/methods ; Neurons/physiology ; Neurosciences
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-09-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Underwood, Emily -- New York, N.Y. -- Science. 2015 Aug 28;349(6251):911-2. doi: 10.1126/science.349.6251.911.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26315413" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Amyotrophic Lateral Sclerosis/*genetics/metabolism/pathology ; Animals ; Dipeptides/genetics/metabolism ; Drosophila ; Drosophila Proteins/metabolism ; Frontotemporal Dementia/*genetics/metabolism/pathology ; GTPase-Activating Proteins/metabolism ; Humans ; *Mutation ; Neurons/*metabolism/pathology ; Nuclear Pore/*metabolism ; Proteins/*genetics ; RNA/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-06-01
    Description: In several experimental systems the genomic capacity in specialized cells can be assessed by examining the activation of dormant genes. Since some of these specialized cells can be induced to change cell phenotype, all cell specializations do not necessarily involve irreversible genetic changes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DiBerardino, M A -- Hoffner, N J -- Etkin, L D -- GM 23635/GM/NIGMS NIH HHS/ -- GM 31479/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1984 Jun 1;224(4652):946-52.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6719127" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anura ; *Cell Differentiation ; Cell Fusion ; Cell Transformation, Neoplastic/metabolism ; Chickens ; Chromatin/physiology ; DNA/genetics/metabolism ; Drosophila ; Embryo, Mammalian/physiology ; Embryo, Nonmammalian ; Extremities/growth & development ; *Gene Expression Regulation ; Humans ; Hybrid Cells ; Iris/growth & development ; Methylation ; Mice ; Nuclear Transfer Techniques ; Phenotype ; Rats ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-04-06
    Description: A complementary DNA clone for an alpha-tubulin has been isolated from a mouse testis complementary DNA library. The untranslated 3' end of this complementary DNA is homologous to two RNA transcripts present in postmeiotic cells of the testis but absent from meiotic cells and from several tissues including brain. The temporal expression of this alpha-tubulin complementary DNA provides evidence for the haploid expression of a mammalian structural gene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Distel, R J -- Kleene, K C -- Hecht, N B -- GM 29224/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1984 Apr 6;224(4644):68-70.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6701535" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/metabolism ; Cloning, Molecular ; DNA/genetics ; Drosophila ; Gene Expression Regulation ; Haploidy ; Male ; Mice ; Nucleic Acid Hybridization ; Rats ; Spermatids/metabolism ; Spermatogenesis ; Spermatozoa/physiology ; Testis/*metabolism ; Tubulin/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-11-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J L -- New York, N.Y. -- Science. 1984 Nov 2;226(4674):527-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6093250" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/*physiology ; Animals ; Cell Transformation, Neoplastic/metabolism ; Cyclic AMP/physiology ; Drosophila ; Guanosine Triphosphate/physiology ; Humans ; *Oncogenes ; Rodentia ; Yeasts
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 1981-07-31
    Description: New applications of laser microbeam irradiation to cell and developmental biology include a new instrument with a tunable wavelength (217- to 800-nanometer) laser microbeam and a wide range of energies and exposure durations (down to 25 X 10(-12) second). Laser microbeams can be used for microirradiation of selected nucleolar genetic regions and for laser microdissection of mitotic and cytoplasmic organelles. They are also used to disrupt the developing neurosensory appendages of the cricket and the imaginal discs of Drosophila.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berns, M W -- Aist, J -- Edwards, J -- Strahs, K -- Girton, J -- McNeill, P -- Rattner, J B -- Kitzes, M -- Hammer-Wilson, M -- Liaw, L H -- Siemens, A -- Koonce, M -- Peterson, S -- Brenner, S -- Burt, J -- Walter, R -- Bryant, P J -- van Dyk, D -- Coulombe, J -- Cahill, T -- Berns, G S -- New York, N.Y. -- Science. 1981 Jul 31;213(4507):505-13.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7017933" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Physiological Phenomena ; Chloroplasts/physiology ; Drosophila ; *Lasers ; Microscopy, Phase-Contrast ; Microsurgery/*methods ; Mitochondria/physiology ; Mitosis ; Neurons/physiology ; Plant Physiological Phenomena
