ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Amino Acid Sequence  (2,911)
  • American Association for the Advancement of Science (AAAS)  (2,910)
  • Elsevier  (1)
Collection
Keywords
Publisher
Years
  • 101
    Publication Date: 2002-09-14
    Description: Mutations in the BRCA2 (breast cancer susceptibility gene 2) tumor suppressor lead to chromosomal instability due to defects in the repair of double-strand DNA breaks (DSBs) by homologous recombination, but BRCA2's role in this process has been unclear. Here, we present the 3.1 angstrom crystal structure of a approximately 90-kilodalton BRCA2 domain bound to DSS1, which reveals three oligonucleotide-binding (OB) folds and a helix-turn-helix (HTH) motif. We also (i) demonstrate that this BRCA2 domain binds single-stranded DNA, (ii) present its 3.5 angstrom structure bound to oligo(dT)9, (iii) provide data that implicate the HTH motif in dsDNA binding, and (iv) show that BRCA2 stimulates RAD51-mediated recombination in vitro. These findings establish that BRCA2 functions directly in homologous recombination and provide a structural and biochemical basis for understanding the loss of recombination-mediated DSB repair in BRCA2-associated cancers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Haijuan -- Jeffrey, Philip D -- Miller, Julie -- Kinnucan, Elspeth -- Sun, Yutong -- Thoma, Nicolas H -- Zheng, Ning -- Chen, Phang-Lang -- Lee, Wen-Hwa -- Pavletich, Nikola P -- New York, N.Y. -- Science. 2002 Sep 13;297(5588):1837-48.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Sloan-Kettering Division, Joan and Sanford I. Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12228710" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; BRCA2 Protein/*chemistry/genetics/*metabolism ; Binding Sites ; Crystallography, X-Ray ; DNA/metabolism ; *DNA Repair ; DNA, Single-Stranded/*metabolism ; DNA-Binding Proteins/metabolism ; Genes, BRCA2 ; Helix-Turn-Helix Motifs ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Mice ; Molecular Sequence Data ; Mutation ; Proteasome Endopeptidase Complex ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/chemistry/*metabolism ; Rad51 Recombinase ; Rats ; *Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2002-05-25
    Description: The sulfated peptide phytosulfokine (PSK) is an intercellular signal that plays a key role in cellular dedifferentiation and proliferation in plants. Using ligand-based affinity chromatography, we purified a 120-kilodalton membrane protein, specifically interacting with PSK, from carrot microsomal fractions. The corresponding complementary DNA encodes a 1021-amino acid receptor kinase that contains extracellular leucine-rich repeats, a single transmembrane domain, and a cytoplasmic kinase domain. Overexpression of this receptor kinase in carrot cells caused enhanced callus growth in response to PSK and a substantial increase in the number of tritium-labeled PSK binding sites, suggesting that PSK and this receptor kinase act as a ligand-receptor pair.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsubayashi, Yoshikatsu -- Ogawa, Mari -- Morita, Akiko -- Sakagami, Youji -- New York, N.Y. -- Science. 2002 May 24;296(5572):1470-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Bio-Agricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan. matsu@agr.nagoya-u.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12029134" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding, Competitive ; Cell Line ; Chromatography, Affinity ; DNA, Complementary ; Daucus carota/cytology/*enzymology/genetics/growth & development ; Genes, Plant ; Glycosylation ; Leucine ; Ligands ; Microsomes/enzymology ; Molecular Sequence Data ; Molecular Weight ; Peptide Hormones ; *Plant Growth Regulators ; Plant Proteins/*chemistry/genetics/isolation & purification/*metabolism ; Plants, Genetically Modified ; Polymerase Chain Reaction ; Protein Structure, Tertiary ; Receptors, Cell Surface/*chemistry/genetics/isolation & purification/*metabolism ; Repetitive Sequences, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2002-09-28
    Description: It has been known since 1986 that CD8 T lymphocytes from certain HIV-1-infected individuals who are immunologically stable secrete a soluble factor, termed CAF, that suppresses HIV-1 replication. However, the identity of CAF remained elusive despite an extensive search. By means of a protein-chip technology, we identified a cluster of proteins that were secreted when CD8 T cells from long-term nonprogressors with HIV-1 infection were stimulated. These proteins were identified as alpha-defensin 1, 2, and 3 on the basis of specific antibody recognition and amino acid sequencing. CAF activity was eliminated or neutralized by an antibody specific for human alpha-defensins. Synthetic and purified preparations of alpha-defensins also inhibited the replication of HIV-1 isolates in vitro. Taken together, our results indicate that alpha-defensin 1, 2, and 3 collectively account for much of the anti-HIV-1 activity of CAF that is not attributable to beta-chemokines.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Linqi -- Yu, Wenjie -- He, Tian -- Yu, Jian -- Caffrey, Rebecca E -- Dalmasso, Enrique A -- Fu, Siyu -- Pham, Thang -- Mei, Jianfeng -- Ho, Jaclyn J -- Zhang, Wenyong -- Lopez, Peter -- Ho, David D -- AI-42848/AI/NIAID NIH HHS/ -- M01-RR00102/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2002 Nov 1;298(5595):995-1000. Epub 2002 Sep 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA. lzhang@adarc.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12351674" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal ; Antiviral Agents/chemistry/isolation & purification/*pharmacology ; CD8-Positive T-Lymphocytes/chemistry/*immunology ; Cells, Cultured ; Chemokines, CC/immunology/physiology ; HIV Infections/*immunology/virology ; HIV Long-Term Survivors ; HIV-1/drug effects/*physiology ; Humans ; Mass Spectrometry ; Molecular Sequence Data ; Neutrophils/chemistry/immunology ; Protein Array Analysis ; Virus Replication ; alpha-Defensins/chemistry/isolation & purification/pharmacology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-02-16
    Description: The corepressor CtBP (carboxyl-terminal binding protein) is involved in transcriptional pathways important for development, cell cycle regulation, and transformation. We demonstrate that CtBP binding to cellular and viral transcriptional repressors is regulated by the nicotinamide adenine dinucleotides NAD+ and NADH, with NADH being two to three orders of magnitude more effective. Levels of free nuclear nicotinamide adenine dinucleotides, determined using two-photon microscopy, correspond to the levels required for half-maximal CtBP binding and are considerably lower than those previously reported. Agents capable of increasing NADH levels stimulate CtBP binding to its partners in vivo and potentiate CtBP-mediated repression. We propose that this ability to detect changes in nuclear NAD+/NADH ratio allows CtBP to serve as a redox sensor for transcription.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Qinghong -- Piston, David W -- Goodman, Richard H -- K01 CA096561/CA/NCI NIH HHS/ -- R01 CA115468/CA/NCI NIH HHS/ -- R01 CA115468-05/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 Mar 8;295(5561):1895-7. Epub 2002 Feb 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vollum Institute, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11847309" target="_blank"〉PubMed〈/a〉
    Keywords: Adenovirus E1A Proteins/metabolism ; Alcohol Oxidoreductases ; Amino Acid Sequence ; Animals ; Binding Sites ; Cadherins/genetics ; Cell Nucleus/*metabolism ; Cytoplasm/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; *Gene Expression Regulation ; HeLa Cells ; Homeodomain Proteins/metabolism ; Humans ; Microscopy, Fluorescence ; Molecular Sequence Data ; Mutation ; NAD/*metabolism ; Oxidation-Reduction ; Phosphoproteins/chemistry/genetics/*metabolism ; Promoter Regions, Genetic ; Protein Binding ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/*metabolism ; *Transcription Factors ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2002-05-23
    Description: Mechanical and thermal cues stimulate a specialized group of sensory neurons that terminate in the skin. Three members of the transient receptor potential (TRP) family of channels are expressed in subsets of these neurons and are activated at distinct physiological temperatures. Here, we describe the cloning and characterization of a novel thermosensitive TRP channel. TRPV3 has a unique threshold: It is activated at innocuous (warm) temperatures and shows an increased response at noxious temperatures. TRPV3 is specifically expressed in keratinocytes; hence, skin cells are capable of detecting heat via molecules similar to those in heat-sensing neurons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peier, Andrea M -- Reeve, Alison J -- Andersson, David A -- Moqrich, Aziz -- Earley, Taryn J -- Hergarden, Anne C -- Story, Gina M -- Colley, Sian -- Hogenesch, John B -- McIntyre, Peter -- Bevan, Stuart -- Patapoutian, Ardem -- New York, N.Y. -- Science. 2002 Jun 14;296(5575):2046-9. Epub 2002 May 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12016205" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Newborn ; Blotting, Northern ; CHO Cells ; Capsaicin/*analogs & derivatives/pharmacology ; *Cation Transport Proteins ; Cell Line ; Cells, Cultured ; Cloning, Molecular ; Cricetinae ; Epidermis/cytology/innervation/metabolism ; Ganglia, Spinal/metabolism ; *Hot Temperature ; Humans ; In Situ Hybridization ; Ion Channels/chemistry/genetics/*metabolism ; Keratinocytes/*metabolism ; Membrane Potentials ; Mice ; Molecular Sequence Data ; Nerve Endings/physiology ; Neurons/physiology ; Patch-Clamp Techniques ; RNA, Messenger/genetics/metabolism ; Ruthenium Red/pharmacology ; Signal Transduction ; Spinal Cord/metabolism ; TRPV Cation Channels ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2002-03-02
    Description: Type III secreted "effector" proteins of bacterial pathogens play central roles in virulence, yet are notoriously difficult to identify. We used an in vivo genetic screen to identify 13 effectors secreted by the type III apparatus (called Hrp, for "hypersensitive response and pathogenicity") of the plant pathogen Pseudomonas syringae. Although sharing little overall homology, the amino-terminal regions of these effectors had strikingly similar amino acid compositions. This feature facilitated the bioinformatic prediction of 38 P. syringae effectors, including 15 previously unknown proteins. The secretion of two of these putative effectors was shown to be type III--dependent. Effectors showed high interstrain variation, supporting a role for some effectors in adaptation to different hosts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guttman, David S -- Vinatzer, Boris A -- Sarkar, Sara F -- Ranall, Max V -- Kettler, Gregory -- Greenberg, Jean T -- GM020024/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Mar 1;295(5560):1722-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Botany, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada. guttman@botany.utoronto.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11872842" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/analysis ; Arabidopsis/genetics/metabolism/*microbiology ; *Arabidopsis Proteins ; Bacterial Proteins/chemistry/*genetics/*metabolism ; Computational Biology ; DNA Transposable Elements ; *Genes, Bacterial ; Genomics ; Molecular Sequence Data ; Plant Proteins/metabolism ; Promoter Regions, Genetic ; Proteome ; Pseudomonas/*genetics/*metabolism/pathogenicity ; Recombinant Fusion Proteins/metabolism ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2002-09-28
    Description: Unc104/KIF1A belongs to a class of monomeric kinesin motors that have been thought to possess an unusual motility mechanism. Unlike the unidirectional motion driven by the coordinated actions of the two heads in conventional kinesins, single-headed KIF1A was reported to undergo biased diffusional motion along microtubules. Here, we show that Unc104/KIF1A can dimerize and move unidirectionally and processively with rapid velocities characteristic of transport in living cells. These results suggest that Unc104/KIF1A operates in vivo by a mechanism similar to conventional kinesin and that regulation of motor dimerization may be used to control transport by this class of kinesins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tomishige, Michio -- Klopfenstein, Dieter R -- Vale, Ronald D -- AR42895/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Sep 27;297(5590):2263-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Howard Hughes Medical Institute and the Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12351789" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Caenorhabditis elegans ; Caenorhabditis elegans Proteins/chemistry/physiology ; Diffusion ; Dimerization ; Humans ; Kinesin/*chemistry/physiology ; Liposomes ; Microtubules/*physiology ; Molecular Motor Proteins/*chemistry/*physiology ; Molecular Sequence Data ; Movement ; Mutation ; Nerve Tissue Proteins/*chemistry/*physiology ; Protein Structure, Tertiary ; Rats ; Recombinant Fusion Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2001-12-18
    Description: Peptide recognition modules mediate many protein-protein interactions critical for the assembly of macromolecular complexes. Complete genome sequences have revealed thousands of these domains, requiring improved methods for identifying their physiologically relevant binding partners. We have developed a strategy combining computational prediction of interactions from phage-display ligand consensus sequences with large-scale two-hybrid physical interaction tests. Application to yeast SH3 domains generated a phage-display network containing 394 interactions among 206 proteins and a two-hybrid network containing 233 interactions among 145 proteins. Graph theoretic analysis identified 59 highly likely interactions common to both networks. Las17 (Bee1), a member of the Wiskott-Aldrich Syndrome protein (WASP) family of actin-assembly proteins, showed multiple SH3 interactions, many of which were confirmed in vivo by coimmunoprecipitation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tong, Amy Hin Yan -- Drees, Becky -- Nardelli, Giuliano -- Bader, Gary D -- Brannetti, Barbara -- Castagnoli, Luisa -- Evangelista, Marie -- Ferracuti, Silvia -- Nelson, Bryce -- Paoluzi, Serena -- Quondam, Michele -- Zucconi, Adriana -- Hogue, Christopher W V -- Fields, Stanley -- Boone, Charles -- Cesareni, Gianni -- P41 RR11823/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2002 Jan 11;295(5553):321-4. Epub 2001 Dec 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Banting and Best Department of Medical Research and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada M5G 1L6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11743162" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; *Computational Biology ; Consensus Sequence ; *Cytoskeletal Proteins ; Databases, Genetic ; Databases, Protein ; Fungal Proteins/chemistry/metabolism ; Ligands ; Molecular Sequence Data ; Peptide Library ; Peptides/chemistry/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Proteins/*chemistry/*metabolism ; *Proteome ; Saccharomyces cerevisiae/chemistry/genetics ; Saccharomyces cerevisiae Proteins/*chemistry/genetics/*metabolism ; Software ; Two-Hybrid System Techniques ; Wiskott-Aldrich Syndrome Protein ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2002-01-19
    Description: Mycobacterium tuberculosis (Mtb) mounts a stubborn defense against oxidative and nitrosative components of the immune response. Dihydrolipoamide dehydrogenase (Lpd) and dihydrolipoamide succinyltransferase (SucB) are components of alpha-ketoacid dehydrogenase complexes that are central to intermediary metabolism. We find that Lpd and SucB support Mtb's antioxidant defense. The peroxiredoxin alkyl hydroperoxide reductase (AhpC) is linked to Lpd and SucB by an adaptor protein, AhpD. The 2.0 angstrom AhpD crystal structure reveals a thioredoxin-like active site that is responsive to lipoamide. We propose that Lpd, SucB (the only lipoyl protein detected in Mtb), AhpD, and AhpC together constitute a nicotinamide adenine dinucleotide (reduced)-dependent peroxidase and peroxynitrite reductase. AhpD thus represents a class of thioredoxin-like molecules that enables an antioxidant defense.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bryk, R -- Lima, C D -- Erdjument-Bromage, H -- Tempst, P -- Nathan, C -- HL61241/HL/NHLBI NIH HHS/ -- P30 CA08748/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 Feb 8;295(5557):1073-7. Epub 2002 Jan 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11799204" target="_blank"〉PubMed〈/a〉
    Keywords: Acyltransferases/*metabolism ; Amino Acid Sequence ; Antioxidants ; Binding Sites ; Catalysis ; Cloning, Molecular ; Crystallization ; Crystallography, X-Ray ; Dihydrolipoamide Dehydrogenase/*metabolism ; Hydrogen Bonding ; Hydrogen Peroxide/metabolism ; Models, Molecular ; Molecular Sequence Data ; Mycobacterium tuberculosis/*enzymology/genetics/metabolism ; NAD/metabolism ; Oxidation-Reduction ; Oxidoreductases/*metabolism ; Peroxidases/*chemistry/*metabolism ; Peroxiredoxins ; Peroxynitrous Acid/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Thioctic Acid/*analogs & derivatives/metabolism ; Thioredoxins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2002-01-19
    Description: Spider silks are protein-based "biopolymer" filaments or threads secreted by specialized epithelial cells as concentrated soluble precursors of highly repetitive primary sequences. Spider dragline silk is a flexible, lightweight fiber of extraordinary strength and toughness comparable to that of synthetic high-performance fibers. We sought to "biomimic" the process of spider silk production by expressing in mammalian cells the dragline silk genes (ADF-3/MaSpII and MaSpI) of two spider species. We produced soluble recombinant (rc)-dragline silk proteins with molecular masses of 60 to 140 kilodaltons. We demonstrated the wet spinning of silk monofilaments spun from a concentrated aqueous solution of soluble rc-spider silk protein (ADF-3; 60 kilodaltons) under modest shear and coagulation conditions. The spun fibers were water insoluble with a fine diameter (10 to 40 micrometers) and exhibited toughness and modulus values comparable to those of native dragline silks but with lower tenacity. Dope solutions with rc-silk protein concentrations 〉20% and postspinning draw were necessary to achieve improved mechanical properties of the spun fibers. Fiber properties correlated with finer fiber diameter and increased birefringence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lazaris, Anthoula -- Arcidiacono, Steven -- Huang, Yue -- Zhou, Jiang-Feng -- Duguay, Francois -- Chretien, Nathalie -- Welsh, Elizabeth A -- Soares, Jason W -- Karatzas, Costas N -- New York, N.Y. -- Science. 2002 Jan 18;295(5554):472-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Nexia Biotechnologies, Vaudreuil-Dorion, Quebec J7V 8P5, Canada. alazaris@nexiabiotech.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11799236" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Biopolymers ; Birefringence ; Cattle ; Cell Line ; Cloning, Molecular ; Cricetinae ; Culture Media, Conditioned ; DNA, Complementary ; Elasticity ; Epithelial Cells/metabolism ; *Fibroins ; Materials Testing ; Mechanics ; Molecular Sequence Data ; Molecular Weight ; *Protein Biosynthesis ; Protein Structure, Secondary ; Proteins/chemistry/*genetics/isolation & purification ; Recombinant Proteins/biosynthesis/chemistry/isolation & purification ; Solubility ; Spiders/*genetics/metabolism ; Stress, Mechanical ; Tensile Strength ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2002-02-16
    Description: Animal SGT1 is a component of Skp1-Cullin-F-box protein (SCF) ubiquitin ligases that target regulatory proteins for degradation. Mutations in one (SGT1b) of two highly homologous Arabidopsis SGT1 genes disable early plant defenses conferred by multiple resistance (R) genes. Loss of SGT1b function in resistance is not compensated for by SGT1a. R genes differ in their requirements for SGT1b and a second resistance signaling gene, RAR1, that was previously implicated as an SGT1 interactor. Moreover, SGT1b and RAR1 contribute additively to RPP5-mediated pathogen recognition. These data imply both operationally distinct and cooperative functions of SGT1 and RAR1 in plant disease resistance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Austin, Mark J -- Muskett, Paul -- Kahn, Katherine -- Feys, Bart J -- Jones, Jonathan D G -- Parker, Jane E -- New York, N.Y. -- Science. 2002 Mar 15;295(5562):2077-80. Epub 2002 Feb 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11847308" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Arabidopsis/*genetics/metabolism/microbiology ; Arabidopsis Proteins/chemistry/*genetics/*metabolism ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Cycle Proteins/chemistry/*genetics/*metabolism ; Cell Death ; *Genes, Plant ; Immunity, Innate ; Molecular Sequence Data ; Mutation ; Oomycetes/pathogenicity/physiology ; *Plant Diseases ; Plant Leaves/microbiology ; Plant Proteins/*genetics/physiology ; Protein Structure, Tertiary ; Sequence Alignment ; Spores, Fungal/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2002-02-16
