ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Phosphorylation  (1,100)
  • American Association for the Advancement of Science (AAAS)  (1,100)
  • Blackwell Publishing Ltd
Collection
Keywords
Publisher
  • 101
    Publication Date: 1999-09-11
    Description: The cyclic expression of the period (PER) and timeless (TIM) proteins is critical for the molecular circadian feedback loop in Drosophila. The entrainment by light of the circadian clock is mediated by a reduction in TIM levels. To elucidate the mechanism of this process, the sensitivity of TIM regulation by light was tested in an in vitro assay with inhibitors of candidate proteolytic pathways. The data suggested that TIM is degraded through a ubiquitin-proteasome mechanism. In addition, in cultures from third-instar larvae, TIM degradation was blocked specifically by inhibitors of proteasome activity. Degradation appeared to be preceded by tyrosine phosphorylation. Finally, TIM was ubiquitinated in response to light in cultured cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naidoo, N -- Song, W -- Hunter-Ensor, M -- Sehgal, A -- New York, N.Y. -- Science. 1999 Sep 10;285(5434):1737-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10481010" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcysteine/analogs & derivatives/pharmacology ; Animals ; *Biological Clocks ; Cells, Cultured ; *Circadian Rhythm ; Cysteine Endopeptidases/*physiology ; Cysteine Proteinase Inhibitors/pharmacology ; Darkness ; Drosophila ; *Drosophila Proteins ; Feedback ; Insect Proteins/*metabolism ; Leucine/analogs & derivatives/pharmacology ; Leupeptins/pharmacology ; *Light ; Multienzyme Complexes/*physiology ; Neurons/*metabolism ; Phosphorylation ; Phosphotyrosine/metabolism ; Protease Inhibitors/pharmacology ; Proteasome Endopeptidase Complex ; Ubiquitins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-01-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hagmann, M -- New York, N.Y. -- Science. 1999 Dec 24;286(5449):2433-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10636795" target="_blank"〉PubMed〈/a〉
    Keywords: *Cell Cycle ; Checkpoint Kinase 2 ; Genes, Tumor Suppressor ; Genes, p53 ; Humans ; Li-Fraumeni Syndrome/enzymology/*genetics/pathology ; Mutation ; Phosphorylation ; *Protein Kinases ; Protein-Serine-Threonine Kinases/*genetics/metabolism ; Signal Transduction ; Tumor Cells, Cultured ; Tumor Suppressor Protein p53/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 1999-01-08
    Description: The role of STAT (signal transducer and activator of transcription) proteins in T cell receptor (TCR) signaling was analyzed. STAT5 became immediately and transiently phosphorylated on tyrosine 694 in response to TCR stimulation. Expression of the protein tyrosine kinase Lck, a key signaling protein in the TCR complex, activated DNA binding of transfected STAT5A and STAT5B to specific STAT inducible elements. The role of Lck in STAT5 activation was confirmed in a Lck-deficient T cell line in which the activation of STAT5 by TCR stimulation was abolished. Expression of Lck induced specific interaction of STAT5 with the subunits of the TCR, indicating that STAT5 may be directly involved in TCR signaling. Stimulation of T cell clones and primary T cell lines also induced the association of STAT5 with the TCR complex. Inhibition of STAT5 function by expression of a dominant negative mutant STAT5 reduced antigen-stimulated proliferation of T cells. Thus, TCR stimulation appears to directly activate STAT5, which may participate in the regulation of gene transcription and T cell proliferation during immunological responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Welte, T -- Leitenberg, D -- Dittel, B N -- al-Ramadi, B K -- Xie, B -- Chin, Y E -- Janeway, C A Jr -- Bothwell, A L -- Bottomly, K -- Fu, X Y -- AI34522/AI/NIAID NIH HHS/ -- GM46367/GM/NIGMS NIH HHS/ -- GM55590/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Jan 8;283(5399):222-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9880255" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies ; Antigen-Presenting Cells/immunology ; Antigens/immunology ; Cell Division ; Cell Line ; DNA-Binding Proteins/genetics/*metabolism ; Interferon-gamma/pharmacology ; Interleukin-2/pharmacology ; *Lymphocyte Activation ; Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics/metabolism ; Membrane Proteins/genetics/immunology/metabolism ; Mice ; Mice, Transgenic ; *Milk Proteins ; Phosphorylation ; Phosphotyrosine/metabolism ; Receptors, Antigen, T-Cell/genetics/immunology/*metabolism ; STAT5 Transcription Factor ; Signal Transduction ; T-Lymphocytes, Helper-Inducer/cytology/*immunology/metabolism ; Th2 Cells/immunology/metabolism ; Trans-Activators/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 1999-10-16