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 1985-10-18
    Description: Developments in microscope, sensor, and image-processing technologies have led to integrated systems for the quantification of low-light-level emission signals from biological samples. Specificity is provided in the form of monoclonal antibodies and other ligands or enzyme substrates conjugated with efficient fluorophores. Fluorescent probes are also available for cellular macromolecular constituents and for free ions of biological interest such as H+ and Ca2+. The entire spectrum of photophysical phenomena can be exploited. Representative data are presented from studies of DNA conformation and architecture in polytene chromosomes and from studies of receptor-mediated endocytosis, calcium distribution, and the organization of the contractile apparatus in muscle cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arndt-Jovin, D J -- Robert-Nicoud, M -- Kaufman, S J -- Jovin, T M -- FO6 TWOO960/TW/FIC NIH HHS/ -- New York, N.Y. -- Science. 1985 Oct 18;230(4723):247-56.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/4048934" target="_blank"〉PubMed〈/a〉
    Keywords: Analog-Digital Conversion ; Animals ; Cell Cycle ; Cells/*cytology ; Cells, Cultured ; Chromosomes/ultrastructure ; Drosophila ; Fluorescent Dyes ; Kinetics ; Microscopy, Fluorescence/instrumentation/*methods ; Salivary Glands/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 1986-08-08
    Description: The MH-3 gene, which contains a homeo box that is expressed specifically in the adult testis, was identified and mapped to mouse chromosome 6. By means of in situ hybridization with adult testis sections and Northern blot hybridization with testis RNA from prepuberal mice and from Sl/Sld mutant mice, it was demonstrated that this gene is expressed in male germ cells during late meiosis. In the embryo, MH-3 transcripts were present at day 11.5 post coitum, a stage in mouse development when gonadal differentiation has not yet occurred. The MH-3 gene may have functions in spermatogenesis and embryogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rubin, M R -- Toth, L E -- Patel, M D -- D'Eustachio, P -- Nguyen-Huu, M C -- New York, N.Y. -- Science. 1986 Aug 8;233(4764):663-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3726554" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA/genetics ; Drosophila ; Embryo, Mammalian/*metabolism ; *Embryo, Nonmammalian ; *Genes ; Male ; Mice ; Morphogenesis ; Mutation ; Nucleic Acid Hybridization ; Sequence Homology, Nucleic Acid ; Spermatocytes/*metabolism ; Spermatogenesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1987-09-18
    Description: Three recent advances pertinent to the mechanism of insulin action include (i) the discovery that the insulin receptor is an insulin-dependent protein tyrosine kinase, functionally related to certain growth factor receptors and oncogene-encoded proteins, (ii) the molecular cloning of the insulin proreceptor complementary DNA, and (iii) evidence that the protein tyrosine kinase activity of the receptor is essential for insulin action. Efforts are now focusing on the physiological substrates for the receptor kinase. Experience to date suggests that they will be rare proteins whose phosphorylation in intact cells may be transient. The advantages of attempting to dissect the initial biochemical pathway of insulin action include the wealth of information about the metabolic consequences of insulin action and the potential for genetic analysis in Drosophila and in man.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosen, O M -- New York, N.Y. -- Science. 1987 Sep 18;237(4821):1452-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2442814" target="_blank"〉PubMed〈/a〉
    Keywords: DNA/analysis ; Drosophila ; Humans ; Insulin/*metabolism ; Molecular Weight ; Oncogenes ; Phosphorylation ; Phosphoserine/metabolism ; Phosphothreonine/metabolism ; Phosphotyrosine ; Protein-Tyrosine Kinases/metabolism ; Receptor, Epidermal Growth Factor/physiology ; Receptor, Insulin/genetics/*physiology ; Receptors, Cell Surface/metabolism ; Substrate Specificity ; Tyrosine/analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1986-06-06