    Description: Plant disease resistance (R) genes trigger innate immune responses upon pathogen attack. RAR1 is an early convergence point in a signaling pathway engaged by multiple R genes. Here, we show that RAR1 interacts with plant orthologs of the yeast protein SGT1, an essential regulator in the cell cycle. Silencing the barley gene Sgt1 reveals its role in R gene-triggered, Rar1-dependent disease resistance. SGT1 associates with SKP1 and CUL1, subunits of the SCF (Skp1-Cullin-F-box) ubiquitin ligase complex. Furthermore, the RAR1-SGT1 complex also interacts with two COP9 signalosome components. The interactions among RAR1, SGT1, SCF, and signalosome subunits indicate a link between disease resistance and ubiquitination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Azevedo, Cristina -- Sadanandom, Ari -- Kitagawa, Katsumi -- Freialdenhoven, Andreas -- Shirasu, Ken -- Schulze-Lefert, Paul -- New York, N.Y. -- Science. 2002 Mar 15;295(5562):2073-6. Epub 2002 Feb 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11847307" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Arabidopsis/chemistry/genetics/metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; Gene Silencing ; Genes, Fungal ; *Genes, Plant ; Hordeum/chemistry/genetics/metabolism ; Immunity, Innate ; Molecular Sequence Data ; Multiprotein Complexes ; Peptide Hydrolases ; Peptide Synthases/metabolism ; *Plant Diseases ; Plant Proteins/genetics/metabolism ; Protein Structure, Tertiary ; Proteins/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; SKP Cullin F-Box Protein Ligases ; Saccharomyces cerevisiae Proteins/chemistry/genetics/metabolism ; Sequence Alignment ; Signal Transduction ; Two-Hybrid System Techniques ; Ubiquitin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2002-12-21
    Description: Acetyl-coenzyme A (CoA) synthetase (Acs) is an enzyme central to metabolism in prokaryotes and eukaryotes. Acs synthesizes acetyl CoA from acetate, adenosine triphosphate, and CoA through an acetyl-adenosine monophosphate (AMP) intermediate. Immunoblotting and mass spectrometry analysis showed that Salmonella enterica Acs enzyme activity is posttranslationally regulated by acetylation of lysine-609. Acetylation blocks synthesis of the adenylate intermediate but does not affect the thioester-forming activity of the enzyme. Activation of the acetylated enzyme requires the nicotinamide adenine dinucleotide-dependent protein deacetylase activity of the CobB Sir2 protein from S. enterica. We propose that acetylation modulates the activity of all the AMP-forming family of enzymes, including nonribosomal peptide synthetases, luciferase, and aryl- and acyl-CoA synthetases. These findings extend our knowledge of the roles of Sir2 proteins in gene silencing, chromosome stability, and cell aging and imply that lysine acetylation is a common regulatory mechanism in eukaryotes and prokaryotes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Starai, V J -- Celic, I -- Cole, R N -- Boeke, J D -- Escalante-Semerena, J C -- 1S10-RR14702/RR/NCRR NIH HHS/ -- GM62203/GM/NIGMS NIH HHS/ -- GM62385/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Dec 20;298(5602):2390-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bacteriology, University of Wisconsin, Madison, WI 53706-1567, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12493915" target="_blank"〉PubMed〈/a〉
    Keywords: Acetate-CoA Ligase/chemistry/genetics/*metabolism ; Acetylation ; Acyl Coenzyme A/metabolism ; Adenosine Monophosphate/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Bacterial Proteins/*metabolism ; Binding Sites ; Coenzyme A/metabolism ; Conserved Sequence ; Enzyme Activation ; Gene Expression Regulation, Bacterial ; Immunoblotting ; Lysine/*metabolism ; Mass Spectrometry ; NAD/metabolism ; Peptide Mapping ; Salmonella enterica/*enzymology/genetics ; Sirtuins/*metabolism ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-04-29
    Description: Human CtBP attenuates transcriptional activation and tumorigenesis mediated by the adenovirus E1A protein. The E1A sequence motif that interacts with CtBP, Pro-X-Asp-Leu-Ser-X-Lys (P-DLS-K), is present in the repression domains of two unrelated short-range repressors in Drosophila, Knirps and Snail, and is essential for the interaction of these proteins with Drosophila CtBP (dCtBP). A P-element-induced mutation in dCtBP exhibits gene-dosage interactions with a null mutation in knirps, which is consistent with the occurrence of Knirps-dCtBP interactions in vivo. These observations suggest that CtBP and dCtBP are engaged in an evolutionarily conserved mechanism of transcriptional repression, which is used in both Drosophila and mammals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nibu, Y -- Zhang, H -- Levine, M -- GM46638/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Apr 3;280(5360):101-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Division of Genetics, 401 Barker Hall, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9525852" target="_blank"〉PubMed〈/a〉
    Keywords: Alcohol Oxidoreductases ; Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Cell Nucleus/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Drosophila/*embryology/genetics/metabolism ; *Drosophila Proteins ; Embryo, Nonmammalian/metabolism ; Female ; Gene Dosage ; *Gene Expression Regulation ; Genes, Insect ; Genes, Reporter ; Humans ; Insect Proteins/genetics/metabolism ; Male ; Molecular Sequence Data ; Mutation ; Phosphoproteins/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/chemistry/genetics/*metabolism ; *Transcription Factors ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 1998-09-11
    Description: Leptin is a hormone that regulates food intake, and its receptor (OB-Rb) is expressed primarily in the hypothalamus. Here, it is shown that OB-Rb is also expressed in human vasculature and in primary cultures of human endothelial cells. In vitro and in vivo assays revealed that leptin has angiogenic activity. In vivo, leptin induced neovascularization in corneas from normal rats but not in corneas from fa/fa Zucker rats, which lack functional leptin receptors. These observations indicate that the vascular endothelium is a target for leptin and suggest a physiological mechanism whereby leptin-induced angiogenesis may facilitate increased energy expenditure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sierra-Honigmann, M R -- Nath, A K -- Murakami, C -- Garcia-Cardena, G -- Papapetropoulos, A -- Sessa, W C -- Madge, L A -- Schechner, J S -- Schwabb, M B -- Polverini, P J -- Flores-Riveros, J R -- New York, N.Y. -- Science. 1998 Sep 11;281(5383):1683-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06536, USA. rocio_sierra-honigmann@qm.yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9733517" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/metabolism ; Amino Acid Sequence ; Animals ; Carrier Proteins/analysis/*physiology ; Cells, Cultured ; Corneal Neovascularization ; DNA-Binding Proteins/metabolism ; Endothelial Growth Factors/pharmacology ; Endothelium, Vascular/chemistry/cytology/*physiology ; Energy Metabolism ; Humans ; Leptin ; Lipid Metabolism ; Lymphokines/pharmacology ; Molecular Sequence Data ; *Neovascularization, Physiologic ; Phosphorylation ; Proteins/pharmacology/*physiology ; Rats ; Rats, Zucker ; *Receptors, Cell Surface ; Receptors, Leptin ; STAT3 Transcription Factor ; Trans-Activators/metabolism ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-07-10
    Description: A 20-residue protein (named Betanova) forming a monomeric, three-stranded, antiparallel beta sheet was designed using a structural backbone template and an iterative hierarchical approach. Structural and physicochemical characterization show that the beta-sheet conformation is stabilized by specific tertiary interactions and that the protein exhibits a cooperative two-state folding-unfolding transition, which is a hallmark of natural proteins. The Betanova molecule constitutes a tractable model system to aid in the understanding of beta-sheet formation, including beta-sheet aggregation and amyloid fibril formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kortemme, T -- Ramirez-Alvarado, M -- Serrano, L -- New York, N.Y. -- Science. 1998 Jul 10;281(5374):253-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, Heidelberg D-69117, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9657719" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Circular Dichroism ; Computer Simulation ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Protein Conformation ; Protein Denaturation ; *Protein Engineering ; Protein Folding ; *Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/*chemical synthesis/*chemistry ; Solubility ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 1998-11-06
    Description: Chromosome 2 of Plasmodium falciparum was sequenced; this sequence contains 947,103 base pairs and encodes 210 predicted genes. In comparison with the Saccharomyces cerevisiae genome, chromosome 2 has a lower gene density, introns are more frequent, and proteins are markedly enriched in nonglobular domains. A family of surface proteins, rifins, that may play a role in antigenic variation was identified. The complete sequencing of chromosome 2 has shown that sequencing of the A+T-rich P. falciparum genome is technically feasible.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gardner, M J -- Tettelin, H -- Carucci, D J -- Cummings, L M -- Aravind, L -- Koonin, E V -- Shallom, S -- Mason, T -- Yu, K -- Fujii, C -- Pederson, J -- Shen, K -- Jing, J -- Aston, C -- Lai, Z -- Schwartz, D C -- Pertea, M -- Salzberg, S -- Zhou, L -- Sutton, G G -- Clayton, R -- White, O -- Smith, H O -- Fraser, C M -- Adams, M D -- Venter, J C -- Hoffman, S L -- R01 AI40125-01/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 6;282(5391):1126-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomic Research, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9804551" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, Protozoan/chemistry/genetics ; Base Composition ; Chromosomes/*genetics ; Evolution, Molecular ; *Genes, Protozoan ; Genome, Protozoan ; Introns ; Membrane Proteins/chemistry/genetics ; Molecular Sequence Data ; Multigene Family ; Physical Chromosome Mapping ; Plasmodium falciparum/*genetics ; Protozoan Proteins/chemistry/*genetics ; RNA, Protozoan/genetics ; RNA, Transfer, Glu/genetics ; Repetitive Sequences, Nucleic Acid ; Reverse Transcriptase Polymerase Chain Reaction ; Sequence Alignment ; *Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-10-30
    Description: Many filamentous cyanobacteria grow as multicellular organisms that show a developmental pattern of single nitrogen-fixing heterocysts separated by approximately 10 vegetative cells. Overexpression of a 54-base-pair gene, patS, blocked heterocyst differentiation in Anabaena sp. strain PCC 7120. A patS null mutant showed an increased frequency of heterocysts and an abnormal pattern. Expression of a patS-gfp reporter was localized in developing proheterocysts. The addition of a synthetic peptide corresponding to the last five amino acids of PatS inhibited heterocyst development. PatS appears to control heterocyst pattern formation through intercellular signaling mechanisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoon, H S -- Golden, J W -- GM36890/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Oct 30;282(5390):935-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9794762" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anabaena/cytology/genetics/*growth & development/metabolism ; Bacterial Proteins/chemistry/genetics/*physiology ; Base Sequence ; Cosmids ; Culture Media ; Diffusion ; Genes, Bacterial ; Genes, Reporter ; Genetic Complementation Test ; Molecular Sequence Data ; Mutation, Missense ; Nitrates/metabolism ; Nitrogen Fixation ; Oligopeptides/pharmacology ; Peptide Fragments/pharmacology ; Phenotype ; Promoter Regions, Genetic ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 1998-09-22
    Description: The Fas death receptor can activate the Jun NH2-terminal kinase (JNK) pathway through the receptor-associated protein Daxx. Daxx was found to activate the JNK kinase kinase ASK1, and overexpression of a kinase-deficient ASK1 mutant inhibited Fas- and Daxx-induced apoptosis and JNK activation. Fas activation induced Daxx to interact with ASK1, which consequently relieved an inhibitory intramolecular interaction between the amino- and carboxyl-termini of ASK1, activating its kinase activity. The Daxx-ASK1 connection completes a signaling pathway from a cell surface death receptor to kinase cascades that modulate nuclear transcription factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, H Y -- Nishitoh, H -- Yang, X -- Ichijo, H -- Baltimore, D -- CA51462/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Sep 18;281(5384):1860-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9743501" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Alleles ; Amino Acid Sequence ; Animals ; Antigens, CD95/metabolism ; *Apoptosis ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Carrier Proteins/*metabolism ; Cell Line ; Enzyme Activation ; Humans ; *Intracellular Signaling Peptides and Proteins ; JNK Mitogen-Activated Protein Kinases ; MAP Kinase Kinase Kinases ; *Mitogen-Activated Protein Kinases ; Molecular Sequence Data ; *Nuclear Proteins ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-11-13
    Description: Many cell surface proteins are marked for endocytosis by a cytoplasmic sequence motif, tyrosine-X-X-(hydrophobic residue), that is recognized by the mu2 subunit of AP2 adaptors. Crystal structures of the internalization signal binding domain of mu2 complexed with the internalization signal peptides of epidermal growth factor receptor and the trans-Golgi network protein TGN38 have been determined at 2.7 angstrom resolution. The signal peptides adopted an extended conformation rather than the expected tight turn. Specificity was conferred by hydrophobic pockets that bind the tyrosine and leucine in the peptide. In the crystal, the protein forms dimers that could increase the strength and specificity of binding to dimeric receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Owen, D J -- Evans, P R -- New York, N.Y. -- Science. 1998 Nov 13;282(5392):1327-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9812899" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Protein Complex 1 ; Adaptor Protein Complex 2 ; *Adaptor Protein Complex 3 ; Adaptor Protein Complex alpha Subunits ; *Adaptor Protein Complex mu Subunits ; Adaptor Proteins, Vesicular Transport ; Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; Dimerization ; *Endocytosis ; *Glycoproteins ; Humans ; Hydrogen Bonding ; Membrane Glycoproteins/*chemistry/metabolism ; Membrane Proteins/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Phosphorylation ; Protein Conformation ; Protein Sorting Signals/*chemistry/metabolism ; Protein Structure, Secondary ; Receptor, Epidermal Growth Factor/*chemistry/metabolism ; Tyrosine/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-11-20
    Description: Tankyrase, a protein with homology to ankyrins and to the catalytic domain of poly(adenosine diphosphate-ribose) polymerase (PARP), was identified and localized to human telomeres. Tankyrase binds to the telomeric protein TRF1 (telomeric repeat binding factor-1), a negative regulator of telomere length maintenance. Like ankyrins, tankyrase contains 24 ankyrin repeats in a domain responsible for its interaction with TRF1. Recombinant tankyrase was found to have PARP activity in vitro, with both TRF1 and tankyrase functioning as acceptors for adenosine diphosphate (ADP)-ribosylation. ADP-ribosylation of TRF1 diminished its ability to bind to telomeric DNA in vitro, suggesting that telomere function in human cells is regulated by poly(ADP-ribosyl)ation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, S -- Giriat, I -- Schmitt, A -- de Lange, T -- CA76027/CA/NCI NIH HHS/ -- GM49046/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 20;282(5393):1484-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9822378" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate Ribose/metabolism ; Amino Acid Sequence ; Animals ; Ankyrins/chemistry ; Benzamides/pharmacology ; Catalytic Domain ; DNA/metabolism ; DNA-Binding Proteins/analysis/*metabolism ; Enzyme Inhibitors/pharmacology ; Fluorescent Antibody Technique, Indirect ; Humans ; Molecular Sequence Data ; NAD/metabolism ; Poly(ADP-ribose) Polymerase Inhibitors ; Poly(ADP-ribose) Polymerases/*chemistry/genetics/*metabolism ; Protein Structure, Secondary ; Recombinant Proteins/chemistry/metabolism ; Repetitive Sequences, Amino Acid ; Sequence Alignment ; Sequence Homology, Amino Acid ; *Tankyrases ; Telomere/chemistry/*enzymology ; Telomeric Repeat Binding Protein 1
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 1998-06-06
    Description: The coi1 mutation defines an Arabidopsis gene required for response to jasmonates, which regulate defense against insects and pathogens, wound healing, and pollen fertility. The wild-type allele, COI1, was mapped to a 90-kilobase genomic fragment and located by complementation of coi1-1 mutants. The predicted amino acid sequence of the COI1 protein contains 16 leucine-rich repeats and an F-box motif. It has similarity to the F-box proteins Arabidopsis TIR1, human Skp2, and yeast Grr1, which appear to function by targeting repressor proteins for removal by ubiquitination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xie, D X -- Feys, B F -- James, S -- Nieto-Rostro, M -- Turner, J G -- New York, N.Y. -- Science. 1998 May 15;280(5366):1091-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9582125" target="_blank"〉PubMed〈/a〉
    Keywords: Acetates/pharmacology ; Amino Acid Sequence ; Arabidopsis/*genetics/growth & development/physiology ; *Arabidopsis Proteins ; Chromosome Mapping ; Cyclopentanes/*metabolism/pharmacology ; *Genes, Plant ; Genetic Complementation Test ; Molecular Sequence Data ; Mutation ; Open Reading Frames ; Oxylipins ; Plant Growth Regulators/*metabolism ; Plant Proteins/chemistry/*genetics/*physiology ; Plants, Genetically Modified ; Polymorphism, Genetic ; Repressor Proteins/metabolism ; Signal Transduction ; Transformation, Genetic ; Ubiquitins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-05-09
    Description: Many molecular mechanisms for neural adaptation to stress remain unknown. Expression of alternative splice variants of Slo, a gene encoding calcium- and voltage-activated potassium channels, was measured in rat adrenal chromaffin tissue from normal and hypophysectomized animals. Hypophysectomy triggered an abrupt decrease in the proportion of Slo transcripts containing a "STREX" exon. The decrease was prevented by adrenocorticotropic hormone injections. In Xenopus oocytes, STREX variants produced channels with functional properties associated with enhanced repetitive firing. Thus, the hormonal stress axis is likely to control the excitable properties of epinephrine-secreting cells by regulating alternative splicing of Slo messenger RNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xie, J -- McCobb, D P -- New York, N.Y. -- Science. 1998 Apr 17;280(5362):443-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9545224" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenal Medulla/*metabolism ; Adrenocorticotropic Hormone/metabolism/*pharmacology ; *Alternative Splicing ; Amino Acid Sequence ; Animals ; Chromaffin Cells/*metabolism ; Corticosterone/blood/*metabolism ; Dexamethasone/pharmacology ; Epinephrine/secretion ; Exons ; Female ; Hypophysectomy ; Large-Conductance Calcium-Activated Potassium Channel alpha Subunits ; Large-Conductance Calcium-Activated Potassium Channels ; Male ; Molecular Sequence Data ; Oocytes ; Phenylethanolamine N-Methyltransferase/genetics ; Polymerase Chain Reaction ; Potassium Channels/*genetics ; *Potassium Channels, Calcium-Activated ; RNA, Messenger/genetics/metabolism ; Rats ; Rats, Sprague-Dawley ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-05-02
    Description: The splicing of transfer RNA precursors is similar in Eucarya and Archaea. In both kingdoms an endonuclease recognizes the splice sites and releases the intron, but the mechanism of splice site recognition is different in each kingdom. The crystal structure of the endonuclease from the archaeon Methanococcus jannaschii was determined to a resolution of 2.3 angstroms. The structure indicates that the cleavage reaction is similar to that of ribonuclease A and the arrangement of the active sites is conserved between the archaeal and eucaryal enzymes. These results suggest an evolutionary pathway for splice site recognition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, H -- Trotta, C R -- Abelson, J -- F32 GM188930-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Apr 10;280(5361):279-84.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, Mail Code 147-75, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9535656" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Catalysis ; Cloning, Molecular ; Crystallography, X-Ray ; Dimerization ; Endoribonucleases/*chemistry/genetics/metabolism ; *Evolution, Molecular ; HIV Long Terminal Repeat ; Hydrogen Bonding ; Methanococcus/*enzymology/genetics ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; RNA Precursors/chemistry/metabolism ; *RNA Splicing ; RNA, Archaeal/chemistry/metabolism ; Saccharomyces cerevisiae/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 1998-03-21