    Description: The cystic fibrosis gene encodes a chloride channel, CFTR (cystic fibrosis transmembrane conductance regulator), that regulates salt and water transport across epithelial tissues. Phosphorylation of the cytoplasmic regulatory (R) domain by protein kinase A activates CFTR by an unknown mechanism. The amino-terminal cytoplasmic tail of CFTR was found to control protein kinase A-dependent channel gating through a physical interaction with the R domain. This regulatory activity mapped to a cluster of acidic residues in the NH(2)-terminal tail; mutating these residues proportionately inhibited R domain binding and CFTR channel function. CFTR activity appears to be governed by an interdomain interaction involving the amino-terminal tail, which is a potential target for physiologic and pharmacologic modulators of this ion channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naren, A P -- Cormet-Boyaka, E -- Fu, J -- Villain, M -- Blalock, J E -- Quick, M W -- Kirk, K L -- DA10509/DA/NIDA NIH HHS/ -- DK50830/DK/NIDDK NIH HHS/ -- DK51868/DK/NIDDK NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Oct 15;286(5439):544-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Biophysics, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10521352" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; COS Cells ; Cyclic AMP/metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Cystic Fibrosis Transmembrane Conductance ; Regulator/*chemistry/genetics/*metabolism ; DNA Mutational Analysis ; Humans ; *Ion Channel Gating ; Molecular Sequence Data ; Mutation ; Oocytes ; Patch-Clamp Techniques ; Phosphorylation ; Protein Structure, Secondary ; Recombinant Fusion Proteins/metabolism ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2000-12-02
    Description: After intravascular delivery of genetically marked adult mouse bone marrow into lethally irradiated normal adult hosts, donor-derived cells expressing neuronal proteins (neuronal phenotypes) developed in the central nervous system. Flow cytometry revealed a population of donor-derived cells in the brain with characteristics distinct from bone marrow. Confocal microscopy of individual cells showed that hundreds of marrow-derived cells in brain sections expressed gene products typical of neurons (NeuN, 200-kilodalton neurofilament, and class III beta-tubulin) and were able to activate the transcription factor cAMP response element-binding protein (CREB). The generation of neuronal phenotypes in the adult brain 1 to 6 months after an adult bone marrow transplant demonstrates a remarkable plasticity of adult tissues with potential clinical applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brazelton, T R -- Rossi, F M -- Keshet, G I -- Blau, H M -- AG09521/AG/NIA NIH HHS/ -- CA59717/CA/NCI NIH HHS/ -- HD18179/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2000 Dec 1;290(5497):1775-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Pharmacology, CCSR 4215, 269 Campus Drive, Stanford University, Stanford, CA 94305-5175, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11099418" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomarkers/analysis ; Bone Marrow Cells/*cytology ; *Bone Marrow Transplantation ; Brain/*cytology ; Cell Differentiation ; Cell Size ; Cyclic AMP Response Element-Binding Protein/metabolism ; Flow Cytometry ; Gene Expression ; Green Fluorescent Proteins ; Luminescent Proteins/analysis ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Microscopy, Confocal ; Nerve Tissue Proteins/analysis/genetics ; Neurons/chemistry/*cytology/metabolism ; Olfactory Bulb/cytology ; Phenotype ; Phosphorylation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, O -- New York, N.Y. -- Science. 2000 Oct 6;290(5489):67.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11183152" target="_blank"〉PubMed〈/a〉
    Keywords: *Apoptosis ; DNA Damage ; DNA Repair ; Gamma Rays ; Gene Expression ; Humans ; Membrane Potentials ; Mitochondria/physiology ; Phosphorylation ; Phosphoserine/metabolism ; Promoter Regions, Genetic ; Tumor Suppressor Protein p53/*metabolism ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-04-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, O -- New York, N.Y. -- Science. 2000 Apr 7;288(5463):69.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10766638" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aurora Kinases ; Cell Cycle Proteins ; Genes, mos ; MAP Kinase Signaling System ; *Meiosis ; Oocytes/*cytology/metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Poly A/metabolism ; Progesterone/*metabolism ; Protein Biosynthesis ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins c-mos/genetics/*metabolism ; RNA, Messenger/genetics/metabolism ; RNA-Binding Proteins/metabolism ; Receptors, Progesterone/metabolism ; Transcription Factors/metabolism ; Xenopus ; *Xenopus Proteins ; *mRNA Cleavage and Polyadenylation Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2000-08-26