    Description: A bovine rhodopsin complementary DNA probe was used to detect homologous visual pigment genes in a variety of species. Under stringent DNA hybridization conditions, genomic DNA from most vertebrate species carried a single homologous fragment. Additional homologies were detected in some vertebrates by reducing the hybridization stringency. Homologous fragments were also detected in DNA isolated from invertebrate species, a unicellular alga, and an archaebacterium; many of these fragments were homologous to a Drosophila opsin probe. These results suggest that photosensory pigments in a wide variety of species arose from a common precursor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martin, R L -- Wood, C -- Baehr, W -- Applebury, M L -- EY04801/EY/NEI NIH HHS/ -- EY07008/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1986 Jun 6;232(4755):1266-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3010467" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Base Sequence ; Cattle ; Chickens ; Dna ; DNA Restriction Enzymes ; Drosophila ; Eye Proteins/*genetics ; Mice ; Nucleic Acid Hybridization ; Plants ; Retinal Pigments/*genetics ; Rhodopsin/genetics ; Rod Opsins ; *Sequence Homology, Nucleic Acid ; Sheep
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1985-07-26
    Description: Plasmid DNA directing transcription of the noncoding (anti-sense) DNA strand can specifically inhibit the expression of several test genes as well as normal, endogenous genes. The anti-sense plasmid constructions can be introduced into eukaryotic cells by transfection or microinjection and function in both transient and stable transformation assays. Anti-sense transcripts complementary to as little as 52 bases of 5' untranslated target gene mRNA specifically suppress gene activity as well as, or more efficiently than, anti-sense transcripts directed against the protein coding domain alone. Conditional anti-sense inhibition is accomplished with the use of hormone-inducible promoter sequences. Suppression of endogenous actin gene activity by anti-sense RNA is detected as a decrease in growth rate and as a reduction in the number of actin microfilament cables. These observations suggest that anti-sense RNA may be generally useful for suppressing the expression of specific genes in vivo and may be a potential molecular alternative to classical genetic analysis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Izant, J G -- Weintraub, H -- New York, N.Y. -- Science. 1985 Jul 26;229(4711):345-52.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2990048" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyltransferases/genetics ; Actins/genetics ; Animals ; Cattle ; Chickens ; Chloramphenicol O-Acetyltransferase ; DNA, Recombinant ; Drosophila ; Genes ; Genes, Viral ; *Genetic Engineering ; Genetic Vectors ; Globins/genetics ; Plasmids ; RNA, Messenger/*genetics ; Simplexvirus/genetics ; *Suppression, Genetic ; Thymidine Kinase/genetics ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 1986-09-12
    Description: The observation that voltage-dependent K+ channels are required for activation of human T lymphocytes suggests that pathological conditions involving abnormal mitogen responses might be reflected in ion channel abnormalities. Gigaohm seal techniques were used to study T cells from MRL/MpJ-lpr/lpr mice; these mice develop generalized lymphoproliferation of functionally and phenotypically abnormal T cells and a disease resembling human systemic lupus erythematosus. The number and predominant type of K+ channels in T cells from these mice differ dramatically from those in T cells from control strains and a congenic strain lacking the lpr gene locus. Thus an abnormal pattern of ion channel expression has now been associated with a genetic defect in cells of the immune system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chandy, K G -- DeCoursey, T E -- Fischbach, M -- Talal, N -- Cahalan, M D -- Gupta, S -- AI-20717/AI/NIAID NIH HHS/ -- AI-21808/AI/NIAID NIH HHS/ -- NS-14609/NS/NINDS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1986 Sep 12;233(4769):1197-200.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2426784" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Drosophila ; Humans ; Ion Channels/*metabolism/physiology ; Lymphocyte Activation ; Membrane Potentials ; Mice ; Mice, Inbred Strains ; Mice, Mutant Strains ; *Mutation ; Potassium/*metabolism ; T-Lymphocytes/abnormalities/*metabolism/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1986-04-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Botstein, D -- New York, N.Y. -- Science. 1986 Apr 11;232(4747):142-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2937146" target="_blank"〉PubMed〈/a〉
    Keywords: Color Perception/*physiology ; Color Vision Defects/genetics/metabolism ; DNA/genetics ; DNA, Recombinant/metabolism ; Drosophila ; Eye Proteins/genetics ; Genes ; Humans ; Nucleic Acid Hybridization ; Rod Opsins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1986-03-21