    Description: The anaphase-promoting complex is composed of eight protein subunits, including BimE (APC1), CDC27 (APC3), CDC16 (APC6), and CDC23 (APC8). The remaining four human APC subunits, APC2, APC4, APC5, and APC7, as well as human CDC23, were cloned. APC7 contains multiple copies of the tetratrico peptide repeat, similar to CDC16, CDC23, and CDC27. Whereas APC4 and APC5 share no similarity to proteins of known function, APC2 contains a region that is similar to a sequence in cullins, a family of proteins implicated in the ubiquitination of G1 phase cyclins and cyclin-dependent kinase inhibitors. The APC2 gene is essential in Saccharomyces cerevisiae, and apc2 mutants arrest at metaphase and are defective in the degradation of Pds1p. APC2 and cullins may be distantly related members of a ubiquitin ligase family that targets cell cycle regulators for degradation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, H -- Peters, J M -- King, R W -- Page, A M -- Hieter, P -- Kirschner, M W -- CA16519/CA/NCI NIH HHS/ -- GM26875-17/GM/NIGMS NIH HHS/ -- GM39023-08/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Feb 20;279(5354):1219-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9469815" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Anaphase ; Anaphase-Promoting Complex-Cyclosome ; Animals ; Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome ; Apc2 Subunit, Anaphase-Promoting Complex-Cyclosome ; Apc4 Subunit, Anaphase-Promoting Complex-Cyclosome ; Apc5 Subunit, Anaphase-Promoting Complex-Cyclosome ; Apc7 Subunit, Anaphase-Promoting Complex-Cyclosome ; Apc8 Subunit, Anaphase-Promoting Complex-Cyclosome ; Cell Cycle/*physiology ; Cell Cycle Proteins/chemistry ; Cloning, Molecular ; *Cullin Proteins ; Helminth Proteins/chemistry ; Humans ; Ligases/*chemistry/genetics/metabolism ; Molecular Sequence Data ; Mutation ; Open Reading Frames ; Phylogeny ; Proteins/chemistry ; Saccharomyces cerevisiae/chemistry/cytology/genetics ; *Saccharomyces cerevisiae Proteins ; Sequence Alignment ; *Ubiquitin-Protein Ligase Complexes ; Ubiquitin-Protein Ligases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-06-25
    Description: Excessive sodium (Na+) in salinized soils inhibits plant growth and development. A mutation in the SOS3 gene renders Arabidopsis thaliana plants hypersensitive to Na+-induced growth inhibition. SOS3 encodes a protein that shares significant sequence similarity with the calcineurin B subunit from yeast and neuronal calcium sensors from animals. The results suggest that intracellular calcium signaling through a calcineurin-like pathway mediates the beneficial effect of calcium on plant salt tolerance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, J -- Zhu, J K -- New York, N.Y. -- Science. 1998 Jun 19;280(5371):1943-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9632394" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arabidopsis/*genetics/*growth & development/metabolism ; *Arabidopsis Proteins ; Binding Sites ; Calcineurin/chemistry ; Calcium/*metabolism/pharmacology ; Calcium-Binding Proteins/chemistry ; Chromosome Mapping ; Cloning, Molecular ; Genes, Plant ; Ion Transport ; Molecular Sequence Data ; Mutation ; Open Reading Frames ; Plant Proteins/*chemistry/*genetics ; Saccharomyces cerevisiae/chemistry ; Signal Transduction ; Sodium/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 1998-02-07
    Description: The possibility that membrane fusion events in the postsynaptic cell may be required for the change in synaptic strength resulting from long-term potentiation (LTP) was examined. Introducing substances into the postsynaptic cell that block membrane fusion at a number of different steps reduced LTP. Introducing SNAP, a protein that promotes membrane fusion, into cells enhanced synaptic transmission, and this enhancement was significantly less when generated in synapses that expressed LTP. Thus, postsynaptic fusion events, which could be involved either in retrograde signaling or in regulating postsynaptic receptor function or both, contribute to LTP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lledo, P M -- Zhang, X -- Sudhof, T C -- Malenka, R C -- Nicoll, R A -- New York, N.Y. -- Science. 1998 Jan 16;279(5349):399-403.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9430593" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Botulinum Toxins/pharmacology ; Carrier Proteins/metabolism/pharmacology ; Ethylmaleimide/pharmacology ; Excitatory Postsynaptic Potentials ; Exocytosis ; Guinea Pigs ; Hippocampus/drug effects/*physiology ; In Vitro Techniques ; *Long-Term Potentiation/drug effects ; *Membrane Fusion ; Membrane Proteins/metabolism/pharmacology ; Molecular Sequence Data ; N-Ethylmaleimide-Sensitive Proteins ; Patch-Clamp Techniques ; Peptides/pharmacology ; Pyramidal Cells/physiology ; Receptors, N-Methyl-D-Aspartate/physiology ; Recombinant Proteins/pharmacology ; Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins ; Synaptic Membranes/*physiology ; Synaptic Transmission ; *Vesicular Transport Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-11-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hagmann, M -- New York, N.Y. -- Science. 1999 Oct 15;286(5439):388-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10577195" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Animals ; Antigens, Surface/metabolism ; Cell Membrane/metabolism ; Chlorides/metabolism ; Cystic Fibrosis Transmembrane Conductance ; Regulator/chemistry/genetics/*metabolism ; Humans ; *Ion Channel Gating ; Models, Biological ; Mutagenesis ; Nerve Tissue Proteins/metabolism ; Syntaxin 1 ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 1998-02-21
    Description: Cellulose, an abundant, crystalline polysaccharide, is central to plant morphogenesis and to many industries. Chemical and ultrastructural analyses together with map-based cloning indicate that the RSW1 locus of Arabidopsis encodes the catalytic subunit of cellulose synthase. The cloned gene complements the rsw1 mutant whose temperature-sensitive allele is changed in one amino acid. The mutant allele causes a specific reduction in cellulose synthesis, accumulation of noncrystalline beta-1,4-glucan, disassembly of cellulose synthase, and widespread morphological abnormalities. Microfibril crystallization may require proper assembly of the RSW1 gene product into synthase complexes whereas glucan biosynthesis per se does not.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arioli, T -- Peng, L -- Betzner, A S -- Burn, J -- Wittke, W -- Herth, W -- Camilleri, C -- Hofte, H -- Plazinski, J -- Birch, R -- Cork, A -- Glover, J -- Redmond, J -- Williamson, R E -- New York, N.Y. -- Science. 1998 Jan 30;279(5351):717-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cooperative Research Centre for Plant Science, Australian National University, Post Office Box 475, Canberra, ACT 2601, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9445479" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/enzymology/*genetics/*metabolism ; *Arabidopsis Proteins ; Cell Membrane/chemistry/ultrastructure ; Cellulose/*biosynthesis/chemistry/genetics ; Chromosome Mapping ; Cloning, Molecular ; Crystallization ; Freeze Fracturing ; *Genes, Plant ; Genetic Complementation Test ; Glucans/metabolism ; Glucosyltransferases/chemistry/*genetics ; Molecular Sequence Data ; Mutation ; Plant Roots/chemistry/ultrastructure ; Plant Shoots/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-11-20
    Description: Recent advances in computational techniques have allowed the design of precise side-chain packing in proteins with predetermined, naturally occurring backbone structures. Because these methods do not model protein main-chain flexibility, they lack the breadth to explore novel backbone conformations. Here the de novo design of a family of alpha-helical bundle proteins with a right-handed superhelical twist is described. In the design, the overall protein fold was specified by hydrophobic-polar residue patterning, whereas the bundle oligomerization state, detailed main-chain conformation, and interior side-chain rotamers were engineered by computational enumerations of packing in alternate backbone structures. Main-chain flexibility was incorporated through an algebraic parameterization of the backbone. The designed peptides form alpha-helical dimers, trimers, and tetramers in accord with the design goals. The crystal structure of the tetramer matches the designed structure in atomic detail.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harbury, P B -- Plecs, J J -- Tidor, B -- Alber, T -- Kim, P S -- GM44162/GM/NIGMS NIH HHS/ -- GM48598/GM/NIGMS NIH HHS/ -- GM55758/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 20;282(5393):1462-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9822371" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Circular Dichroism ; Computer Simulation ; Crystallography, X-Ray ; Dimerization ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Molecular Weight ; Mutation ; Peptides/chemical synthesis/*chemistry ; *Protein Conformation ; Protein Denaturation ; *Protein Engineering ; *Protein Folding ; Protein Structure, Secondary ; Proteins/chemical synthesis/*chemistry ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 1998-12-04
    Description: A three-dimensional structure for the monomeric iron-containing hydrogenase (CpI) from Clostridium pasteurianum was determined to 1.8 angstrom resolution by x-ray crystallography using multiwavelength anomalous dispersion (MAD) phasing. CpI, an enzyme that catalyzes the two-electron reduction of two protons to yield dihydrogen, was found to contain 20 gram atoms of iron per mole of protein, arranged into five distinct [Fe-S] clusters. The probable active-site cluster, previously termed the H-cluster, was found to be an unexpected arrangement of six iron atoms existing as a [4Fe-4S] cubane subcluster covalently bridged by a cysteinate thiol to a [2Fe] subcluster. The iron atoms of the [2Fe] subcluster both exist with an octahedral coordination geometry and are bridged to each other by three non-protein atoms, assigned as two sulfide atoms and one carbonyl or cyanide molecule. This structure provides insights into the mechanism of biological hydrogen activation and has broader implications for [Fe-S] cluster structure and function in biological systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peters, J W -- Lanzilotta, W N -- Lemon, B J -- Seefeldt, L C -- New York, N.Y. -- Science. 1998 Dec 4;282(5395):1853-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA. petersj@cc.usu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9836629" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Carbon Monoxide/chemistry ; Catalytic Domain ; Clostridium/*enzymology ; Crystallography, X-Ray ; Cyanides/chemistry ; Cysteine/chemistry ; Histidine/chemistry ; Hydrogen/metabolism ; Hydrogenase/*chemistry/metabolism ; Iron/*chemistry ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protons ; Sulfur/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 1999-10-26
    Description: The transferrin receptor (TfR) undergoes multiple rounds of clathrin-mediated endocytosis and reemergence at the cell surface, importing iron-loaded transferrin (Tf) and recycling apotransferrin after discharge of iron in the endosome. The crystal structure of the dimeric ectodomain of the human TfR, determined here to 3.2 angstroms resolution, reveals a three-domain subunit. One domain closely resembles carboxy- and aminopeptidases, and features of membrane glutamate carboxypeptidase can be deduced from the TfR structure. A model is proposed for Tf binding to the receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lawrence, C M -- Ray, S -- Babyonyshev, M -- Galluser, R -- Borhani, D W -- Harrison, S C -- New York, N.Y. -- Science. 1999 Oct 22;286(5440):779-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Children's Hospital Laboratory of Molecular Medicine, 320 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10531064" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; CHO Cells ; Carboxypeptidases/chemistry ; Cell Membrane/chemistry ; Conserved Sequence ; Cricetinae ; Crystallography, X-Ray ; Dimerization ; Ferric Compounds/metabolism ; Glycosylation ; Humans ; Hydrogen-Ion Concentration ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Transferrin/*chemistry/metabolism ; Transferrin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 1999-07-27
    Description: Genetic selections were used to find peptides that inhibit biological pathways in budding yeast. The peptides were presented inside cells as peptamers, surface loops on a highly expressed and biologically inert carrier protein, a catalytically inactive derivative of staphylococcal nuclease. Peptamers that inhibited the pheromone signaling pathway, transcriptional silencing, and the spindle checkpoint were isolated. Putative targets for the inhibitors were identified by a combination of two-hybrid analysis and genetic dissection of the target pathways. This analysis identified Ydr517w as a component of the spindle checkpoint and reinforced earlier indications that Ste50 has both positive and negative roles in pheromone signaling. Analysis of transcript arrays showed that the peptamers were highly specific in their effects, which suggests that they may be useful reagents in organisms that lack sophisticated genetics as well as for identifying components of existing biological pathways that are potential targets for drug discovery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Norman, T C -- Smith, D L -- Sorger, P K -- Drees, B L -- O'Rourke, S M -- Hughes, T R -- Roberts, C J -- Friend, S H -- Fields, S -- Murray, A W -- P41-RR11823/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 23;285(5427):591-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of California, San Francisco, CA 94143-0444, USA. tnorman@microbia.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10417390" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Fungal Proteins/metabolism ; G1 Phase ; Galactose/metabolism ; Lipoproteins/metabolism ; Micrococcal Nuclease ; Mitosis ; Molecular Sequence Data ; Peptide Library ; Peptides/genetics/metabolism/*pharmacology ; Pheromones/*metabolism ; Protein Binding ; Protein-Serine-Threonine Kinases ; Protein-Tyrosine Kinases ; Saccharomyces cerevisiae/cytology/genetics/*metabolism ; *Saccharomyces cerevisiae Proteins ; *Selection, Genetic ; *Signal Transduction ; Spindle Apparatus/drug effects/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 1999-04-24
    Description: Control of cyclin levels is critical for proper cell cycle regulation. In yeast, the stability of the G1 cyclin Cln1 is controlled by phosphorylation-dependent ubiquitination. Here it is shown that this reaction can be reconstituted in vitro with an SCF E3 ubiquitin ligase complex. Phosphorylated Cln1 was ubiquitinated by SCF (Skp1-Cdc53-F-box protein) complexes containing the F-box protein Grr1, Rbx1, and the E2 Cdc34. Rbx1 promotes association of Cdc34 with Cdc53 and stimulates Cdc34 auto-ubiquitination in the context of Cdc53 or SCF complexes. Rbx1, which is also a component of the von Hippel-Lindau tumor suppressor complex, may define a previously unrecognized class of E3-associated proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Skowyra, D -- Koepp, D M -- Kamura, T -- Conrad, M N -- Conaway, R C -- Conaway, J W -- Elledge, S J -- Harper, J W -- AG11085/AG/NIA NIH HHS/ -- GM41628/GM/NIGMS NIH HHS/ -- GM54137/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 23;284(5414):662-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verna and Marrs McLean Department of Biochemistry, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10213692" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anaphase-Promoting Complex-Cyclosome ; Animals ; Carrier Proteins/chemistry/*metabolism ; Cell Cycle Proteins/metabolism ; Cell Line ; *Cullin Proteins ; Cyclins/*metabolism ; F-Box Proteins ; Fungal Proteins/*metabolism ; Ligases/metabolism ; Molecular Sequence Data ; Peptide Synthases/*metabolism ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; S-Phase Kinase-Associated Proteins ; SKP Cullin F-Box Protein Ligases ; Saccharomyces cerevisiae/metabolism ; *Saccharomyces cerevisiae Proteins ; Sequence Alignment ; Ubiquitin-Conjugating Enzymes ; *Ubiquitin-Protein Ligase Complexes ; Ubiquitin-Protein Ligases ; Ubiquitins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-10-09
    Description: For mapping energetic interactions in proteins, a technique was developed that uses evolutionary data for a protein family to measure statistical interactions between amino acid positions. For the PDZ domain family, this analysis predicted a set of energetically coupled positions for a binding site residue that includes unexpected long-range interactions. Mutational studies confirm these predictions, demonstrating that the statistical energy function is a good indicator of thermodynamic coupling in proteins. Sets of interacting residues form connected pathways through the protein fold that may be the basis for efficient energy conduction within proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lockless, S W -- Ranganathan, R -- New York, N.Y. -- Science. 1999 Oct 8;286(5438):295-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-9050, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10514373" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/chemistry/metabolism ; Binding Sites ; Conserved Sequence ; *Evolution, Molecular ; Models, Molecular ; Mutation ; Probability ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Proteins/*chemistry/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Sequence Alignment ; Statistics as Topic ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 1999-07-20
    Description: A vertebrate securin (vSecurin) was identified on the basis of its biochemical analogy to the Pds1p protein of budding yeast and the Cut2p protein of fission yeast. The vSecurin protein bound to a vertebrate homolog of yeast separins Esp1p and Cut1p and was degraded by proteolysis mediated by an anaphase-promoting complex in a manner dependent on a destruction motif. Furthermore, expression of a stable Xenopus securin mutant protein blocked sister-chromatid separation but did not block the embryonic cell cycle. The vSecurin proteins share extensive sequence similarity with each other but show no sequence similarity to either of their yeast counterparts. Human securin is identical to the product of the gene called pituitary tumor-transforming gene (PTTG), which is overexpressed in some tumors and exhibits transforming activity in NIH 3T3 cells. The oncogenic nature of increased expression of vSecurin may result from chromosome gain or loss, produced by errors in chromatid separation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zou, H -- McGarry, T J -- Bernal, T -- Kirschner, M W -- GM26875/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 16;285(5426):418-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10411507" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Amino Acid Sequence ; *Anaphase ; Anaphase-Promoting Complex-Cyclosome ; Animals ; CDC2 Protein Kinase/metabolism ; Cell Cycle Proteins/chemistry/metabolism ; *Cell Transformation, Neoplastic ; Chromatids/*physiology ; Conserved Sequence ; Cyclin B/metabolism ; Cyclin B1 ; *Endopeptidases ; Fungal Proteins/chemistry/metabolism ; HeLa Cells ; Humans ; Ligases/metabolism ; Mice ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Neoplasm Proteins/chemistry/genetics/*metabolism ; Neoplasms/etiology ; Nuclear Proteins/chemistry/metabolism ; Oncogene Proteins/chemistry/genetics/*metabolism ; Oncogenes ; *Saccharomyces cerevisiae Proteins ; *Schizosaccharomyces pombe Proteins ; Securin ; Separase ; Spindle Apparatus/metabolism ; *Ubiquitin-Protein Ligase Complexes ; Ubiquitin-Protein Ligases ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 1999-06-18
    Description: Cell walls are crucial for development, signal transduction, and disease resistance in plants. Cell walls are made of cellulose, hemicelluloses, and pectins. Xyloglucan (XG), the principal load-bearing hemicellulose of dicotyledonous plants, has a terminal fucosyl residue. A 60-kilodalton fucosyltransferase (FTase) that adds this residue was purified from pea epicotyls. Peptide sequence information from the pea FTase allowed the cloning of a homologous gene, AtFT1, from Arabidopsis. Antibodies raised against recombinant AtFTase immunoprecipitate FTase enzyme activity from solubilized Arabidopsis membrane proteins, and AtFT1 expressed in mammalian COS cells results in the presence of XG FTase activity in these cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perrin, R M -- DeRocher, A E -- Bar-Peled, M -- Zeng, W -- Norambuena, L -- Orellana, A -- Raikhel, N V -- Keegstra, K -- New York, N.Y. -- Science. 1999 Jun 18;284(5422):1976-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Michigan State University-Department of Energy (MSU-DOE) Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10373113" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arabidopsis/*enzymology/genetics ; COS Cells ; Carbohydrate Conformation ; Cell Wall/*metabolism ; Cloning, Molecular ; DNA, Complementary ; Expressed Sequence Tags ; Fucosyltransferases/chemistry/genetics/isolation & purification/*metabolism ; Genes, Plant ; *Glucans ; Molecular Sequence Data ; Peas/*enzymology ; Polysaccharides/*biosynthesis/chemistry ; *Xylans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 1999-11-13