    Description: Whereas T helper cells recognize peptide-major histocompatibility complex (MHC) class II complexes through their T cell receptors (TCRs), CD4 binds to an antigen-independent region of the MHC. Using green fluorescent protein-tagged chimeras and three-dimensional video microscopy, we show that CD4 and TCR-associated CD3zeta cluster in the interface coincident with increases in intracellular calcium. Signaling-, costimulation-, and cytoskeleton-dependent processes then stabilize CD3zeta in a single cluster at the center of the interface, while CD4 moves to the periphery. Thus, the CD4 coreceptor may serve primarily to "boost" recognition of ligand by the TCR and may not be required once activation has been initiated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krummel, M F -- Sjaastad, M D -- Wulfing, C -- Davis, M M -- New York, N.Y. -- Science. 2000 Aug 25;289(5483):1349-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Stanford University School of Medicine, and the Howard Hughes Medical Institute, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10958781" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen-Presenting Cells/immunology ; Antigens, CD3/*metabolism ; Antigens, CD4/*metabolism ; Calcium Signaling ; Cell Line ; Cytoskeleton/physiology ; Histocompatibility Antigens Class II/immunology/metabolism ; Ligands ; *Lymphocyte Activation ; Microscopy, Video ; Phosphorylation ; Receptors, Antigen, T-Cell/immunology/metabolism ; Recombinant Fusion Proteins/metabolism ; T-Lymphocytes, Helper-Inducer/*immunology/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-03-24
    Description: Sensory axons become functional late in development when Schwann cells (SC) stop proliferating and differentiate into distinct phenotypes. We report that impulse activity in premyelinated axons can inhibit proliferation and differentiation of SCs. This neuron-glial signaling is mediated by adenosine triphosphate acting through P2 receptors on SCs and intracellular signaling pathways involving Ca2+, Ca2+/calmodulin kinase, mitogen-activated protein kinase, cyclic adenosine 3',5'-monophosphate response element binding protein, and expression of c-fos and Krox-24. Adenosine triphosphate arrests maturation of SCs in an immature morphological stage and prevents expression of O4, myelin basic protein, and the formation of myelin. Through this mechanism, functional activity in the developing nervous system could delay terminal differentiation of SCs until exposure to appropriate axon-derived signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stevens, B -- Fields, R D -- New York, N.Y. -- Science. 2000 Mar 24;287(5461):2267-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Developmental Neurobiology, National Institutes of Health, National Institute of Child Health and Human Development, Building 49, Room 5A38, 49 Convent Drive, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10731149" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Adenosine Triphosphate/metabolism ; Animals ; Axons/*physiology ; Calcium/metabolism ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cell Differentiation ; Cell Division ; Cells, Cultured ; Coculture Techniques ; Cyclic AMP Response Element-Binding Protein/metabolism ; DNA-Binding Proteins/genetics/metabolism ; Early Growth Response Protein 1 ; Electric Stimulation ; Ganglia, Spinal/physiology ; Gene Expression Regulation, Developmental ; Genes, fos ; *Immediate-Early Proteins ; Mice ; Microscopy, Confocal ; Myelin Sheath/metabolism ; Neurons, Afferent/*physiology ; Phosphorylation ; Proto-Oncogene Proteins c-fos/metabolism ; Receptors, Purinergic P2/metabolism ; Schwann Cells/*cytology/*physiology ; Signal Transduction ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2000-09-29
    Description: A20 is a cytoplasmic zinc finger protein that inhibits nuclear factor kappaB (NF-kappaB) activity and tumor necrosis factor (TNF)-mediated programmed cell death (PCD). TNF dramatically increases A20 messenger RNA expression in all tissues. Mice deficient for A20 develop severe inflammation and cachexia, are hypersensitive to both lipopolysaccharide and TNF, and die prematurely. A20-deficient cells fail to terminate TNF-induced NF-kappaB responses. These cells are also more susceptible than control cells to undergo TNF-mediated PCD. Thus, A20 is critical for limiting inflammation by terminating TNF-induced NF-kappaB responses in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582399/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582399/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, E G -- Boone, D L -- Chai, S -- Libby, S L -- Chien, M -- Lodolce, J P -- Ma, A -- 5T32GM07183/GM/NIGMS NIH HHS/ -- R01 DK052751/DK/NIDDK NIH HHS/ -- T32GM07839/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Sep 29;289(5488):2350-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, The University of Chicago, 5841 South Maryland Avenue, MC 6084, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11009421" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Cachexia/pathology/physiopathology ; Cells, Cultured ; Cysteine Endopeptidases ; DNA/metabolism ; DNA-Binding Proteins/genetics/metabolism ; Fibroblasts/metabolism ; Gene Targeting ; *I-kappa B Proteins ; Inflammation/pathology/*physiopathology ; Interleukin-1/pharmacology ; Intestines/pathology ; Intracellular Signaling Peptides and Proteins ; Kidney/pathology ; Lipopolysaccharides/immunology ; Liver/pathology ; Mice ; NF-kappa B/*metabolism ; Nuclear Proteins ; Phosphorylation ; Proteins/genetics/*physiology ; Skin/pathology ; T-Lymphocytes/cytology/metabolism ; Tumor Necrosis Factor-alpha/*pharmacology ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2000-10-06