    Description: The mutation rates of DNA sequences during evolution can be estimated from interspecies DNA sequence differences by assaying changes that have little or no effect on the phenotype (neutral mutations). Examination of available measurements shows that rates of DNA change of different phylogenetic groups differ by a factor of 5. The slowest rates are observed for higher primates and some bird lineages, while faster rates are seen in rodents, sea urchins, and drosophila. The rate of DNA sequence change has decreased markedly during primate evolution. The contrast in rates of DNA sequence change is probably due to evolutionary variation and selection of biochemical mechanisms such as DNA replication or repair.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Britten, R J -- GM34031/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1986 Mar 21;231(4744):1393-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3082006" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Base Sequence ; *Biological Evolution ; Cricetinae ; DNA/*genetics ; DNA Repair ; DNA Replication ; Drosophila ; Gene Frequency ; Genes ; Genetics, Population ; Gorilla gorilla ; Haplorhini ; Humans ; Hylobates ; Mice ; Nucleic Acid Hybridization ; Pan troglodytes ; Phenotype ; Rabbits ; Rats ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 1985-03-29
    Description: Although antibody diversity arises mainly from apparently random combinatorial and somatic mutational mechanisms acting upon a limited number of germline antibody genes, the antibody repertoire develops in an ordered fashion during mammalian ontogeny. A series of early pre-B and B-lymphocyte cell lines were examined to determine whether an ordered rearrangement of gene families of the variable region of immunoglobulin heavy chains (VH) may be the basis for the programmed development of the antibody response. The results indicated that the VH repertoire of fetal B-lineage cells is largely restricted to the VH 7183 gene family and that subsequent recruitment of additional VH gene families occurs during neonatal development. These results have important implications in understanding the ontogeny of immune function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perlmutter, R M -- Kearney, J F -- Chang, S P -- Hood, L E -- AI18088/AI/NIAID NIH HHS/ -- R01 AI014782/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1985 Mar 29;227(4694):1597-601.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3975629" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Chickens ; Drosophila ; Fetus/immunology ; *Gene Expression Regulation ; Humans ; Hybridomas/immunology ; Immunoglobulin Variable Region/*genetics ; Lymphocytes/immunology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Ranidae ; Sheep ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1985-11-15
    Description: As many as 40 distinct oncogenes of viral and cellular origin have been identified to date. Many of these genes can be grouped into functional classes on the basis of their effects on cellular phenotype. These groupings suggest a small number of mechanisms of action of the oncogene-encoded proteins. Some data suggest that, in the cytoplasm, these proteins may regulate levels of critical second messenger molecules; in the nucleus, these proteins may modulate the activity of the cell's transcriptional machinery. Many of the gene products can also be related to a signaling pathway that determines the cell's response to growth-stimulating factors. Because some of these genes are expressed in nongrowing, differentiated cells, the encoded proteins may in certain tissues mediate functions that are unrelated to cellular growth control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weinberg, R A -- CA39826/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1985 Nov 15;230(4727):770-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2997917" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds ; Cell Nucleus/metabolism ; Cell Transformation, Neoplastic/metabolism ; Chickens ; Cytoplasm/metabolism ; DNA Tumor Viruses/genetics ; Deltaretrovirus/genetics ; Drosophila ; Epidermal Growth Factor/physiology ; Growth Substances/physiology ; Guanosine Triphosphate/metabolism ; Humans ; Mutation ; Neoplasms/genetics ; *Oncogenes ; Platelet-Derived Growth Factor/physiology ; Polyomavirus/genetics ; Proto-Oncogenes ; Rats ; Repetitive Sequences, Nucleic Acid ; Retroviridae/genetics ; Simian virus 40/genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1986-01-10