    Description: The E6AP ubiquitin-protein ligase (E3) mediates the human papillomavirus-induced degradation of the p53 tumor suppressor in cervical cancer and is mutated in Angelman syndrome, a neurological disorder. The crystal structure of the catalytic hect domain of E6AP reveals a bilobal structure with a broad catalytic cleft at the junction of the two lobes. The cleft consists of conserved residues whose mutation interferes with ubiquitin-thioester bond formation and is the site of Angelman syndrome mutations. The crystal structure of the E6AP hect domain bound to the UbcH7 ubiquitin-conjugating enzyme (E2) reveals the determinants of E2-E3 specificity and provides insights into the transfer of ubiquitin from the E2 to the E3.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, L -- Kinnucan, E -- Wang, G -- Beaudenon, S -- Howley, P M -- Huibregtse, J M -- Pavletich, N P -- New York, N.Y. -- Science. 1999 Nov 12;286(5443):1321-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cellular Biochemistry and Biophysics Program, Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10558980" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Angelman Syndrome/genetics ; Binding Sites ; Catalytic Domain ; Conserved Sequence ; Crystallography, X-Ray ; Cysteine/chemistry ; Humans ; Ligases/*chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Structure, Secondary ; Substrate Specificity ; Ubiquitin-Conjugating Enzymes ; Ubiquitin-Protein Ligases ; Ubiquitins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-12-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strasser, B J -- New York, N.Y. -- Science. 1999 Nov 19;286(5444):1488-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Louis-Jeantet Institute for the History of Medicine, University of Geneva, Geneva, Switzerland. bruno.strasser@medecine.unige.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10610548" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anemia, Sickle Cell/blood/genetics/*history ; Blood Protein Electrophoresis ; Hemoglobin, Sickle/*chemistry/genetics ; Hemoglobins/chemistry/genetics ; History, 20th Century ; Humans ; Molecular Biology/*history ; Nobel Prize
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 1999-09-08
    Description: A mevalonate-independent pathway of isoprenoid biosynthesis present in Plasmodium falciparum was shown to represent an effective target for chemotherapy of malaria. This pathway includes 1-deoxy-D-xylulose 5-phosphate (DOXP) as a key metabolite. The presence of two genes encoding the enzymes DOXP synthase and DOXP reductoisomerase suggests that isoprenoid biosynthesis in P. falciparum depends on the DOXP pathway. This pathway is probably located in the apicoplast. The recombinant P. falciparum DOXP reductoisomerase was inhibited by fosmidomycin and its derivative, FR-900098. Both drugs suppressed the in vitro growth of multidrug-resistant P. falciparum strains. After therapy with these drugs, mice infected with the rodent malaria parasite P. vinckei were cured.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jomaa, H -- Wiesner, J -- Sanderbrand, S -- Altincicek, B -- Weidemeyer, C -- Hintz, M -- Turbachova, I -- Eberl, M -- Zeidler, J -- Lichtenthaler, H K -- Soldati, D -- Beck, E -- New York, N.Y. -- Science. 1999 Sep 3;285(5433):1573-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biochemistry, Academic Hospital Centre, Justus-Liebig-University, Friedrichstrasse 24, D-35392 Giessen, Germany. hassan.jomaa@biochemie.med.uni-giessen.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10477522" target="_blank"〉PubMed〈/a〉
    Keywords: Aldose-Ketose Isomerases/*antagonists & inhibitors/chemistry/genetics/metabolism ; Amino Acid Sequence ; Animals ; Antimalarials/*pharmacology ; Cloning, Molecular ; Enzyme Inhibitors/pharmacology ; Fosfomycin/*analogs & derivatives/pharmacology ; Genes, Protozoan ; *Hemiterpenes ; Malaria/*drug therapy/parasitology ; Malaria, Falciparum/drug therapy/parasitology ; Mevalonic Acid/metabolism ; Mice ; Molecular Sequence Data ; Multienzyme Complexes/*antagonists & inhibitors/chemistry/genetics/metabolism ; Organelles/drug effects/metabolism ; Organophosphorus Compounds/metabolism ; Oxidoreductases/*antagonists & inhibitors/chemistry/genetics/metabolism ; Pentosephosphates/*metabolism ; Plasmodium falciparum/*drug effects/genetics/metabolism ; Recombinant Proteins/antagonists & inhibitors/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Terpenes/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-11-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1999 Oct 8;286(5438):223, 225.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10577187" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; BRCA1 Protein/chemistry/*metabolism ; Ligases/chemistry/*metabolism ; Mice ; Mutation ; Phosphotyrosine/metabolism ; Proteins/*metabolism ; Proto-Oncogene Proteins/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins c-cbl ; Receptor Protein-Tyrosine Kinases/metabolism ; Receptor, Epidermal Growth Factor/metabolism ; Receptors, Platelet-Derived Growth Factor/metabolism ; Ubiquitin-Protein Ligases ; Ubiquitins/*metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 1999-07-20
    Description: A phytochrome-like protein called Ppr was discovered in the purple photosynthetic bacterium Rhodospirillum centenum. Ppr has a photoactive yellow protein (PYP) amino-terminal domain, a central domain with similarity to phytochrome, and a carboxyl-terminal histidine kinase domain. Reconstitution experiments demonstrate that Ppr covalently attaches the blue light-absorbing chromophore p-hydroxycinnamic acid and that it has a photocycle that is spectrally similar to, but kinetically slower than, that of PYP. Ppr also regulates chalcone synthase gene expression in response to blue light with autophosphorylation inhibited in vitro by blue light. Phylogenetic analysis demonstrates that R. centenum Ppr may be ancestral to cyanobacterial and plant phytochromes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Z -- Swem, L R -- Rushing, B G -- Devanathan, S -- Tollin, G -- Bauer, C E -- GM 40941/GM/NIGMS NIH HHS/ -- R01 GM040941/GM/NIGMS NIH HHS/ -- R01 GM053940/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 16;285(5426):406-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Indiana University, Jordan Hall, Bloomington, IN 47405, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10411503" target="_blank"〉PubMed〈/a〉
    Keywords: Acyltransferases/genetics ; Amino Acid Sequence ; Apoproteins/chemistry/metabolism ; Bacterial Proteins/*chemistry/genetics/physiology ; Chemotaxis ; Cloning, Molecular ; Coumaric Acids/metabolism ; Gene Expression Regulation, Bacterial ; Light ; Molecular Sequence Data ; Mutation ; Phosphorylation ; *Photoreceptors, Microbial ; Phylogeny ; Phytochrome/*chemistry ; Protein Kinases/metabolism ; Rhodospirillum/*chemistry/genetics/physiology ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 1999-01-23
    Description: Tumor necrosis factor receptor type 1 (TNF-R1) contains a cytoplasmic death domain that is required for the signaling of TNF activities such as apoptosis and nuclear factor kappa B (NF-kappaB) activation. Normally, these signals are generated only after TNF-induced receptor aggregation. However, TNF-R1 self-associates and signals independently of ligand when overexpressed. This apparent paradox may be explained by silencer of death domains (SODD), a widely expressed approximately 60-kilodalton protein that was found to be associated with the death domain of TNF-R1. TNF treatment released SODD from TNF-R1, permitting the recruitment of proteins such as TRADD and TRAF2 to the active TNF-R1 signaling complex. SODD also interacted with death receptor-3 (DR3), another member of the TNF receptor superfamily. Thus, SODD association may be representative of a general mechanism for preventing spontaneous signaling by death domain-containing receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Y -- Woronicz, J D -- Liu, W -- Goeddel, D V -- New York, N.Y. -- Science. 1999 Jan 22;283(5401):543-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Tularik, Two Corporate Drive, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9915703" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Antigens, CD/chemistry/genetics/*metabolism ; Apoptosis ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line ; Fas-Associated Death Domain Protein ; Humans ; Jurkat Cells ; Molecular Sequence Data ; Mutation ; NF-kappa B/metabolism ; Protein Binding ; Proteins/metabolism ; Receptor Aggregation ; Receptor-Interacting Protein Serine-Threonine Kinases ; Receptors, Tumor Necrosis Factor/chemistry/genetics/*metabolism ; Receptors, Tumor Necrosis Factor, Member 25 ; Receptors, Tumor Necrosis Factor, Type I ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; TNF Receptor-Associated Factor 1 ; TNF Receptor-Associated Factor 2 ; Transfection ; Tumor Necrosis Factor-alpha/pharmacology ; U937 Cells
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 1999-04-02
    Description: The regulation of members of the knotted1-like homeobox (knox) gene family is required for the normal initiation and development of lateral organs. The maize rough sheath2 (rs2) gene, which encodes a Myb-domain protein, is expressed in lateral organ primordia and their initials. Mutations in the rs2 gene permit ectopic expression of knox genes in leaf and floral primordia, causing a variety of developmental defects. Ectopic KNOX protein accumulation in rs2 mutants occurs in a subset of the normal rs2-expressing cells. This variegated accumulation of KNOX proteins in rs2 mutants suggests that rs2 represses knox expression through epigenetic means.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Timmermans, M C -- Hudson, A -- Becraft, P W -- Nelson, T -- New York, N.Y. -- Science. 1999 Apr 2;284(5411):151-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10102816" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; DNA-Binding Proteins/chemistry/genetics/physiology ; Down-Regulation ; *Gene Expression Regulation, Plant ; *Genes, Homeobox ; Genes, Plant ; Homeodomain Proteins/*genetics/metabolism ; Meristem/genetics/growth & development/metabolism ; Molecular Sequence Data ; Mutation ; Plant Leaves/genetics/growth & development/metabolism ; Plant Proteins/chemistry/genetics/physiology ; *Proto-Oncogene Proteins c-myb ; Repressor Proteins/chemistry/genetics/*physiology ; Sequence Alignment ; Zea mays/*genetics/growth & development/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 1999-06-05
    Description: We purified, cloned, and expressed aggrecanase, a protease that is thought to be responsible for the degradation of cartilage aggrecan in arthritic diseases. Aggrecanase-1 [a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4)] is a member of the ADAMTS protein family that cleaves aggrecan at the glutamic acid-373-alanine-374 bond. The identification of this protease provides a specific target for the development of therapeutics to prevent cartilage degradation in arthritis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tortorella, M D -- Burn, T C -- Pratta, M A -- Abbaszade, I -- Hollis, J M -- Liu, R -- Rosenfeld, S A -- Copeland, R A -- Decicco, C P -- Wynn, R -- Rockwell, A -- Yang, F -- Duke, J L -- Solomon, K -- George, H -- Bruckner, R -- Nagase, H -- Itoh, Y -- Ellis, D M -- Ross, H -- Wiswall, B H -- Murphy, K -- Hillman, M C Jr -- Hollis, G F -- Newton, R C -- Magolda, R L -- Trzaskos, J M -- Arner, E C -- New York, N.Y. -- Science. 1999 Jun 4;284(5420):1664-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Inflammatory Diseases Research, DuPont Pharmaceuticals Company, Wilmington, DE 19880-0400, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10356395" target="_blank"〉PubMed〈/a〉
    Keywords: ADAM Proteins ; Aggrecans ; Amino Acid Sequence ; Arthritis/drug therapy ; Cartilage/metabolism ; Catalytic Domain ; Cloning, Molecular ; Disintegrins/chemistry/metabolism ; *Extracellular Matrix Proteins ; Humans ; Hydroxamic Acids/pharmacology ; Interleukin-1/pharmacology ; Lectins, C-Type ; Metalloendopeptidases/*chemistry/*genetics/isolation & purification/metabolism ; Molecular Sequence Data ; Procollagen N-Endopeptidase ; Protease Inhibitors/pharmacology ; Protein Sorting Signals ; Proteoglycans/metabolism ; Recombinant Proteins/chemistry/metabolism ; Sequence Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 1999-04-02
    Description: Leaves of higher plants develop in a sequential manner from the shoot apical meristem. Previously it was determined that perturbed leaf development in maize rough sheath2 (rs2) mutant plants results from ectopic expression of knotted1-like (knox) homeobox genes. Here, the rs2 gene sequence was found to be similar to the Antirrhinum PHANTASTICA (PHAN) gene sequence, which encodes a Myb-like transcription factor. RS2 and PHAN are both required to prevent the accumulation of knox gene products in maize and Antirrhinum leaves, respectively. However, rs2 and phan mutant phenotypes differ, highlighting fundamental differences in monocot and dicot leaf development programs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsiantis, M -- Schneeberger, R -- Golz, J F -- Freeling, M -- Langdale, J A -- GM14578/GM/NIGMS NIH HHS/ -- GM42610/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 2;284(5411):154-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3BR, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10102817" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cloning, Molecular ; DNA-Binding Proteins/chemistry/*genetics ; Down-Regulation ; *Gene Expression Regulation, Plant ; *Genes, Homeobox ; Genes, Plant ; Homeodomain Proteins/*genetics/metabolism ; In Situ Hybridization ; Molecular Sequence Data ; Mutation ; Phenotype ; Plant Development ; Plant Leaves/cytology/genetics/*growth & development/metabolism ; Plant Proteins/chemistry/*genetics ; Plants/*genetics/metabolism ; *Proto-Oncogene Proteins c-myb ; Repressor Proteins/chemistry/*genetics/physiology ; Sequence Alignment ; Zea mays/*genetics/growth & development/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 1999-08-07
    Description: Calcium-permeable, stretch-activated nonselective cation (SA Cat) channels mediate cellular responses to mechanical stimuli. However, genes encoding such channels have not been identified in eukaryotes. The yeast MID1 gene product (Mid1) is required for calcium influx in the yeast Saccharomyces cerevisiae. Functional expression of Mid1 in Chinese hamster ovary cells conferred sensitivity to mechanical stress that resulted in increases in both calcium conductance and the concentration of cytosolic free calcium. These increases were dependent on the presence of extracellular calcium and were reduced by gadolinium, a blocker of SA Cat channels. Single-channel analyses with cell-attached patches revealed that Mid1 acts as a calcium-permeable, cation-selective stretch-activated channel with a conductance of 32 picosiemens at 150 millimolar cesium chloride in the pipette. Thus, Mid1 appears to be a eukaryotic, SA Cat channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kanzaki, M -- Nagasawa, M -- Kojima, I -- Sato, C -- Naruse, K -- Sokabe, M -- Iida, H -- New York, N.Y. -- Science. 1999 Aug 6;285(5429):882-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cell Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8510, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10436155" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; CHO Cells ; Calcium/metabolism ; Calcium Channels/chemistry/genetics/*metabolism ; Cations/*metabolism ; Cell Membrane/metabolism ; Cell Membrane Permeability ; Cesium/metabolism ; Chlorides/pharmacology ; Cricetinae ; Fungal Proteins/chemistry/genetics/*metabolism ; Gadolinium/pharmacology ; Ion Channels/chemistry/genetics/*metabolism ; Membrane Glycoproteins/chemistry/genetics/*metabolism ; Membrane Potentials ; Molecular Sequence Data ; Patch-Clamp Techniques ; Pressure ; Saccharomyces cerevisiae/genetics/metabolism ; *Saccharomyces cerevisiae Proteins ; Stress, Mechanical ; Transfection ; Zinc Compounds/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 1999-08-14
    Description: Many Gram-negative pathogens assemble architecturally and functionally diverse adhesive pili on their surfaces by the chaperone-usher pathway. Immunoglobulin-like periplasmic chaperones escort pilus subunits to the usher, a large protein complex that facilitates the translocation and assembly of subunits across the outer membrane. The crystal structure of the PapD-PapK chaperone-subunit complex, determined at 2.4 angstrom resolution, reveals that the chaperone functions by donating its G(1) beta strand to complete the immunoglobulin-like fold of the subunit via a mechanism termed donor strand complementation. The structure of the PapD-PapK complex also suggests that during pilus biogenesis, every subunit completes the immunoglobulin-like fold of its neighboring subunit via a mechanism termed donor strand exchange.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sauer, F G -- Futterer, K -- Pinkner, J S -- Dodson, K W -- Hultgren, S J -- Waksman, G -- R01AI29549/AI/NIAID NIH HHS/ -- R01DK51406/DK/NIDDK NIH HHS/ -- R01GM54033/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Aug 13;285(5430):1058-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10446050" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/*metabolism ; Crystallography, X-Ray ; Escherichia coli ; *Escherichia coli Proteins ; Fimbriae Proteins ; Fimbriae, Bacterial/chemistry/*metabolism/ultrastructure ; Models, Molecular ; Molecular Chaperones/*chemistry/*metabolism ; Molecular Sequence Data ; *Periplasmic Proteins ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 1999-12-03
    Description: Flowering in Arabidopsis is promoted via several interacting pathways. A photoperiod-dependent pathway relays signals from photoreceptors to a transcription factor gene, CONSTANS (CO), which activates downstream meristem identity genes such as LEAFY (LFY). FT, together with LFY, promotes flowering and is positively regulated by CO. Loss of FT causes delay in flowering, whereas overexpression of FT results in precocious flowering independent of CO or photoperiod. FT acts in part downstream of CO and mediates signals for flowering in an antagonistic manner with its homologous gene, TERMINAL FLOWER1 (TFL1).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kobayashi, Y -- Kaya, H -- Goto, K -- Iwabuchi, M -- Araki, T -- New York, N.Y. -- Science. 1999 Dec 3;286(5446):1960-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10583960" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/*genetics/*growth & development ; *Arabidopsis Proteins ; DNA-Binding Proteins/chemistry/*genetics/physiology ; *Gene Expression Regulation, Plant ; Genes, Plant ; MADS Domain Proteins ; Molecular Sequence Data ; Phenotype ; Photoperiod ; Plant Proteins/chemistry/*genetics/physiology ; Plant Structures/growth & development ; Plants, Genetically Modified ; Signal Transduction ; Transcription Factors/chemistry/*genetics/physiology ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-04-02
    Description: Aminoacyl-tRNA synthetases catalyze aminoacylation of transfer RNAs (tRNAs). It is shown that human tyrosyl-tRNA synthetase can be split into two fragments with distinct cytokine activities. The endothelial monocyte-activating polypeptide II-like carboxy-terminal domain has potent leukocyte and monocyte chemotaxis activity and stimulates production of myeloperoxidase, tumor necrosis factor-alpha, and tissue factor. The catalytic amino-terminal domain binds to the interleukin-8 type A receptor and functions as an interleukin-8-like cytokine. Under apoptotic conditions in cell culture, the full-length enzyme is secreted, and the two cytokine activities can be generated by leukocyte elastase, an extracellular protease. Secretion of this tRNA synthetase may contribute to apoptosis both by arresting translation and producing needed cytokines.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wakasugi, K -- Schimmel, P -- GM23562/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 2;284(5411):147-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Skaggs Institute for Chemical Biology, The Scripps Research Institute, Beckman Center, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10102815" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antigens, CD/metabolism ; Apoptosis ; Binding, Competitive ; Catalytic Domain ; Chemotaxis, Leukocyte ; *Cytokines ; Humans ; Interleukin-8/*metabolism/pharmacology ; Leukocyte Elastase/metabolism ; Molecular Sequence Data ; Monocytes/physiology ; Neoplasm Proteins/*metabolism/pharmacology ; Neutrophils/metabolism/physiology ; RNA-Binding Proteins/*metabolism/pharmacology ; Receptors, Interleukin/metabolism ; Receptors, Interleukin-8A ; Recombinant Proteins/metabolism ; Signal Transduction ; Tumor Cells, Cultured ; Tyrosine-tRNA Ligase/chemistry/*metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-11-05
    Description: Phototropism of Arabidopsis thaliana seedlings in response to a blue light source is initiated by nonphototropic hypocotyl 1 (NPH1), a light-activated serine-threonine protein kinase. Mutations in three loci [NPH2, root phototropism 2 (RPT2), and NPH3] disrupt early signaling occurring downstream of the NPH1 photoreceptor. The NPH3 gene, now cloned, encodes a NPH1-interacting protein. NPH3 is a member of a large protein family, apparently specific to higher plants, and may function as an adapter or scaffold protein to bring together the enzymatic components of a NPH1-activated phosphorelay.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Motchoulski, A -- Liscum, E -- New York, N.Y. -- Science. 1999 Oct 29;286(5441):961-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10542152" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/genetics/*metabolism ; *Arabidopsis Proteins ; Cell Membrane/metabolism ; Cloning, Molecular ; Escherichia coli ; Molecular Sequence Data ; Phosphoproteins/genetics/*metabolism ; Photoreceptor Cells, Invertebrate/*metabolism ; Phototropism ; Plant Proteins/genetics/*metabolism ; Protein Binding ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-11-27
    Description: In the S locus-controlled self-incompatibility system of Brassica, recognition of self-related pollen at the surface of stigma epidermal cells leads to inhibition of pollen tube development. The female (stigmatic) determinant of this recognition reaction is a polymorphic transmembrane receptor protein kinase encoded at the S locus. Another highly polymorphic, anther-expressed gene, SCR, also encoded at the S locus, fulfills the requirements for the hypothesized pollen determinant. Loss-of-function and gain-of-function studies prove that the SCR gene product is necessary and sufficient for determining pollen self-incompatibility specificity, possibly by acting as a ligand for the stigmatic receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schopfer, C R -- Nasrallah, M E -- Nasrallah, J B -- GM57527/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 26;286(5445):1697-700.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10576728" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Brassica/genetics/*physiology ; Cysteine/chemistry ; *Genes, Plant ; Germination ; Glycoproteins/genetics/metabolism ; Haplotypes ; Ligands ; Molecular Sequence Data ; Nucleic Acid Hybridization ; Plant Proteins/chemistry/*genetics/metabolism/*physiology ; Plant Structures/genetics/physiology ; Pollen/genetics/*physiology ; Polymorphism, Genetic ; Protein Kinases/genetics/metabolism ; Sequence Alignment ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 1999-06-12
    Description: The editing enzyme double-stranded RNA adenosine deaminase includes a DNA binding domain, Zalpha, which is specific for left-handed Z-DNA. The 2.1 angstrom crystal structure of Zalpha complexed to DNA reveals that the substrate is in the left-handed Z conformation. The contacts between Zalpha and Z-DNA are made primarily with the "zigzag" sugar-phosphate backbone, which provides a basis for the specificity for the Z conformation. A single base contact is observed to guanine in the syn conformation, characteristic of Z-DNA. Intriguingly, the helix-turn-helix motif, frequently used to recognize B-DNA, is used by Zalpha to contact Z-DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schwartz, T -- Rould, M A -- Lowenhaupt, K -- Herbert, A -- Rich, A -- New York, N.Y. -- Science. 1999 Jun 11;284(5421):1841-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10364558" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Deaminase/*chemistry/metabolism ; Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; Helix-Turn-Helix Motifs ; Humans ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Conformation ; Protein Structure, Secondary ; RNA-Binding Proteins ; Substrate Specificity ; Water/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-12-22
    Description: The phenomenon of posttranscriptional gene silencing (PTGS), which occurs when a transgene is introduced into a cell, is poorly understood. Here, the qde-3 gene, which is required for the activation and maintenance of gene silencing in the fungus Neurospora crassa, was isolated. Sequence analysis revealed that the qde-3 gene belongs to the RecQ DNA helicase family. The QDE3 protein may function in the DNA-DNA interaction between introduced transgenes or with an endogenous gene required for gene-silencing activation. In animals, genes that are homologous to RecQ protein, such as the human genes for Bloom's syndrome and Werner's syndrome, may also function in PTGS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cogoni, C -- Macino, G -- New York, N.Y. -- Science. 1999 Dec 17;286(5448):2342-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Universita di Roma La Sapienza, Viale Regina Elena, 324, 00161 Roma, Italy. carlo@bce.med.uniroma1.it〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10600745" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/chemistry/genetics/*metabolism ; Amino Acid Sequence ; Bloom Syndrome/genetics ; Camptothecin/pharmacology ; DNA Helicases/chemistry/genetics/*metabolism ; DNA, Fungal/metabolism ; Enzyme Inhibitors/pharmacology ; Etoposide/pharmacology ; *Fungal Proteins ; *Gene Silencing ; Genes, Fungal ; Genetic Complementation Test ; Humans ; Molecular Sequence Data ; Molecular Weight ; Mutagenesis, Insertional ; Neurospora crassa/drug effects/enzymology/*genetics ; RecQ Helicases ; Sequence Alignment ; Transcription, Genetic ; Transgenes ; Werner Syndrome/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-12-22
    Description: The amino-terminal arginine-rich motif of coliphage HK022 Nun binds phage lambda nascent transcript, whereas the carboxyl-terminal domain interacts with RNA polymerase (RNAP) and blocks transcription elongation. RNA binding is inhibited by zinc (Zn2+) and stimulated by Escherichia coli NusA. To study these interactions, the Nun carboxyl terminus was extended by a cysteine residue conjugated to a photochemical cross-linker. The carboxyl terminus contacted NusA and made Zn2+-dependent intramolecular contacts. When Nun was added to a paused transcription elongation complex, it cross-linked to the DNA template. Nun may arrest transcription by anchoring RNAP to DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Watnick, R S -- Gottesman, M E -- New York, N.Y. -- Science. 1999 Dec 17;286(5448):2337-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics and Institute of Cancer Research, Columbia University, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10600743" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Azides ; Bacterial Proteins/metabolism ; Bacteriophage lambda/genetics/physiology ; Cross-Linking Reagents ; DNA, Viral/*metabolism ; DNA-Directed RNA Polymerases/metabolism ; Dithiothreitol/pharmacology ; Escherichia coli/enzymology/virology ; Escherichia coli Proteins ; Molecular Sequence Data ; *Peptide Elongation Factors ; Phenanthrolines/metabolism ; Protein Binding ; Pyridines ; RNA, Messenger/*metabolism ; RNA, Viral/metabolism ; Templates, Genetic ; Transcription Factors/chemistry/*metabolism ; *Transcription, Genetic ; Transcriptional Elongation Factors ; Viral Plaque Assay ; Viral Proteins/chemistry/*metabolism ; Zinc/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 1999-12-22
    Description: Ribosome recycling factor (RRF), together with elongation factor G (EF-G), catalyzes recycling of ribosomes after one round of protein synthesis. The crystal structure of RRF was determined at 2.55 angstrom resolution. The protein has an unusual fold where domain I is a long three-helix bundle and domain II is a three-layer beta/alpha/beta sandwich. The molecule superimposes almost perfectly with a transfer RNA (tRNA) except that the amino acid-binding 3' end is missing. The mimicry suggests that RRF interacts with the posttermination ribosomal complex in a similar manner to a tRNA, leading to disassembly of the complex. The structural arrangement of this mimicry is entirely different from that of other cases of less pronounced mimicry of tRNA so far described.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Selmer, M -- Al-Karadaghi, S -- Hirokawa, G -- Kaji, A -- Liljas, A -- New York, N.Y. -- Science. 1999 Dec 17;286(5448):2349-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biophysics, Center for Chemistry and Chemical Engineering, Lund University, Post Office Box 124, SE-22100 Lund, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10600747" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Models, Molecular ; *Molecular Mimicry ; Molecular Sequence Data ; Nucleic Acid Conformation ; Peptide Elongation Factor G/chemistry ; Protein Biosynthesis ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/*chemistry/*metabolism ; RNA, Bacterial/chemistry/metabolism ; RNA, Fungal/chemistry/metabolism ; RNA, Transfer/*chemistry/metabolism ; RNA, Transfer, Phe/chemistry/metabolism ; Ribosomal Proteins ; Ribosomes/*metabolism ; Sequence Alignment ; Thermotoga maritima/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-11-05
    Description: Diatom cell walls are regarded as a paradigm for controlled production of nanostructured silica, but the mechanisms allowing biosilicification to proceed at ambient temperature at high rates have remained enigmatic. A set of polycationic peptides (called silaffins) isolated from diatom cell walls were shown to generate networks of silica nanospheres within seconds when added to a solution of silicic acid. Silaffins contain covalently modified lysine-lysine elements. The first lysine bears a polyamine consisting of 6 to 11 repeats of the N-methyl-propylamine unit. The second lysine was identified as epsilon-N,N-dimethyl-lysine. These modifications drastically influence the silica-precipitating activity of silaffins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kroger, N -- Deutzmann, R -- Sumper, M -- New York, N.Y. -- Science. 1999 Nov 5;286(5442):1129-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lehrstuhl Biochemie I, Universitat Regensburg, 93053 Regensburg, Germany. nils.kroeger@vkl.uni-regensburg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10550045" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/*chemistry/genetics/isolation & purification/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Bacterial Proteins/*chemistry/genetics/isolation & purification/metabolism ; Cell Wall/chemistry/metabolism ; Chemical Precipitation ; Diatoms/*chemistry/metabolism ; Hydrogen-Ion Concentration ; Lysine/analogs & derivatives/chemistry ; Mass Spectrometry ; Molecular Sequence Data ; Molecular Weight ; Nuclear Magnetic Resonance, Biomolecular ; Peptides ; Propylamines/chemistry ; Protein Isoforms/chemistry ; Proteins/*chemistry/genetics/isolation & purification/metabolism ; Repetitive Sequences, Amino Acid ; Silicic Acid/chemistry/*metabolism ; Silicon Dioxide/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 1999-01-05
    Description: Recently, GBR1, a seven-transmembrane domain protein with high affinity for gamma-aminobutyric acid (GABA)B receptor antagonists, was identified. Here, a GBR1-related protein, GBR2, was shown to be coexpressed with GBR1 in many brain regions and to interact with it through a short domain in the carboxyl-terminal cytoplasmic tail. Heterologously expressed GBR2 mediated inhibition of adenylyl cyclase; however, inwardly rectifying potassium channels were activated by GABAB receptor agonists only upon coexpression with GBR1 and GBR2. Thus, the interaction of these receptors appears to be crucial for important physiological effects of GABA and provides a mechanism in receptor signaling pathways that involve a heterotrimeric GTP-binding protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuner, R -- Kohr, G -- Grunewald, S -- Eisenhardt, G -- Bach, A -- Kornau, H C -- New York, N.Y. -- Science. 1999 Jan 1;283(5398):74-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉BASF-LYNX Bioscience AG, Department of Neuroscience, Im Neuenheimer Feld 515, D-69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9872744" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclase Inhibitors ; Amino Acid Sequence ; Animals ; Brain/*metabolism ; Cell Line ; Cyclic AMP/metabolism ; Dimerization ; G Protein-Coupled Inwardly-Rectifying Potassium Channels ; GABA-B Receptor Agonists ; Humans ; In Situ Hybridization ; Molecular Sequence Data ; Neurons/metabolism ; Potassium/metabolism ; Potassium Channels/metabolism ; *Potassium Channels, Inwardly Rectifying ; RNA, Messenger/genetics/metabolism ; Rats ; Receptors, GABA/*chemistry/*metabolism ; Receptors, GABA-B/*chemistry/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 1999-06-26
    Description: Ethylene regulates plant growth, development, and responsiveness to a variety of stresses. Cloning of the Arabidopsis EIN2 gene identifies a central component of the ethylene signaling pathway. The amino-terminal integral membrane domain of EIN2 shows similarity to the disease-related Nramp family of metal-ion transporters. Expression of the EIN2 CEND is sufficient to constitutively activate ethylene responses and restores responsiveness to jasmonic acid and paraquat-induced oxygen radicals to mutant plants. EIN2 is thus recognized as a molecular link between previously distinct hormone response pathways. Plants may use a combinatorial mechanism for assessing various stresses by enlisting a common set of signaling molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alonso, J M -- Hirayama, T -- Roman, G -- Nourizadeh, S -- Ecker, J R -- New York, N.Y. -- Science. 1999 Jun 25;284(5423):2148-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10381874" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/chemistry/genetics/growth & development/*physiology ; *Arabidopsis Proteins ; Carrier Proteins/chemistry ; *Cation Transport Proteins ; Cloning, Molecular ; Cyclopentanes/metabolism/pharmacology ; *Defensins ; Ethylenes/*metabolism/pharmacology ; Gene Expression Regulation, Plant ; Genes, Plant ; Genetic Complementation Test ; Herbicides/pharmacology ; *Iron-Binding Proteins ; Membrane Proteins/chemistry/genetics/*physiology ; Microsomes/metabolism ; Molecular Sequence Data ; Mutation ; Nuclear Proteins/physiology ; Oxylipins ; Paraquat/pharmacology ; Plant Growth Regulators/*metabolism/pharmacology ; Plant Proteins/chemistry/genetics/*physiology ; Plants, Genetically Modified ; Protein Biosynthesis ; Protein Structure, Secondary ; Receptors, Cell Surface/chemistry/genetics/*physiology ; *Signal Transduction ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 1999-10-16
    Description: The cystic fibrosis gene encodes a chloride channel, CFTR (cystic fibrosis transmembrane conductance regulator), that regulates salt and water transport across epithelial tissues. Phosphorylation of the cytoplasmic regulatory (R) domain by protein kinase A activates CFTR by an unknown mechanism. The amino-terminal cytoplasmic tail of CFTR was found to control protein kinase A-dependent channel gating through a physical interaction with the R domain. This regulatory activity mapped to a cluster of acidic residues in the NH(2)-terminal tail; mutating these residues proportionately inhibited R domain binding and CFTR channel function. CFTR activity appears to be governed by an interdomain interaction involving the amino-terminal tail, which is a potential target for physiologic and pharmacologic modulators of this ion channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naren, A P -- Cormet-Boyaka, E -- Fu, J -- Villain, M -- Blalock, J E -- Quick, M W -- Kirk, K L -- DA10509/DA/NIDA NIH HHS/ -- DK50830/DK/NIDDK NIH HHS/ -- DK51868/DK/NIDDK NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Oct 15;286(5439):544-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Biophysics, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10521352" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; COS Cells ; Cyclic AMP/metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Cystic Fibrosis Transmembrane Conductance ; Regulator/*chemistry/genetics/*metabolism ; DNA Mutational Analysis ; Humans ; *Ion Channel Gating ; Molecular Sequence Data ; Mutation ; Oocytes ; Patch-Clamp Techniques ; Phosphorylation ; Protein Structure, Secondary ; Recombinant Fusion Proteins/metabolism ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2000-06-02
    Description: Blood cell production originates from a rare population of multipotent, self-renewing stem cells. A genome-wide gene expression analysis was performed in order to define regulatory pathways in stem cells as well as their global genetic program. Subtracted complementary DNA libraries from highly purified murine fetal liver stem cells were analyzed with bioinformatic and array hybridization strategies. A large percentage of the several thousand gene products that have been characterized correspond to previously undescribed molecules with properties suggestive of regulatory functions. The complete data, available in a biological process-oriented database, represent the molecular phenotype of the hematopoietic stem cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Phillips, R L -- Ernst, R E -- Brunk, B -- Ivanova, N -- Mahan, M A -- Deanehan, J K -- Moore, K A -- Overton, G C -- Lemischka, I R -- R01-DK42989/DK/NIDDK NIH HHS/ -- R01-RR04026/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2000 Jun 2;288(5471):1635-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10834841" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Computational Biology ; Databases, Factual ; Expressed Sequence Tags ; *Gene Expression Profiling ; Gene Library ; *Genes ; Hematopoietic Stem Cells/chemistry/cytology/*physiology ; Liver/cytology/embryology ; Membrane Proteins/chemistry/genetics/physiology ; Mice ; Molecular Sequence Data ; Polymerase Chain Reaction ; Proteins/chemistry/*genetics/*physiology ; Signal Transduction ; Transcription Factors/chemistry/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, E -- New York, N.Y. -- Science. 2000 Nov 3;290(5493):914-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11184728" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bacterial Toxins/chemistry/genetics/toxicity ; Heat-Shock Proteins/*chemistry/genetics/*metabolism/toxicity ; Hemolysin Proteins ; Humans ; Intracellular Membranes/metabolism ; Listeria monocytogenes/chemistry/metabolism/*pathogenicity ; Macrophages/microbiology ; Mice ; Phagosomes/metabolism/microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-04-01
    Description: Mechanosensory transduction underlies a wide range of senses, including proprioception, touch, balance, and hearing. The pivotal element of these senses is a mechanically gated ion channel that transduces sound, pressure, or movement into changes in excitability of specialized sensory cells. Despite the prevalence of mechanosensory systems, little is known about the molecular nature of the transduction channels. To identify such a channel, we analyzed Drosophila melanogaster mechanoreceptive mutants for defects in mechanosensory physiology. Loss-of-function mutations in the no mechanoreceptor potential C (nompC) gene virtually abolished mechanosensory signaling. nompC encodes a new ion channel that is essential for mechanosensory transduction. As expected for a transduction channel, D. melanogaster NOMPC and a Caenorhabditis elegans homolog were selectively expressed in mechanosensory organs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walker, R G -- Willingham, A T -- Zuker, C S -- 5T32GM08107/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Mar 24;287(5461):2229-34.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Howard Hughes Medical Institute, University of California, San Diego,CA 92093-0649, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10744543" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Adaptation, Physiological ; Amino Acid Sequence ; Animals ; Caenorhabditis elegans/genetics/physiology ; Chromosome Mapping ; Cloning, Molecular ; Dendrites/physiology ; *Drosophila Proteins ; Drosophila melanogaster/genetics/*physiology ; Gene Expression Profiling ; Genes, Insect ; Hair Cells, Auditory/physiology ; Insect Proteins/chemistry/genetics/physiology ; Ion Channels/chemistry/*genetics/*physiology ; Mechanoreceptors/*physiology ; Molecular Sequence Data ; Mutation ; Neurons, Afferent/*physiology ; Patch-Clamp Techniques ; Physical Stimulation ; Proprioception ; Sensation/physiology ; Sense Organs/physiology ; Signal Transduction ; Touch ; Transient Receptor Potential Channels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2000-05-29
    Description: TFIID is a large multiprotein complex that initiates assembly of the transcription machinery. It is unclear how TFIID recognizes promoters in vivo when templates are nucleosome-bound. Here, it is shown that TAFII250, the largest subunit of TFIID, contains two tandem bromodomain modules that bind selectively to multiply acetylated histone H4 peptides. The 2.1 angstrom crystal structure of the double bromodomain reveals two side-by-side, four-helix bundles with a highly polarized surface charge distribution. Each bundle contains an Nepsilon-acetyllysine binding pocket at its center, which results in a structure ideally suited for recognition of diacetylated histone H4 tails. Thus, TFIID may be targeted to specific chromatin-bound promoters and may play a role in chromatin recognition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jacobson, R H -- Ladurner, A G -- King, D S -- Tjian, R -- New York, N.Y. -- Science. 2000 May 26;288(5470):1422-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Molecular and Cell Biology, 401 Barker Hall, University of California, Berkeley, CA 94720-3204, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10827952" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; Cloning, Molecular ; Crystallography, X-Ray ; DNA-Binding Proteins/*chemistry/genetics/*metabolism ; Histone Acetyltransferases ; Histones/metabolism ; Humans ; Lysine/analogs & derivatives/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nuclear Proteins/*chemistry/genetics/*metabolism ; Nucleosomes/metabolism ; Promoter Regions, Genetic ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/metabolism ; *TATA-Binding Protein Associated Factors ; *Transcription Factor TFIID ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2000-12-23