    Description: The proximate mechanisms underlying mating behavior in naturally occurring species can be fundamentally different from those in more commonly studied laboratory and domesticated forms. In naturally occurring species, reproductive strategies are much more diverse, and mechanisms controlling behavior are correspondingly diverse. A variety of hormonal, environmental, and social cues can be used to activate mating behavior. Which cues are used by particular species depends on differences in environmental and physiological constraints imposed by particular reproductive strategies. Study of this diversity of mechanisms promises to identify specific selective forces that have shaped their evolution. This evolutionary perspective leads to widely applicable generalizations and provides a useful context within which to conceptualize differences between species, populations, and individuals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crews, D -- Moore, M C -- New York, N.Y. -- Science. 1986 Jan 10;231(4734):121-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3941893" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Birds ; Brain/physiology ; Copulation/physiology ; Drosophila ; Female ; Gonadal Steroid Hormones/physiology ; Lizards ; Male ; Mammals ; Reproduction ; Sex Differentiation ; *Sexual Behavior, Animal ; Shrews ; Snakes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    ISSN: 1432-1424
    Keywords: Drosophila ; per mutants ; pertransgenic ; Lucifer Yellow injections ; Gap junctions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Larval salivary gland cells of Drosophila melanogaster were injected with a fluorescent dye to assess strengths of intercellular communication among such cells, as influenced by mutations at the period locus and by a per transgene. This clock gene had been reported to increase the extent of dye transfer when mutated such that it shortens the period of biological rhythms; the previous study also showed that a per-null mutant decreased the strength of transfer among salivary gland cells. Our re-examination of this feature of larval physiology—in observer-blind analyses, using the per s and per o mutants as well as two per-normal strains—revealed no appreciable differences in extents of dye transfer among these four genotypes. These results are discussed in the context of emerging findings which suggest that the period gene's product controls pacemaker functioning as an intracellularly acting entity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 79 (1984), S. 175-184 
    ISSN: 1432-1424
    Keywords: epithelial monolayers ; MDCK cells ; occluding junctions ; intramembrane particles ; electrical resistance ; temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary In previous works it was demonstrated that the monolayer of MDCK cells behaves as a leaky epithelium where the electrical resistance across reflects the sealing capacity of the occluding junction. In the present work we study whether this sealing capacity can be modified by temperature and whether this is accompanied by changes in the structure of the occluding junction. Monolayers were prepared on disks of nylon cloth coated with collagen and mounted as a flat sheet between two Lucite chambers. The changes in resistance elicited by temperature were large (306% between 3 and 37°C), fast (less than 2 sec), and reversible. An Arrhenius plot of conductance versus the inverse of temperature shows a broken curve (between 22 and 31°C), and the activation energies calculated (3.2 and 4.0 kcal·mol−1) fall within the expected values for processes of simple diffusion. The morphology of the occuluding the number of evaluated in freeze-fracture replicas by counting the number of strands and the width of the band occupied by the junction every 133 nm. In spite of the change by 306% of the electrical resistance and the phase transition, we were unable to detect any appreciable modification of the morphology of the occluding junction. Since the freeze-fracture replicas also show a density of intramembrane particles (IMP) different in the apical from that in the basolateral regions of the plasma membrane, as well as differences between faceE and faceP, we also investigated whether this is modified by temperature. Cold increases the population of IMP, but does not affect their polarization with the incubation time it takes to elicit changes in electrical resistance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 100 (1987), S. 53-61 
    ISSN: 1432-1424