    Description: In all eukaryotic organisms, inappropriate firing of replication origins during the G2 phase of the cell cycle is suppressed by cyclin-dependent kinases. Multicellular eukaryotes contain a second putative inhibitor of re-replication called geminin. Geminin is believed to block binding of the mini-chromosome maintenance (MCM) complex to origins of replication, but the mechanism of this inhibition is unclear. Here we show that geminin interacts tightly with Cdt1, a recently identified replication initiation factor necessary for MCM loading. The inhibition of DNA replication by geminin that is observed in cell-free DNA replication extracts is reversed by the addition of excess Cdt1. In the normal cell cycle, Cdt1 is present only in G1 and S, whereas geminin is present in S and G2 phases of the cell cycle. Together, these results suggest that geminin inhibits inappropriate origin firing by targeting Cdt1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wohlschlegel, J A -- Dwyer, B T -- Dhar, S K -- Cvetic, C -- Walter, J C -- Dutta, A -- CA60499/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2000 Dec 22;290(5500):2309-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11125146" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Cycle Proteins/chemistry/*metabolism/pharmacology ; Cell Nucleus/metabolism ; Cell-Free System ; Chromatin/metabolism ; *DNA Replication ; DNA-Binding Proteins/chemistry/*metabolism/pharmacology ; Evolution, Molecular ; G1 Phase ; G2 Phase ; Geminin ; HeLa Cells ; Humans ; *Interphase ; Molecular Sequence Data ; Molecular Weight ; Precipitin Tests ; Recombinant Fusion Proteins/metabolism ; Replication Origin ; *S Phase ; Xenopus ; Xenopus Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2000-01-22
    Description: Acidic media trigger cytoplasmic urease activity of the unique human gastric pathogen Helicobacter pylori. Deletion of ureI prevents this activation of cytoplasmic urease that is essential for bacterial acid resistance. UreI is an inner membrane protein with six transmembrane segments as shown by in vitro transcription/translation and membrane separation. Expression of UreI in Xenopus oocytes results in acid-stimulated urea uptake, with a pH profile similar to activation of cytoplasmic urease. Mutation of periplasmic histidine 123 abolishes stimulation. UreI-mediated transport is urea specific, passive, nonsaturable, nonelectrogenic, and temperature independent. UreI functions as a H+-gated urea channel regulating cytoplasmic urease that is essential for gastric survival and colonization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weeks, D L -- Eskandari, S -- Scott, D R -- Sachs, G -- DK41301/DK/NIDDK NIH HHS/ -- DK43462/DK/NIDDK NIH HHS/ -- DK46917/DK/NIDDK NIH HHS/ -- etc. -- New York, N.Y. -- Science. 2000 Jan 21;287(5452):482-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉VA Greater Los Angeles Healthcare System and Department of Physiology, University of California, Los Angeles, CA 90073, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10642549" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bacterial Proteins/chemistry/genetics/*metabolism ; Biological Transport ; Cell Membrane/chemistry ; Cell Membrane Permeability ; Cytoplasm/enzymology/metabolism ; Enzyme Activation ; Gastric Acid ; Glycosylation ; Helicobacter pylori/enzymology/growth & development/*metabolism ; Histidine/metabolism ; Humans ; Hydrogen-Ion Concentration ; *Membrane Transport Proteins ; Molecular Sequence Data ; Oocytes/enzymology ; Recombinant Proteins/metabolism ; Stomach/*microbiology ; Temperature ; Urea/*metabolism ; Urease/*metabolism ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2000-12-09
    Description: Genetic disorders affecting cellular responses to DNA damage are characterized by high rates of translocations involving antigen receptor loci and increased susceptibility to lymphoid malignancies. We report that the Nijmegen breakage syndrome protein (NBS1) and histone gamma-H2AX, which associate with irradiation-induced DNA double-strand breaks (DSBs), are also found at sites of VDJ (variable, diversity, joining) recombination-induced DSBs. In developing thymocytes, NBS1 and gamma-H2AX form nuclear foci that colocalize with the T cell receptor alpha locus in response to recombination activating gene (RAG) protein-mediated VDJ cleavage. Our results suggest that surveillance of T cell receptor recombination intermediates by NBS1 and gamma-H2AX may be important for preventing oncogenic translocations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721589/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721589/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, H T -- Bhandoola, A -- Difilippantonio, M J -- Zhu, J -- Brown, M J -- Tai, X -- Rogakou, E P -- Brotz, T M -- Bonner, W M -- Ried, T -- Nussenzweig, A -- Z99 CA999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2000 Dec 8;290(5498):1962-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11110662" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Nucleus/metabolism ; DNA Damage ; DNA-Binding Proteins/metabolism ; Fluorescent Antibody Technique ; *Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor ; *Genes, T-Cell Receptor alpha ; Histones/*metabolism ; Homeodomain Proteins/metabolism ; Mice ; Mice, Transgenic ; Microscopy, Confocal ; Molecular Sequence Data ; Nuclear Proteins/*metabolism ; Phosphorylation ; *Recombination, Genetic ; T-Lymphocytes/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2000-03-04
    Description: The synergistic response of cells to the stimulation of multiple receptors has been ascribed to receptor cross talk; however, the specific molecules that mediate the resultant signal amplification have not been defined. Here a 24-kilodalton single transmembrane protein, designated calcyon, we functionally characterize that interacts with the D1 dopamine receptor. Calcyon localizes to dendritic spines of D1 receptor-expressing pyramidal cells in prefrontal cortex. These studies delineate a mechanism of Gq- and Gs-coupled heterotrimeric GTP-binding protein-coupled receptor cross talk by which D1 receptors can shift effector coupling to stimulate robust intracellular calcium (Ca2+i) release as a result of interaction with calcyon. The role of calcyon in potentiating Ca2+-dependent signaling should provide insight into the D1 receptor-modulated cognitive functions of prefrontal cortex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lezcano, N -- Mrzljak, L -- Eubanks, S -- Levenson, R -- Goldman-Rakic, P -- Bergson, C -- MH56608/MH/NIMH NIH HHS/ -- P50 MH068789/MH/NIMH NIH HHS/ -- P50 MH44866/MH/NIMH NIH HHS/ -- R01 MH063271/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2000 Mar 3;287(5458):1660-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912-2300, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10698743" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Benzazepines/pharmacology ; Brain/cytology/metabolism ; Calcium/metabolism ; Calcium Signaling ; Cell Line ; Cyclic AMP/metabolism ; Dendrites/chemistry/metabolism ; Dopamine Agonists/pharmacology ; Female ; Heterotrimeric GTP-Binding Proteins/metabolism ; Humans ; Macaca mulatta ; Membrane Proteins/analysis/chemistry/genetics/*metabolism ; Molecular Sequence Data ; Prefrontal Cortex/cytology/*metabolism ; Pyramidal Cells/chemistry/*metabolism ; Rabbits ; *Receptor Cross-Talk ; Receptors, Dopamine D1/analysis/*metabolism ; Receptors, Neurotransmitter/metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2000-01-15
    Description: Abscisic acid (ABA) stimulates stomatal closure and thus supports water conservation by plants during drought. Mass spectrometry-generated peptide sequence information was used to clone a Vicia faba complementary DNA, AAPK, encoding a guard cell-specific ABA-activated serine-threonine protein kinase (AAPK). Expression in transformed guard cells of AAPK altered by one amino acid (lysine 43 to alanine 43) renders stomata insensitive to ABA-induced closure by eliminating ABA activation of plasma membrane anion channels. This information should allow cell-specific, targeted biotechnological manipulation of crop water status.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, J -- Wang, X Q -- Watson, M B -- Assmann, S M -- New York, N.Y. -- Science. 2000 Jan 14;287(5451):300-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10634783" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/*pharmacology ; Amino Acid Sequence ; Anions/*metabolism ; Biolistics ; Cloning, Molecular ; DNA, Complementary ; Enzyme Activation ; Fabaceae/cytology/enzymology/genetics/*physiology ; Genes, Plant ; Ion Channels/*metabolism ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Patch-Clamp Techniques ; Plant Leaves/cytology/enzymology/*physiology ; *Plant Proteins ; *Plants, Medicinal ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Protoplasts/enzymology/metabolism ; Recombinant Fusion Proteins/metabolism ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2000-12-16
    Description: Aging is genetically determined and environmentally modulated. In a study of longevity in the adult fruit fly, Drosophila melanogaster, we found that five independent P-element insertional mutations in a single gene resulted in a near doubling of the average adult life-span without a decline in fertility or physical activity. Sequence analysis revealed that the product of this gene, named Indy (for I'm not dead yet), is most closely related to a mammalian sodium dicarboxylate cotransporter-a membrane protein that transports Krebs cycle intermediates. Indy was most abundantly expressed in the fat body, midgut, and oenocytes: the principal sites of intermediary metabolism in the fly. Excision of the P element resulted in a reversion to normal life-span. These mutations may create a metabolic state that mimics caloric restriction, which has been shown to extend life-span.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rogina, B -- Reenan, R A -- Nilsen, S P -- Helfand, S L -- AG14532/AG/NIA NIH HHS/ -- AG16667/AG/NIA NIH HHS/ -- R37 AG016667/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2000 Dec 15;290(5499):2137-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Developmental Biology, School of Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington CT 06030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11118146" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*genetics ; Amino Acid Sequence ; Animals ; Behavior, Animal ; Biological Transport ; Carrier Proteins/chemistry/*genetics/metabolism ; Crosses, Genetic ; DNA Transposable Elements ; *Dicarboxylic Acid Transporters ; Digestive System/metabolism ; *Drosophila Proteins ; Drosophila melanogaster/*genetics/metabolism/physiology ; Energy Intake ; Energy Metabolism ; Fat Body/metabolism ; Female ; Fertility ; Gene Expression ; *Genes, Insect ; Longevity/*genetics ; Male ; Membrane Proteins/chemistry/metabolism ; Molecular Sequence Data ; Mutagenesis, Insertional ; Mutagenesis, Site-Directed ; *Organic Anion Transporters, Sodium-Dependent ; Sense Organs/cytology/metabolism ; Sequence Homology, Amino Acid ; *Symporters
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2000-10-06
    Description: Posttranscriptional gene silencing (PTGS) is an ancient eukaryotic regulatory mechanism in which a particular RNA sequence is targeted and destroyed. The helper component-proteinase (HC-Pro) of plant potyviruses suppresses PTGS in plants. Using a yeast two-hybrid system, we identified a calmodulin-related protein (termed rgs-CaM) that interacts with HC-Pro. Here we report that rgs-CaM, like HC-Pro itself, suppresses gene silencing. Our work is the first report identifying a cellular suppressor of PTGS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anandalakshmi, R -- Marathe, R -- Ge, X -- Herr, J M Jr -- Mau, C -- Mallory, A -- Pruss, G -- Bowman, L -- Vance, V B -- New York, N.Y. -- Science. 2000 Oct 6;290(5489):142-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11021800" target="_blank"〉PubMed〈/a〉
    Keywords: Agrobacterium tumefaciens/genetics ; Amino Acid Sequence ; Cysteine Endopeptidases/*metabolism ; *Gene Silencing ; Genes, Plant ; Green Fluorescent Proteins ; Luminescent Proteins/genetics ; Molecular Sequence Data ; Plant Proteins/chemistry/genetics/*metabolism ; Plant Tumors/genetics ; Plants, Genetically Modified ; *Plants, Toxic ; Plasmids ; Potexvirus/genetics ; RNA, Messenger/genetics/metabolism ; RNA, Plant/genetics/metabolism ; Tobacco/*genetics/metabolism ; Transcription, Genetic ; Transgenes ; Viral Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-03-10
    Description: Little is known about the molecular mechanisms of taste perception in animals, particularly the initial events of taste signaling. A large and diverse family of seven transmembrane domain proteins was identified from the Drosophila genome database with a computer algorithm that identifies proteins on the basis of structure. Eighteen of 19 genes examined were expressed in the Drosophila labellum, a gustatory organ of the proboscis. Expression was not detected in a variety of other tissues. The genes were not expressed in the labellum of a Drosophila mutant, pox-neuro70, in which taste neurons are eliminated. Tissue specificity of expression of these genes, along with their structural similarity, supports the possibility that the family encodes a large and divergent family of taste receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clyne, P J -- Warr, C G -- Carlson, J R -- DC-02174/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 2000 Mar 10;287(5459):1830-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, Yale University, Post Office Box 208103, New Haven, CT 06520-8103, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10710312" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Alternative Splicing ; Amino Acid Sequence ; Animals ; Chemoreceptor Cells/*metabolism ; *Drosophila Proteins ; Drosophila melanogaster/chemistry/*genetics/physiology ; Exons ; Gene Expression ; Genes, Insect ; In Situ Hybridization ; Insect Proteins/chemistry/*genetics/physiology ; Membrane Proteins/chemistry/*genetics/physiology ; Molecular Sequence Data ; Multigene Family ; Neurons, Afferent/*metabolism ; Organ Specificity ; Protein Structure, Tertiary ; Receptors, Cell Surface/chemistry/*genetics/physiology ; Reverse Transcriptase Polymerase Chain Reaction ; Sense Organs/chemistry/physiology ; Sequence Alignment ; Taste/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2000-07-07
    Description: Hypertension and pregnancy-related hypertension are major public health problems of largely unknown causes. We describe a mutation in the mineralocorticoid receptor (MR), S810L, that causes early-onset hypertension that is markedly exacerbated in pregnancy. This mutation results in constitutive MR activity and alters receptor specificity, with progesterone and other steroids lacking 21-hydroxyl groups, normally MR antagonists, becoming potent agonists. Structural and biochemical studies indicate that the mutation results in the gain of a van der Waals interaction between helix 5 and helix 3 that substitutes for interaction of the steroid 21-hydroxyl group with helix 3 in the wild-type receptor. This helix 5-helix 3 interaction is highly conserved among diverse nuclear hormone receptors, suggesting its general role in receptor activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Geller, D S -- Farhi, A -- Pinkerton, N -- Fradley, M -- Moritz, M -- Spitzer, A -- Meinke, G -- Tsai, F T -- Sigler, P B -- Lifton, R P -- New York, N.Y. -- Science. 2000 Jul 7;289(5476):119-23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, Room 154, 295 Congress Avenue, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10884226" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Aldosterone/*metabolism ; Amino Acid Sequence ; Amino Acid Substitution ; Base Sequence ; Binding, Competitive ; Dimerization ; Female ; Heterozygote ; Humans ; Hypertension/etiology/*genetics/metabolism ; Male ; Models, Molecular ; Molecular Sequence Data ; Pedigree ; Point Mutation ; Pregnancy ; *Pregnancy Complications, Cardiovascular/etiology/metabolism ; Progesterone/*metabolism ; Protein Conformation ; Protein Structure, Secondary ; Receptors, Mineralocorticoid/chemistry/*genetics/*metabolism ; Receptors, Steroid/chemistry/metabolism ; Steroids/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2000-11-10
    Description: Aurones are plant flavonoids that provide yellow color to the flowers of some popular ornamental plants, such as snapdragon and cosmos. In this study, we have identified an enzyme responsible for the synthesis of aurone from chalcones in the yellow snapdragon flower. The enzyme (aureusidin synthase) is a 39-kilodalton, copper-containing glycoprotein catalyzing the hydroxylation and/or oxidative cyclization of the precursor chalcones, 2',4',6',4-tetrahydroxychalcone and 2',4',6',3,4-pentahydroxychalcone. The complementary DNA encoding aureusidin synthase is expressed in the petals of aurone-containing varieties. DNA sequence analysis revealed that aureusidin synthase belongs to the plant polyphenol oxidase family, providing an unequivocal example of the function of the polyphenol oxidase homolog in plants, i.e., flower coloration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakayama, T -- Yonekura-Sakakibara, K -- Sato, T -- Kikuchi, S -- Fukui, Y -- Fukuchi-Mizutani, M -- Ueda, T -- Nakao, M -- Tanaka, Y -- Kusumi, T -- Nishino, T -- New York, N.Y. -- Science. 2000 Nov 10;290(5494):1163-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba-yama 07, Sendai 980-8579, Japan. nakayama@seika.che.tohoku.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11073455" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Angiosperms/*enzymology/genetics ; Benzofurans/*metabolism ; Catalysis ; Catechol Oxidase/chemistry/metabolism ; Cyclization ; DNA, Complementary ; Enzyme Precursors/chemistry/genetics/isolation & purification/metabolism ; Genes, Plant ; Hydroxylation ; Mixed Function Oxygenases/chemistry/genetics/isolation & purification/metabolism ; Molecular Sequence Data ; Molecular Weight ; Pigmentation ; Plant Structures/enzymology ; Plants/enzymology ; Sequence Homology, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2000-08-05
    Description: Autosomal dominant progressive external ophthalmoplegia is a rare human disease that shows a Mendelian inheritance pattern, but is characterized by large-scale mitochondrial DNA (mtDNA) deletions. We have identified two heterozygous missense mutations in the nuclear gene encoding the heart/skeletal muscle isoform of the adenine nucleotide translocator (ANT1) in five families and one sporadic patient. The familial mutation substitutes a proline for a highly conserved alanine at position 114 in the ANT1 protein. The analogous mutation in yeast caused a respiratory defect. These results indicate that ANT has a role in mtDNA maintenance and that a mitochondrial disease can be caused by a dominant mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaukonen, J -- Juselius, J K -- Tiranti, V -- Kyttala, A -- Zeviani, M -- Comi, G P -- Keranen, S -- Peltonen, L -- Suomalainen, A -- 1180/Telethon/Italy -- New York, N.Y. -- Science. 2000 Aug 4;289(5480):782-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Public Health Institute, Department of Human Molecular Genetics, Mannerheimintie 166, 00300 Helsinki, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10926541" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; DNA, Mitochondrial/*genetics/*metabolism ; Female ; Founder Effect ; Genes, Dominant ; Humans ; Isoenzymes/chemistry/genetics/metabolism ; Italy ; Male ; Mitochondrial ADP, ATP Translocases/chemistry/*genetics/*metabolism ; Molecular Sequence Data ; Mutation, Missense ; Ophthalmoplegia, Chronic Progressive External/enzymology/*genetics ; Oxygen Consumption ; Pedigree ; Point Mutation ; Saccharomyces cerevisiae/enzymology/genetics/metabolism ; Sequence Deletion ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2000-06-24
    Description: In Caenorhabditis elegans, the gonad acquires two U-shaped arms by the directed migration of its distal tip cells (DTCs) along the body wall basement membranes. Correct migration of DTCs requires the mig-17 gene, which encodes a member of the metalloprotease-disintegrin protein family. The MIG-17 protein is secreted from muscle cells of the body wall and localizes in the basement membranes of gonad. This localization is dependent on the disintegrin-like domain of MIG-17 and its catalytic activity. These results suggest that the MIG-17 metalloprotease directs migration of DTCs by remodeling the basement membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nishiwaki, K -- Hisamoto, N -- Matsumoto, K -- New York, N.Y. -- Science. 2000 Jun 23;288(5474):2205-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉PRESTO, Japan Science and Technology Corporation and Fundamental Research Laboratories, NEC Corporation, Miyukigaoka, Tsukuba 305-8501, Japan.nishiwak@frl.cl.nec.co.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10864868" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Basement Membrane/enzymology ; Caenorhabditis elegans/cytology/*enzymology/genetics/growth & development ; *Caenorhabditis elegans Proteins ; Cell Movement ; Cloning, Molecular ; Disintegrins/chemistry/genetics/*metabolism ; Extracellular Matrix/*metabolism ; Gene Expression Profiling ; Genes, Helminth ; Glycosylation ; Gonads/cytology/enzymology/growth & development ; Metalloendopeptidases/chemistry/genetics/*metabolism ; Molecular Sequence Data ; Muscles/cytology/enzymology ; Mutation ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism ; Sequence Alignment ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2000-08-19
    Description: The adenomatous polyposis coli gene (APC) is mutated in familial adenomatous polyposis and in sporadic colorectal tumors. Here the APC gene product is shown to bind through its armadillo repeat domain to a Rac-specific guanine nucleotide exchange factor (GEF), termed Asef. Endogenous APC colocalized with Asef in mouse colon epithelial cells and neuronal cells. Furthermore, APC enhanced the GEF activity of Asef and stimulated Asef-mediated cell flattening, membrane ruffling, and lamellipodia formation in MDCK cells. These results suggest that the APC-Asef complex may regulate the actin cytoskeletal network, cell morphology and migration, and neuronal function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kawasaki, Y -- Senda, T -- Ishidate, T -- Koyama, R -- Morishita, T -- Iwayama, Y -- Higuchi, O -- Akiyama, T -- New York, N.Y. -- Science. 2000 Aug 18;289(5482):1194-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular and Genetic Information, Institute for Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10947987" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein ; Amino Acid Sequence ; Animals ; Brain/metabolism ; Cell Line ; Cell Membrane/ultrastructure ; Cell Size ; Colon/cytology/metabolism ; Cytoplasm/metabolism ; Cytoskeletal Proteins/*metabolism ; Guanine Nucleotide Exchange Factors/chemistry/genetics/*metabolism ; Guanosine Diphosphate/metabolism ; Humans ; Immunoblotting ; Intestinal Mucosa/cytology/metabolism ; Mice ; Molecular Sequence Data ; Neurons/metabolism ; Precipitin Tests ; Protein Binding ; Protein Structure, Tertiary ; Rats ; Recombinant Fusion Proteins/metabolism ; Rho Guanine Nucleotide Exchange Factors ; Signal Transduction ; *Trans-Activators ; Transfection ; Two-Hybrid System Techniques ; beta Catenin ; rac GTP-Binding Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 1999-12-30
    Description: Voltage-gated proton (H+) channels are found in many human and animal tissues and play an important role in cellular defense against acidic stress. However, a molecular identification of these unique ion conductances has so far not been achieved. A 191-amino acid protein is described that, upon heterologous expression, has properties indistinguishable from those of native H+ channels. This protein is generated through alternative splicing of messenger RNA derived from the gene NOH-1 (NADPH oxidase homolog 1, where NADPH is the reduced form of nicotinamide adenine dinucleotide phosphate).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Banfi, B -- Maturana, A -- Jaconi, S -- Arnaudeau, S -- Laforge, T -- Sinha, B -- Ligeti, E -- Demaurex, N -- Krause, K H -- New York, N.Y. -- Science. 2000 Jan 7;287(5450):138-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biology of Aging Laboratory, Department of Geriatrics, Geneva University Hospitals, Geneva Medical School, CH-1211 Geneva 4, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10615049" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Amino Acid Sequence ; Cell Line ; Cytosol/metabolism ; Electric Conductivity ; Electron Transport ; Expressed Sequence Tags ; Humans ; Hydrogen/*metabolism ; Hydrogen-Ion Concentration ; Ion Channel Gating ; Ion Channels/chemistry/*genetics/metabolism ; Membrane Glycoproteins/chemistry/*genetics ; Molecular Sequence Data ; NADPH Oxidase/chemistry/*genetics ; Patch-Clamp Techniques ; Protons ; Transfection ; Tumor Cells, Cultured ; Zinc/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-06-17
    Description: Mutations introduced into human growth hormone (hGH) (Thr175 --〉 Gly-hGH) and the extracellular domain of the hGH receptor (Trp104 --〉 Gly-hGHbp) created a cavity at the protein-protein interface that resulted in binding affinity being reduced by a factor of 10(6). A small library of indole analogs was screened for small molecules that bind the cavity created by the mutations and restore binding affinity. The ligand 5-chloro-2-trichloromethylimidazole was found to increase the affinity of the mutant hormone for its receptor more than 1000-fold. Cell proliferation and JAK2 phosphorylation assays showed that the mutant hGH activates growth hormone signaling in the presence of added ligand. This approach may allow other protein-protein and protein-nucleic acid interactions to be switched on or off by the addition or depletion of exogenous small molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Z -- Zhou, D -- Schultz, P G -- New York, N.Y. -- Science. 2000 Jun 16;288(5473):2042-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10856217" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cell Division ; Cell Line ; Human Growth Hormone/chemistry/genetics/*metabolism ; Imidazoles/*chemistry/metabolism ; Janus Kinase 2 ; Ligands ; Mice ; Molecular Sequence Data ; Peptide Library ; Phosphorylation ; Protein Binding ; Protein-Tyrosine Kinases/metabolism ; *Proto-Oncogene Proteins ; Receptors, Somatotropin/chemistry/genetics/*metabolism ; Signal Transduction ; Structure-Activity Relationship ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2000-05-12
    Description: A critical function of tumor suppressor p53 is the induction of apoptosis in cells exposed to noxious stresses. We report a previously unidentified pro-apoptotic gene, Noxa. Expression of Noxa induction in primary mouse cells exposed to x-ray irradiation was dependent on p53. Noxa encodes a Bcl-2 homology 3 (BH3)-only member of the Bcl-2 family of proteins; this member contains the BH3 region but not other BH domains. When ectopically expressed, Noxa underwent BH3 motif-dependent localization to mitochondria and interacted with anti-apoptotic Bcl-2 family members, resulting in the activation of caspase-9. We also demonstrate that blocking the endogenous Noxa induction results in the suppression of apoptosis. Noxa may thus represent a mediator of p53-dependent apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oda, E -- Ohki, R -- Murasawa, H -- Nemoto, J -- Shibue, T -- Yamashita, T -- Tokino, T -- Taniguchi, T -- Tanaka, N -- New York, N.Y. -- Science. 2000 May 12;288(5468):1053-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10807576" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; *Apoptosis ; Caspase 9 ; Caspases/metabolism ; Cell Line ; Cells, Cultured ; DNA Damage ; Enzyme Activation ; Gene Expression Profiling ; Gene Expression Regulation ; Humans ; Mice ; Mitochondria/metabolism ; Molecular Sequence Data ; Promoter Regions, Genetic ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-bcl-2/chemistry/*physiology/*secretion ; RNA, Messenger/genetics/metabolism ; T-Lymphocytes/metabolism ; Tumor Suppressor Protein p53/*physiology ; bcl-2-Associated X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2000-10-29
    Description: The effective regulation of T cell responses is dependent on opposing signals transmitted through two related cell-surface receptors, CD28 and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). Dimerization of CTLA-4 is required for the formation of high-avidity complexes with B7 ligands and for transmission of signals that attenuate T cell activation. We determined the crystal structure of the extracellular portion of CTLA-4 to 2.0 angstrom resolution. CTLA-4 belongs to the immunoglobulin superfamily and displays a strand topology similar to Valpha domains, with an unusual mode of dimerization that places the B7 binding sites distal to the dimerization interface. This organization allows each CTLA-4 dimer to bind two bivalent B7 molecules and suggests that a periodic arrangement of these components within the immunological synapse may contribute to the regulation of T cell responsiveness.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ostrov, D A -- Shi, W -- Schwartz, J C -- Almo, S C -- Nathenson, S G -- AI07289/AI/NIAID NIH HHS/ -- AI42970/AI/NIAID NIH HHS/ -- CA09173/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 2000 Oct 27;290(5492):816-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11052947" target="_blank"〉PubMed〈/a〉
    Keywords: Abatacept ; Amino Acid Sequence ; Animals ; Antigen-Presenting Cells/immunology ; Antigens, CD ; Antigens, CD28/immunology/metabolism ; Antigens, CD80/chemistry/metabolism ; Antigens, Differentiation/*chemistry/*immunology/metabolism ; CTLA-4 Antigen ; Crystallography, X-Ray ; Dimerization ; Hydrogen Bonding ; *Immunoconjugates ; Ligands ; Lymphocyte Activation ; Mice ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Antigen, T-Cell/metabolism ; Signal Transduction ; T-Lymphocytes/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-08-26
    Description: Contact-mediated axon repulsion by ephrins raises an unresolved question: these cell surface ligands form a high-affinity multivalent complex with their receptors present on axons, yet rather than being bound, axons can be rapidly repelled. We show here that ephrin-A2 forms a stable complex with the metalloprotease Kuzbanian, involving interactions outside the cleavage region and the protease domain. Eph receptor binding triggered ephrin-A2 cleavage in a localized reaction specific to the cognate ligand. A cleavage-inhibiting mutation in ephrin-A2 delayed axon withdrawal. These studies reveal mechanisms for protease recognition and control of cell surface proteins, and, for ephrin-A2, they may provide a means for efficient axon detachment and termination of signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hattori, M -- Osterfield, M -- Flanagan, J G -- EY11559/EY/NEI NIH HHS/ -- HD29417/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2000 Aug 25;289(5483):1360-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Program in Neuroscience, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10958785" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Axons/*physiology ; Cell Adhesion ; Cell Communication ; Cell Membrane/metabolism ; Cells, Cultured ; Disintegrins/genetics/*metabolism ; *Drosophila Proteins ; Ephrin-A2 ; Gene Expression ; Glycosylphosphatidylinositols/metabolism ; Growth Cones/physiology ; Humans ; Ligands ; Metalloendopeptidases/genetics/*metabolism ; Mice ; Molecular Sequence Data ; Mutation ; Nervous System/embryology/enzymology ; Receptor Protein-Tyrosine Kinases/metabolism ; Receptor, EphA3 ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Transcription Factors/chemistry/genetics/*metabolism ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2000-08-05
    Description: Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) respond to a variety of different external stimuli and activate G proteins. GPCRs share many structural features, including a bundle of seven transmembrane alpha helices connected by six loops of varying lengths. We determined the structure of rhodopsin from diffraction data extending to 2.8 angstroms resolution. The highly organized structure in the extracellular region, including a conserved disulfide bridge, forms a basis for the arrangement of the seven-helix transmembrane motif. The ground-state chromophore, 11-cis-retinal, holds the transmembrane region of the protein in the inactive conformation. Interactions of the chromophore with a cluster of key residues determine the wavelength of the maximum absorption. Changes in these interactions among rhodopsins facilitate color discrimination. Identification of a set of residues that mediate interactions between the transmembrane helices and the cytoplasmic surface, where G-protein activation occurs, also suggests a possible structural change upon photoactivation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Palczewski, K -- Kumasaka, T -- Hori, T -- Behnke, C A -- Motoshima, H -- Fox, B A -- Le Trong, I -- Teller, D C -- Okada, T -- Stenkamp, R E -- Yamamoto, M -- Miyano, M -- EY09339/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2000 Aug 4;289(5480):739-45.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA. palczews@u.washington.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10926528" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Cattle ; Cell Membrane/chemistry ; Crystallography, X-Ray ; Heterotrimeric GTP-Binding Proteins/*metabolism ; Hydrogen Bonding ; Light ; Molecular Sequence Data ; Receptors, Cell Surface/*chemistry/metabolism ; Retinaldehyde/chemistry/metabolism ; Rhodopsin/*chemistry/metabolism ; Schiff Bases ; Stereoisomerism ; Vision, Ocular
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2000-07-15
    Description: Circadian clocks are time-keeping systems found in most organisms. In zebrafish, expression of the clock gene Period3 (Per3) oscillates throughout embryogenesis in the central nervous system and the retina. Per3 rhythmic expression was free-running and was reset by light but not by the developmental delays caused by low temperature. The time of fertilization had no effect on Per3 expression. Per3 messenger RNA accumulates rhythmically in oocytes and persists in embryos. Our results establish that the circadian clock functions during early embryogenesis in zebrafish. Inheritance of maternal clock gene products suggests a mechanism of phase inheritance through ovogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Delaunay, F -- Thisse, C -- Marchand, O -- Laudet, V -- Thisse, B -- New York, N.Y. -- Science. 2000 Jul 14;289(5477):297-300.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ecole Normale Superieure, CNRS UMR 5665, 46 allee d'Italie, 69364 Lyon Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10894777" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Circadian Rhythm/genetics ; *DNA-Binding Proteins ; Embryo, Nonmammalian/metabolism ; Embryonic Development ; Female ; Gene Expression Regulation, Developmental ; Light ; Molecular Sequence Data ; Nuclear Proteins/*genetics/physiology ; Period Circadian Proteins ; Proteins/genetics ; *Receptors, Cytoplasmic and Nuclear ; Transcription Factors ; Zebrafish/embryology/*physiology ; Zebrafish Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2001-10-20
    Description: The signal recognition particle (SRP) is a universally conserved ribonucleoprotein complex that mediates the cotranslational targeting of secretory and membrane proteins to cellular membranes. A crucial early step in SRP assembly in archaea and eukarya is the binding of protein SRP19 to specific sites on SRP RNA. Here we report the 1.8 angstrom resolution crystal structure of human SRP19 in complex with its primary binding site on helix 6 of SRP RNA, which consists of a stem-loop structure closed by an unusual GGAG tetraloop. Protein-RNA interactions are mediated by the specific recognition of a widened major groove and the tetraloop without any direct protein-base contacts and include a complex network of highly ordered water molecules. A model of the assembly of the SRP core comprising SRP19, SRP54, and SRP RNA based on crystallographic and biochemical data is proposed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wild, K -- Sinning, I -- Cusack, S -- New York, N.Y. -- Science. 2001 Oct 19;294(5542):598-601.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biochemie-Zentrum (BZH), University of Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany. klemens.wild@bzh.uni-heidelberg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11641499" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Pairing ; Base Sequence ; Binding Sites ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA/*chemistry/metabolism ; Signal Recognition Particle/*chemistry/metabolism ; Water/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2001-04-09
    Description: HIF (hypoxia-inducible factor) is a transcription factor that plays a pivotal role in cellular adaptation to changes in oxygen availability. In the presence of oxygen, HIF is targeted for destruction by an E3 ubiquitin ligase containing the von Hippel-Lindau tumor suppressor protein (pVHL). We found that human pVHL binds to a short HIF-derived peptide when a conserved proline residue at the core of this peptide is hydroxylated. Because proline hydroxylation requires molecular oxygen and Fe(2+), this protein modification may play a key role in mammalian oxygen sensing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ivan, M -- Kondo, K -- Yang, H -- Kim, W -- Valiando, J -- Ohh, M -- Salic, A -- Asara, J M -- Lane, W S -- Kaelin , W G Jr -- New York, N.Y. -- Science. 2001 Apr 20;292(5516):464-8. Epub 2001 Apr 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute and Brigham and Women's Hospital, Howard Hughes Medical Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11292862" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Basic Helix-Loop-Helix Transcription Factors ; Cell Hypoxia ; Cell Line ; Cobalt/pharmacology ; Deferoxamine/pharmacology ; Humans ; Hydroxylation ; Hydroxyproline/*metabolism ; *Ligases ; Mass Spectrometry ; Mice ; Molecular Sequence Data ; Oxygen/*physiology ; Protein Structure, Tertiary ; Proteins/*metabolism ; Recombinant Fusion Proteins/metabolism ; Trans-Activators/chemistry/genetics/*metabolism ; Transcription Factors/*metabolism ; Tumor Cells, Cultured ; *Tumor Suppressor Proteins ; *Ubiquitin-Protein Ligases ; Ubiquitins/metabolism ; Von Hippel-Lindau Tumor Suppressor Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2001-08-11
    Description: Hypertension is a major public health problem of largely unknown cause. Here, we identify two genes causing pseudohypoaldosteronism type II, a Mendelian trait featuring hypertension, increased renal salt reabsorption, and impaired K+ and H+ excretion. Both genes encode members of the WNK family of serine-threonine kinases. Disease-causing mutations in WNK1 are large intronic deletions that increase WNK1 expression. The mutations in WNK4 are missense, which cluster in a short, highly conserved segment of the encoded protein. Both proteins localize to the distal nephron, a kidney segment involved in salt, K+, and pH homeostasis. WNK1 is cytoplasmic, whereas WNK4 localizes to tight junctions. The WNK kinases and their associated signaling pathway(s) may offer new targets for the development of antihypertensive drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, F H -- Disse-Nicodeme, S -- Choate, K A -- Ishikawa, K -- Nelson-Williams, C -- Desitter, I -- Gunel, M -- Milford, D V -- Lipkin, G W -- Achard, J M -- Feely, M P -- Dussol, B -- Berland, Y -- Unwin, R J -- Mayan, H -- Simon, D B -- Farfel, Z -- Jeunemaitre, X -- Lifton, R P -- New York, N.Y. -- Science. 2001 Aug 10;293(5532):1107-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute; Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, CT 06510 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11498583" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Chromosome Mapping ; Chromosomes, Human, Pair 12/genetics ; Chromosomes, Human, Pair 17/genetics ; Cytoplasm/enzymology ; Female ; Gene Expression Regulation, Enzymologic ; Genetic Linkage ; Humans ; Hypertension/enzymology/*genetics/physiopathology ; Intercellular Junctions/enzymology ; Intracellular Signaling Peptides and Proteins ; Introns ; Kidney Tubules, Collecting/enzymology/ultrastructure ; Kidney Tubules, Distal/enzymology/ultrastructure ; Male ; Membrane Proteins/metabolism ; Microscopy, Fluorescence ; Molecular Sequence Data ; *Mutation ; Mutation, Missense ; Pedigree ; Phosphoproteins/metabolism ; Protein-Serine-Threonine Kinases/chemistry/*genetics/metabolism ; Pseudohypoaldosteronism/enzymology/*genetics/physiopathology ; Sequence Deletion ; Signal Transduction ; Zonula Occludens-1 Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2001-04-09
    Description: Hypoxia-inducible factor (HIF) is a transcriptional complex that plays a central role in the regulation of gene expression by oxygen. In oxygenated and iron replete cells, HIF-alpha subunits are rapidly destroyed by a mechanism that involves ubiquitylation by the von Hippel-Lindau tumor suppressor (pVHL) E3 ligase complex. This process is suppressed by hypoxia and iron chelation, allowing transcriptional activation. Here we show that the interaction between human pVHL and a specific domain of the HIF-1alpha subunit is regulated through hydroxylation of a proline residue (HIF-1alpha P564) by an enzyme we have termed HIF-alpha prolyl-hydroxylase (HIF-PH). An absolute requirement for dioxygen as a cosubstrate and iron as cofactor suggests that HIF-PH functions directly as a cellular oxygen sensor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jaakkola, P -- Mole, D R -- Tian, Y M -- Wilson, M I -- Gielbert, J -- Gaskell, S J -- von Kriegsheim, A -- Hebestreit, H F -- Mukherji, M -- Schofield, C J -- Maxwell, P H -- Pugh, C W -- Ratcliffe, P J -- New York, N.Y. -- Science. 2001 Apr 20;292(5516):468-72. Epub 2001 Apr 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Henry Wellcome Building of Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11292861" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Ascorbic Acid/pharmacology ; Cell Hypoxia ; DNA-Binding Proteins/chemistry/*metabolism ; Deferoxamine/pharmacology ; Ferrous Compounds/pharmacology ; Humans ; Hydroxylation ; Hydroxyproline/*metabolism ; Hypoxia-Inducible Factor 1 ; Hypoxia-Inducible Factor 1, alpha Subunit ; *Ligases ; Molecular Sequence Data ; Nuclear Proteins/chemistry/*metabolism ; Oxygen/*physiology ; Point Mutation ; Procollagen-Proline Dioxygenase/antagonists & inhibitors/*metabolism ; Protein Structure, Tertiary ; Proteins/*metabolism ; Recombinant Fusion Proteins/metabolism ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Transcription Factors/chemistry/*metabolism ; Tumor Cells, Cultured ; *Tumor Suppressor Proteins ; *Ubiquitin-Protein Ligases ; Ubiquitins/metabolism ; Von Hippel-Lindau Tumor Suppressor Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2001-07-28