    Keywords: hepatocyte ; cell volume ; K+ conductance ; temperature ; quinine HCl ; intracellular K+ activity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Mouse hepatocytes in primary monolayer culture (4 hr) were exposed for 10 min at 37°C to anisosmotic medium of altered NaCl concentration. Hepatocytes maintained constant relative cell volume (experimental volume/control volume) as a function of external medium relative osmolality (control mOsm/experimental mOsm), ranging from 0.8 to 1.5. In contrast, the relative cell volume fit a predicted Boyle-Van't Hoff plot when the experiment was done at 4°C. Mouse liver slices were used for electrophysiologic studies, in which hepatocyte transmembrane potential (V m ) and intracellular K+ activity (a K i ) were recorded continuously by open-tip and liquid ion-exchanger ion-sensitive glass microelectrodes, respectively. Liver slices were superfused with control and then with anisosmotic medium of altered NaCl concentration.V m increased (hyperpolarized) with hypoosmotic medium and decreased (depolarized) with hyperosmotic medium, and ln [10(experimentalV m /controlV m )] was a linear function of relative osmolality (control mOsm/experimental mOsm) in the range 0.8–1.5. Thea K i did not change when medium osmolality was decreased 40–70 mOsm from control of 280 mOsm. Similar hypoosmotic stress in the presence of either 60mm K+ or 1mm quinine HCl or at 27°C resulted in no change inV m compared with a 20-mV increase inV m without the added agents or at 37°C. We conclude that mouse hepatocytes maintain their volume anda K i in response to anisosmotic medium; however,V m behaves as an osmometer under these conditions. Also, increases inV m by hypoosmotic stress were abolished by conditions or agents that inhibit K+ conductance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 77 (1984), S. 265-275 
    ISSN: 1432-1424
    Keywords: vesicle fusion ; surface energy ; divalent cations ; osmotic pressure gradient ; temperature ; membrane curvature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Fusion of phosphatidylserine vesicles induced by divalent cations, temperature and osmotic pressure gradients across the membrane was studied with respect to variations in vesicle size. Vesicle fusion was followed by two different methods: 1) the Tb/DPA fusion assay, whereby the fluorescent intensity upon mixing of the internal aqueous contents of fused lipid vesicles was monitored, and 2) measurement of the changes in turbidity of the vesicle suspension due to vesicle fusion. It was found that the threshold concentration of divalent cations necessary to induce vesicle fusion depended on the size of vesicles; as the diameter of the vesicle increased, the threshold value increased and the extent of fusion became less. For the osmotic pressure-induced vesicle fusion, the larger the diameter of vesicles, the smaller was the osmotic pressure gradient required to induce membrane fusion. Divalent cations, temperature increase and vesicle membrane expansion by osmotic pressure gradient all resulted in increase in surface energy (tension) of the membrane. The degree of membrane fusion correlated with the corresponding surface energy changes of vesicle membranes due to the above fusion-inducing agents. The increase in surface energy of 9.5 dyn/cm from the reference state corresponded to the threshold point of phosphatidylserine membrane fusion. An attempt was made to explain the factors influencing fusion phenomena on the basis of a single unifying theory.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 98 (1987), S. 1-13 
    ISSN: 1432-1424
    Keywords: control ; curve fitting ; I/V curves ; K+ transporter ; Nitella ; lazy state ; reaction-kinetic model ; temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary InNitella, current-voltage relationships were measured at different temperatures ranging from 5 to 25°C. Sets of theseI/V curves were subject to curve fitting on the basis of a cyclic reaction scheme (Class I model). Different hypotheses of the mode of action of temperature on theI/V curve were tested, including changes in reaction constants in the transport cycle and deactivation of transport molecules. It was found that models assuming an influence of temperature on pairs of rate constants of the transport cycle gave very bad fits. Good fits were obtained with models implying that temperature influences the number of active transporters. The lazy-state model (the exchange of an inactive state with a stateN 3 in the transport cycle is influenced by temperature) gave a slightly better fit than the assumption of an unspecific inactivation (independent of the state of the transport molecule). According to the lazy-state analysis, the inactive state is kinetically closer toN o , the state in which the transport molecule is open to the outside substrate than toN i , the state in which it is open to the inside substrate. The two inactivation models imply that temperature does not act directly on the properties of the plasmamembrane, but that temperature-sensitive metabolic processes in the cell send signals which control the activation and deactivation of the transporter.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 112 (1989), S. 277-289 