    Description: Inorganic polyphosphate (polyP), a polymer of hundreds of phosphate (Pi) residues, accumulates in Escherichia coli in response to stresses, including amino acid starvation. Here we show that the adenosine 5'-triphosphate-dependent protease Lon formed a complex with polyP and degraded most of the ribosomal proteins, including S2, L9, and L13. Purified S2 also bound to polyP and formed a complex with Lon in the presence of polyP. Thus, polyP may promote ribosomal protein degradation by the Lon protease, thereby supplying the amino acids needed to respond to starvation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuroda, A -- Nomura, K -- Ohtomo, R -- Kato, J -- Ikeda, T -- Takiguchi, N -- Ohtake, H -- Kornberg, A -- New York, N.Y. -- Science. 2001 Jul 27;293(5530):705-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-4-1 Kagamiyama, Hiroshima 739-8527, Japan. akuroda@hiroshima-u.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11474114" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Dependent Proteases ; Adaptation, Physiological ; Adenosine Triphosphatases/genetics/metabolism ; Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Amino Acids/metabolism ; Bacterial Proteins/chemistry/*metabolism ; Endopeptidase Clp ; Escherichia coli/genetics/*metabolism ; *Escherichia coli Proteins ; Heat-Shock Proteins/genetics/*metabolism ; Molecular Sequence Data ; Mutation ; Phosphotransferases (Phosphate Group Acceptor)/genetics/metabolism ; Polyphosphates/*metabolism ; *Protease La ; Ribosomal Proteins/chemistry/*metabolism ; Ribosomes/metabolism ; Serine Endopeptidases/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2001-03-17
    Description: RNA editing in trypanosomes occurs by a series of enzymatic steps that are catalyzed by a macromolecular complex. The TbMP52 protein is shown to be a component of this complex, to have RNA ligase activity, and to be one of two adenylatable proteins in the complex. Regulated repression of TbMP52 blocks editing, which shows that it is a functional component of the editing complex. This repression is lethal in bloodforms of the parasite, indicating that editing is essential in the mammalian stage of the life cycle. The editing complex, which is present in all kinetoplastid parasites, may thus be a chemotherapeutic target.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schnaufer, A -- Panigrahi, A K -- Panicucci, B -- Igo, R P Jr -- Wirtz, E -- Salavati, R -- Stuart, K -- AI14102/AI/NIAID NIH HHS/ -- GM42188/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Mar 16;291(5511):2159-62. Epub 2001 Feb 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Seattle Biomedical Research Institute, Seattle, WA 98109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11251122" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Down-Regulation ; Gene Targeting ; Genes, Protozoan ; Ligases/chemistry/*genetics/*metabolism ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Parasitemia/parasitology ; Phosphorus-Oxygen Lyases/chemistry/*genetics/*metabolism ; Protozoan Proteins/chemistry/genetics/metabolism ; *RNA Editing ; RNA, Messenger/genetics/metabolism ; RNA, Protozoan/genetics/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Sequence Alignment ; Transfection ; Trypanosoma brucei brucei/enzymology/*genetics/growth & development ; Trypanosomiasis, African/drug therapy/parasitology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2001-06-02
    Description: Complement receptor 2 (CR2/CD21) is an important receptor that amplifies B lymphocyte activation by bridging the innate and adaptive immune systems. CR2 ligands include complement C3d and Epstein-Barr virus glycoprotein 350/220. We describe the x-ray structure of this CR2 domain in complex with C3d at 2.0 angstroms. The structure reveals extensive main chain interactions between C3d and only one short consensus repeat (SCR) of CR2 and substantial SCR side-side packing. These results provide a detailed understanding of receptor-ligand interactions in this protein family and reveal potential target sites for molecular drug design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Szakonyi, G -- Guthridge, J M -- Li, D -- Young, K -- Holers, V M -- Chen, X S -- R0-1 CA53615/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2001 Jun 1;292(5522):1725-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Genetics, University of Colorado Health Science Center, School of Medicine, Denver, CO 80262, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11387479" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal ; Complement C3d/chemistry/genetics/*metabolism ; Consensus Sequence ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Protein Conformation ; Protein Folding ; Protein Sorting Signals ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Complement 3d/*chemistry/immunology/*metabolism ; Recombinant Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2001-08-18
    Description: Organelle transport by myosin-V is down-regulated during mitosis, presumably by myosin-V phosphorylation. We used mass spectrometry phosphopeptide mapping to show that the tail of myosin-V was phosphorylated in mitotic Xenopus egg extract on a single serine residue localized in the carboxyl-terminal organelle-binding domain. Phosphorylation resulted in the release of the motor from the organelle. The phosphorylation site matched the consensus sequence of calcium/calmodulin-dependent protein kinase II (CaMKII), and inhibitors of CaMKII prevented myosin-V release. The modulation of cargo binding by phosphorylation is likely to represent a general mechanism regulating organelle transport by myosin-V.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karcher, R L -- Roland, J T -- Zappacosta, F -- Huddleston, M J -- Annan, R S -- Carr, S A -- Gelfand, V I -- GM-52111/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 17;293(5533):1317-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11509731" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Biological Transport ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors/*metabolism ; Calmodulin-Binding Proteins/chemistry/genetics/*metabolism ; Cell Extracts ; Egtazic Acid/analogs & derivatives/pharmacology ; Enzyme Inhibitors/pharmacology ; Interphase ; Mass Spectrometry ; Melanophores/metabolism/ultrastructure ; Melanosomes/*metabolism ; *Mitosis ; Molecular Motor Proteins/*metabolism ; Molecular Sequence Data ; Mutation ; *Myosin Type V ; Nerve Tissue Proteins/chemistry/genetics/*metabolism ; Ovum ; Peptides/pharmacology ; Phosphopeptides/analysis/metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Recombinant Fusion Proteins/metabolism ; Transfection ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2001-04-28
    Description: DNA, RNA, and regulatory molecules control gene expression through interactions with RNA polymerase (RNAP). We show that a short alpha helix at the tip of the flaplike domain that covers the RNA exit channel of RNAP contacts a nascent RNA stem-loop structure (hairpin) that inhibits transcription, and that this flap-tip helix is required for activity of the regulatory protein NusA. Protein-RNA cross-linking, molecular modeling, and effects of alterations in RNAP and RNA all suggest that a tripartite interaction of RNAP, NusA, and the hairpin inhibits nucleotide addition in the active site, which is located 65 angstroms away. These findings favor an allosteric model for regulation of transcript elongation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Toulokhonov, I -- Artsimovitch, I -- Landick, R -- GM38660/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Apr 27;292(5517):730-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11326100" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Sequence ; Bacterial Proteins/metabolism ; Base Sequence ; Binding Sites ; Catalysis ; DNA-Directed RNA Polymerases/*chemistry/genetics/*metabolism ; Escherichia coli/genetics ; Escherichia coli Proteins ; Models, Molecular ; Molecular Sequence Data ; Mutation ; *Nucleic Acid Conformation ; Oligonucleotides, Antisense ; *Peptide Elongation Factors ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA/*chemistry/metabolism ; Transcription Factors/metabolism ; Transcription, Genetic ; Transcriptional Elongation Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2001-02-13
    Description: Cryptochromes and phytochromes are the major photosensory receptors in plants and often regulate similar photomorphogenic responses. The molecular mechanisms underlying functional interactions of cryptochromes and phytochromes remain largely unclear. We have identified an Arabidopsis photomorphogenic mutant, sub1, which exhibits hypersensitive responses to blue light and far-red light. Genetic analyses indicate that SUB1 functions as a component of a cryptochrome signaling pathway and as a modulator of a phytochrome signaling pathway. The SUB1 gene encodes a Ca2+-binding protein that suppresses light-dependent accumulation of the transcription factor HY5.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, H -- Mockler, T -- Duong, H -- Lin, C -- GM 56265/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Jan 19;291(5503):487-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11161203" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Arabidopsis/genetics/growth & development/*metabolism ; *Arabidopsis Proteins ; Basic-Leucine Zipper Transcription Factors ; Calcium-Binding Proteins/chemistry/genetics/*metabolism ; Cryptochromes ; Darkness ; *Drosophila Proteins ; Epistasis, Genetic ; *Eye Proteins ; Flavoproteins/*metabolism ; Gene Expression Regulation, Plant ; Genes, Plant ; Light ; Molecular Sequence Data ; Mutation ; Nuclear Proteins/metabolism ; Phenotype ; *Photoreceptor Cells, Invertebrate ; Phytochrome/*metabolism ; Phytochrome A ; Plant Proteins/chemistry/genetics/*metabolism ; Receptors, G-Protein-Coupled ; Recombinant Fusion Proteins/metabolism ; Sequence Alignment ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2001-10-27
    Description: Skeletal muscle adapts to decreases in activity and load by undergoing atrophy. To identify candidate molecular mediators of muscle atrophy, we performed transcript profiling. Although many genes were up-regulated in a single rat model of atrophy, only a small subset was universal in all atrophy models. Two of these genes encode ubiquitin ligases: Muscle RING Finger 1 (MuRF1), and a gene we designate Muscle Atrophy F-box (MAFbx), the latter being a member of the SCF family of E3 ubiquitin ligases. Overexpression of MAFbx in myotubes produced atrophy, whereas mice deficient in either MAFbx or MuRF1 were found to be resistant to atrophy. These proteins are potential drug targets for the treatment of muscle atrophy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bodine, S C -- Latres, E -- Baumhueter, S -- Lai, V K -- Nunez, L -- Clarke, B A -- Poueymirou, W T -- Panaro, F J -- Na, E -- Dharmarajan, K -- Pan, Z Q -- Valenzuela, D M -- DeChiara, T M -- Stitt, T N -- Yancopoulos, G D -- Glass, D J -- New York, N.Y. -- Science. 2001 Nov 23;294(5547):1704-8. Epub 2001 Oct 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591-6707, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11679633" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cloning, Molecular ; Creatine Kinase/genetics ; Creatine Kinase, MM Form ; *DNA-Binding Proteins ; Gene Deletion ; *Gene Expression Profiling ; Hindlimb Suspension ; Humans ; Immobilization ; Isoenzymes/genetics ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Muscle Denervation ; Muscle Proteins/genetics ; Muscle, Skeletal/growth & development/*metabolism/pathology/physiopathology ; Muscular Atrophy/*genetics/pathology/physiopathology ; MyoD Protein/genetics ; Myogenic Regulatory Factor 5 ; Myogenin/genetics ; Peptide Synthases/chemistry/deficiency/genetics/*metabolism ; Phenotype ; Protein Binding ; RNA, Messenger/analysis/genetics ; Rats ; Rats, Sprague-Dawley ; SKP Cullin F-Box Protein Ligases ; *Trans-Activators ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2001-03-17
    Description: Caenorhabditis elegans oocytes, like those of most animals, arrest during meiotic prophase. Sperm promote the resumption of meiosis (maturation) and contraction of smooth muscle-like gonadal sheath cells, which are required for ovulation. We show that the major sperm cytoskeletal protein (MSP) is a bipartite signal for oocyte maturation and sheath contraction. MSP also functions in sperm locomotion, playing a role analogous to actin. Thus, during evolution, MSP has acquired extracellular signaling and intracellular cytoskeletal functions for reproduction. Proteins with MSP-like domains are found in plants, fungi, and other animals, suggesting that related signaling functions may exist in other phyla.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, M A -- Nguyen, V Q -- Lee, M H -- Kosinski, M -- Schedl, T -- Caprioli, R M -- Greenstein, D -- CA09592/CA/NCI NIH HHS/ -- GM57173/GM/NIGMS NIH HHS/ -- GM58008/GM/NIGMS NIH HHS/ -- HD07043/HD/NICHD NIH HHS/ -- HD25614/HD/NICHD NIH HHS/ -- R01 GM057173/GM/NIGMS NIH HHS/ -- R01 HD025614/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2001 Mar 16;291(5511):2144-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11251118" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Caenorhabditis elegans/*physiology ; Carrier Proteins/chemistry/physiology ; Cytoskeleton/chemistry/physiology ; Disorders of Sex Development ; Enzyme Activation ; Evolution, Molecular ; Female ; Gonads/cytology/physiology ; Helminth Proteins/chemistry/immunology/pharmacology/*physiology ; MAP Kinase Signaling System ; Male ; *Meiosis ; Membrane Proteins/chemistry/physiology ; Microinjections ; Mitogen-Activated Protein Kinases/metabolism ; Molecular Sequence Data ; Oocytes/*physiology ; Ovulation ; Phylogeny ; Protein Folding ; Protein Structure, Tertiary ; Pseudopodia/physiology ; Recombinant Proteins/pharmacology ; Signal Transduction ; Sperm Motility ; Spermatozoa/chemistry/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2001-12-18
    Description: The pore-forming subunits of canonical voltage-gated sodium and calcium channels are encoded by four repeated domains of six-transmembrane (6TM) segments. We expressed and characterized a bacterial ion channel (NaChBac) from Bacillus halodurans that is encoded by one 6TM segment. The sequence, especially in the pore region, is similar to that of voltage-gated calcium channels. The expressed channel was activated by voltage and was blocked by calcium channel blockers. However, the channel was selective for sodium. The identification of NaChBac as a functionally expressed bacterial voltage-sensitive ion-selective channel provides insight into both voltage-dependent activation and divalent cation selectivity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ren, D -- Navarro, B -- Xu, H -- Yue, L -- Shi, Q -- Clapham, D E -- New York, N.Y. -- Science. 2001 Dec 14;294(5550):2372-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Children's Hospital, Harvard Medical School, Enders 1309, 320 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11743207" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Bacillus/*chemistry/genetics/metabolism ; *Bacterial Proteins ; CHO Cells ; COS Cells ; Calcium/metabolism ; Calcium Channel Blockers/pharmacology ; Calcium Channels/chemistry/metabolism ; Cricetinae ; Dihydropyridines/pharmacology ; Genes, Bacterial ; Ion Channel Gating ; Membrane Potentials ; Molecular Sequence Data ; Molecular Weight ; Open Reading Frames ; Patch-Clamp Techniques ; Protein Structure, Tertiary ; Recombinant Proteins/metabolism ; Sodium/*metabolism ; Sodium Channels/chemistry/*genetics/*metabolism ; Tetrodotoxin/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2001-02-24
    Description: Little is known about the identity of endoplasmic reticulum (ER) export signals and how they are used to regulate the number of proteins on the cell surface. Here, we describe two ER export signals that profoundly altered the steady-state distribution of potassium channels and were required for channel localization to the plasma membrane. When transferred to other potassium channels or a G protein-coupled receptor, these ER export signals increased the number of functional proteins on the cell surface. Thus, ER export of membrane proteins is not necessarily limited by folding or assembly, but may be under the control of specific export signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ma, D -- Zerangue, N -- Lin, Y F -- Collins, A -- Yu, M -- Jan, Y N -- Jan, L Y -- New York, N.Y. -- Science. 2001 Jan 12;291(5502):316-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143-0725, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11209084" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Amino Acid Motifs ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; COS Cells ; Cell Line ; Cell Membrane/*metabolism ; Endoplasmic Reticulum/*metabolism ; G Protein-Coupled Inwardly-Rectifying Potassium Channels ; Glycosylation ; Golgi Apparatus/metabolism ; Kv1.2 Potassium Channel ; Mice ; Molecular Sequence Data ; Oocytes ; Potassium Channels/*chemistry/genetics/*metabolism ; *Potassium Channels, Inwardly Rectifying ; *Potassium Channels, Voltage-Gated ; Protein Folding ; *Protein Sorting Signals ; Protein Transport ; Receptors, GABA-B/chemistry/metabolism ; Receptors, Retinoic Acid/chemistry/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Retinoid X Receptors ; Transcription Factors/chemistry/metabolism ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2001-08-04
    Description: Transgenic crops producing insecticidal toxins from Bacillus thuringiensis (Bt) are widely used for pest control. Bt-resistant insect strains have been studied, but the molecular basis of resistance has remained elusive. Here, we show that disruption of a cadherin-superfamily gene by retrotransposon-mediated insertion was linked to high levels of resistance to the Bt toxin Cry1Ac in the cotton pest Heliothis virescens. Monitoring the early phases of Bt resistance evolution in the field has been viewed as crucial but extremely difficult, especially when resistance is recessive. Our findings enable efficient DNA-based screening for resistant heterozygotes by directly detecting the recessive allele.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gahan, L J -- Gould, F -- Heckel, D G -- New York, N.Y. -- Science. 2001 Aug 3;293(5531):857-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11486086" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Bacterial Proteins/*genetics/metabolism/*toxicity ; *Bacterial Toxins ; Base Sequence ; Cadherins/chemistry/*genetics/metabolism ; Endotoxins/*genetics/metabolism/*toxicity ; Female ; *Genes, Insect ; Genes, Recessive ; Gossypium/genetics ; Hemolysin Proteins ; Heterozygote ; *Insect Proteins ; Insecticide Resistance/genetics ; Male ; Molecular Sequence Data ; Moths/*genetics ; Mutagenesis, Insertional ; *Pest Control, Biological ; Physical Chromosome Mapping ; Plants, Genetically Modified ; Quantitative Trait, Heritable ; RNA, Messenger/genetics/metabolism ; Retroelements ; Terminal Repeat Sequences
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2001-04-03
    Description: Spiders (Araneae) spin high-performance silks from liquid fibroin proteins. Fibroin sequences from basal spider lineages reveal mosaics of amino acid motifs that differ radically from previously described spider silk sequences. The silk fibers of Araneae are constructed from many protein designs. Yet, the repetitive sequences of fibroins from orb-weaving spiders have been maintained, presumably by stabilizing selection, over 125 million years of evolutionary history. The retention of these conserved motifs since the Mesozoic and their convergent evolution in other structural superproteins imply that these sequences are central to understanding the exceptional mechanical properties of orb weaver silks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gatesy, J -- Hayashi, C -- Motriuk, D -- Woods, J -- Lewis, R -- New York, N.Y. -- Science. 2001 Mar 30;291(5513):2603-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11283372" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Conserved Sequence ; DNA, Complementary ; Evolution, Molecular ; Fibroins/*chemistry/genetics ; Insect Proteins/chemistry ; Lepidoptera/chemistry ; Molecular Sequence Data ; Phylogeny ; Proteins/*chemistry/genetics ; Repetitive Sequences, Amino Acid ; Sequence Alignment ; Silk ; Species Specificity ; Spiders/*chemistry/classification/genetics ; Tensile Strength
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...