    ISSN: 1432-1424
    Keywords: myelinated nerve fiber ; gating current ; temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Asymmetrical displacement currents and Na currents of single myelinated nerve fibers ofXenopus laevis were studied in the temperature range from 5 to 24°C. The time constant of the on-response atE=4 mV,τ on, was strongly temperature dependent, whereas the amount of displaced charge atE=39 mV, Qon, was only slightly temperature dependent. The mean Q10 forτ on -1 was 2.54, the mean Q10 for Qon was 1.07. The time constant of charge immobilization,τ i , atE=4 mV varied significantly (α=0.001) with temperature. The mean Q10 forτ i -1 was 2.71±0.38. The time constants of immobilization of gating charge and of fast inactivation of Na permeability were similar in the temperature range from 6 to 22°C. The Qoff/Qon ratio forE=4 mV pulses of 0.5 msec duration decreased with increasing temperature. The temperature dependence of the time constant of the off-response could not be described by a single Q10 value, since the Q10 depended on the duration of the test pulse. Increasing temperature shifted Qon (E) curves to more negative potentials by 0.51 mVK −1, but shiftedP Na (E) curves andh ∞ (E) curves to more positive potentials by 0.43 and 0.57 mV K−1, respectively.h ∞ (E=−70 mV) increased monotonously with increasing temperature. The present data indicate that considerable entropy changes may occur when the Na channel molecule passes from closed through open to inactivated states.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 127 (1992), S. 49-56 
    ISSN: 1432-1424
    Keywords: chloride channel ; lymphocyte ; outward rectification ; temperature ; regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Outwardly rectifying Cl− channels in cultured human Jurkat T-lymphocytes were activated by excising a patch of membrane using the inside-out (i/o) patch-clamp configuration and holding at depolarized voltages for prolonged periods of time (1–6 min at +80 mV, 20°C). The single-channel current at +80 mV was 4.5 ± 0.3 pA and at −80 mV, it was 1.0 ± 0.4 pA. After activation, the probability of being open (P 0)for the lymphocyte channel was voltage independent. Activation of the Cl− channel in lymphocytes was temperature dependent. Nineteen percent of i/o recordings from lymphocytes made at 20°C exhibited Cl− channel activity. In contrast, 49% of recordings made at 30°C showed channel activity. The number of channels in an active patch was not significantly different at the two temperatures. Channel activation in excised, depolarized patches also occurred 20-fold faster at 30°C than at 20°C. There was no marked change in the single-channel conductance at 30°C. Open-channel conductance was blocked by 200 μm indanyloxyacetic acid (IAA) or 1 mm SITS when applied to the intracellular side of the patch. The characteristics of this channel are similar to epithelial outwardly rectifying Cl− channels thought to be involved in fluid secretion
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 125 (1992), S. 171 
    ISSN: 1432-1424
    Keywords: chloride channel ; cell-attached patches ; lymphocyte ; T cell ; temperature ; voltage dependence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary We recently described a large, multiple-conductance Cl− channel in excised patches from normal T lymphocytes. The properties of this channel in excised patches are similar to maxiCl− channels found in a number of cell types. The voltage dependence in excised patches permitted opening only at nonphysiological voltages, and channel activity was rarely seen in cell-attached patches. In the present study, we show that Cl− channels can be activated in intact cells at physiological temperatures and voltages and that channel properties change after patch excision. Maxi-Cl− channels were reversibly activated in 69% of cellattached patches when the temperature was above 32°C, whereas fewer than 2% of patches showed activity at room temperature. Upon excision, the same patches displayed large, multiple-conductance Cl− channels with characteristics like those we previously reported for excised patches. After patch excision, warm temperatures were not essential to allow channel activity; 37% (114/308) of inside-out patches had active channels at room temperature. The voltage dependence of the channels was markedly different in cell-attached recordings compared with excised patches. In cell-attached patches, Cl− channels could be open at cell resting potentials in the normal range. Channel activation was not related to changes in intracellular Ca2+ since neither ionomycin nor mitogens activated the channels in cell-attached patches, Ca2+ did not rise in response to warming and the Cl− channel was independent of Ca2+ in inside-out patches. Singlechannel currents were blocked by internal or external Zn2+ (100–200 μm), 4-acetamido-4′ isothiocyanostilbene-2,2′-disulfonate (SITS, 100–500 μm) and 4,4′-diisothiocyanostilbene 2,2′disulfonate (DIDS, 100 μm). NPPB (5-nitro-2-(3-phenylpropylamino)-benzoate) reversibly blocked the channels in inside-out patches.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    ISSN: 1432-1424
    Keywords: cryptand ; Na+ selectivity ; temperature ; ionizable mobile carrier ; nonactin ; cation transport kinetics ; lipid membrane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The kinetics of Na+ and K+ transport across the membrane of large unilamellar vesicles (LUV) were determined at two pH's when transport was induced by (221)C10-cryptand (diaza-1,10-decyl-5-pentaoxa-4,7,13,16,21-bicyclo [8.8.5.] tricosane) at various temperatures, and by nonactin at 25°C and (222)C10-cryptand at 20 and 25°C. The rate of Na+ and K+ transport by (221)C10 saturated with the cation and carrier concentrations. Transport was noncooperative and exhibited selectivity for Na+ with respect to K+. The apparent affinity of (221)C10 for Na+ was higher and less pH-dependent than that for K+, and seven times higher than that of (222)C10 for K+ ions (20.5vs. 1.7 kcal·mole−). The efficiency of (221)C10 transport of Na+ was pH-and carrier concentration-dependent, and was similar to that of nonactin; its activation energy was similar to that for (222)C10 transport of K+ (35.5 and 29.7 kcal · mole−1, respectively). The reaction orders in cationn(S) and in carrierm(M), respectively, increased and decreased as the temperature rose, and were both independent of carrier or cation concentrations; in most cases they varied slightly with the pH.n(S) varied with the cation at pH 8.7 and with the carrier for Na+ transport only, whilem(M) always depended on the type of cation and carrier. Results are discussed in terms of the structural, physico-chemical and electrical characteristics of carriers and complexes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    ISSN: 1432-1424
    Keywords: skeletal muscle ; Cl− efflux ; Cl− channel ; pH ; muscle membrane ; temperature ; diethylpyrocarbonate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Efflux of36Cl− from frog sartorius muscles equilibrated in two depolarizing solutions was measured. Cl− efflux consists of a component present at low pH and a pH-dependent component which increases as external pH increases. For temperatures between 0 and 20°C, the measured activation energy is 7.5 kcal/mol for Cl− efflux at pH 5 and 12.6 kcal/mol for the pH-dependent Cl− efflux. The pH-dependent Cl− efflux can be described by the relationu=1/(1+10n(pK a -pH)), whereu is the Cl− efflux increment obtained on stepping from pH 5 to the test pH, normalized with respect to the increment obtained on stepping from pH 5 to 8.5 or 9.0. For muscles equilibrated in solutions containing 150mm KCl plus 120mm NaCl (internal potential about −15 mV), the apparent pK a is 6.5 at both 0 and 20°C, andn=2.5 for 0°C and 1.5 for 20°C. For muscles equilibrated in solutions containing 7.5mm KCl plus 120mm NaCl (internal potential about −65 mV), the apparent pK a at 0°C is 6.9 andn is 1.5. The voltage dependence of the apparent pK a suggests that the critical pH-sensitive moiety producing the pH-dependent Cl− efflux is sensitive to the membrane electric field, while the insensitivity to temperature suggests that the apparent heat of ionization of this moiety is zero. The fact thatn is greater than 1 suggests that cooperativity between pH-sensitive moieties is involved in determining the Cl− efflux increment on raising external pH. The histidine-modifying reagent diethylpyrocarbonate (DEPC) applied at pH 6 reduces the pH-dependent Cl− efflux according to the relation, efflux=exp(−k·[DEPC]·t), wheret is the exposure time (min) to DEPC at a prepared initial concentration of [DEPC] (mm). At 17°C,k −1=188mm·min. For temperatures between 10 and 23°C,k has an apparent Q10 of 2.5. The Cl− efflux inhibitor SCN− at a concentration of 20mm substantially retards the reduction of the pH-dependent Cl− efflux by DEPC. The findings that the apparent pK a is 6.5 in depolarized muscles, that DEPC eliminates the pH-dependent Cl− efflux, and that this action is retarded by SCN− supports the notion that protonation of histidine groups associated with Cl− channels is the controlling reaction for the pH-dependent Cl− efflux.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...