    Description: The signal transducers and activators of transcription (STAT) transcription factors become phosphorylated on tyrosine and translocate to the nucleus after stimulation of cells with growth factors or cytokines. We show that the Rac1 guanosine triphosphatase can bind to and regulate STAT3 activity. Dominant negative Rac1 inhibited STAT3 activation by growth factors, whereas activated Rac1 stimulated STAT3 phosphorylation on both tyrosine and serine residues. Moreover, activated Rac1 formed a complex with STAT3 in mammalian cells. Yeast two-hybrid analysis indicated that STAT3 binds directly to active but not inactive Rac1 and that the interaction occurs via the effector domain. Rac1 may serve as an alternate mechanism for targeting STAT3 to tyrosine kinase signaling complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Simon, A R -- Vikis, H G -- Stewart, S -- Fanburg, B L -- Cochran, B H -- Guan, K L -- GM-54304/GM/NIGMS NIH HHS/ -- K08-HL-03547/HL/NHLBI NIH HHS/ -- P30-DK34928/DK/NIDDK NIH HHS/ -- etc. -- New York, N.Y. -- Science. 2000 Oct 6;290(5489):144-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Pulmonary and Critical Care Division, Tupper Research Institute, New England Medical Center, Boston, MA 02111, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11021801" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; COS Cells ; Cell Line ; Cercopithecus aethiops ; DNA-Binding Proteins/genetics/*metabolism ; Enzyme Activation ; Epidermal Growth Factor/pharmacology ; Gene Expression Regulation ; Genes, Reporter ; Genetic Vectors ; Guanine Nucleotide Exchange Factors/genetics/metabolism ; Humans ; Janus Kinase 2 ; Mutation ; Neoplasm Proteins ; Phosphorylation ; Phosphoserine/metabolism ; Phosphotyrosine/metabolism ; Protein-Tyrosine Kinases/metabolism ; Proteins/genetics/metabolism ; *Proto-Oncogene Proteins ; Rats ; STAT3 Transcription Factor ; Signal Transduction ; Trans-Activators/genetics/*metabolism ; Transfection ; Two-Hybrid System Techniques ; rac1 GTP-Binding Protein/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-10-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mizzen, C A -- Allis, C D -- New York, N.Y. -- Science. 2000 Sep 29;289(5488):2290-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA. cam8y@virginia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11041795" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyltransferases/metabolism ; Animals ; Cell Cycle ; Chromatin/*metabolism ; DNA/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Drosophila/genetics ; Gene Expression Regulation ; Histone Acetyltransferases ; Histone Deacetylases/metabolism ; Histones/*metabolism ; Nuclear Proteins/genetics/*metabolism ; Nucleosomes/metabolism ; Phosphorylation ; Promoter Regions, Genetic ; *Saccharomyces cerevisiae Proteins ; TATA Box ; *TATA-Binding Protein Associated Factors ; Trans-Activators/*metabolism ; Transcription Factor TFIID ; Transcription Factors, TFII/metabolism ; *Transcriptional Activation ; Ubiquitins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-10-14
    Description: The ubiquitin pathway in the cell is an elegant system for targeting unwanted proteins for degradation. Three enzymes, E1, E2, and E3, are responsible for attaching the ubiquitin tag to proteins destined to be chopped up. In their Perspective, Joazeiro and Hunter discuss new structural findings that reveal the part played by an E3 called c-Cbl in this ubiquitinating process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joazeiro, C A -- Hunter, T -- New York, N.Y. -- Science. 2000 Sep 22;289(5487):2061-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology and Virology Laboratory, Salk Institute, La Jolla, CA 92037, USA. cjoazeiro@aim.salk.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11032556" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; Ligases/chemistry/*metabolism ; Models, Molecular ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/*metabolism ; Proto-Oncogene Proteins/*chemistry/*metabolism ; Proto-Oncogene Proteins c-cbl ; Receptor Protein-Tyrosine Kinases/metabolism ; Substrate Specificity ; *Ubiquitin-Conjugating Enzymes ; Ubiquitin-Protein Ligases ; Ubiquitins/*metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2000-12-09
    Description: Genetic disorders affecting cellular responses to DNA damage are characterized by high rates of translocations involving antigen receptor loci and increased susceptibility to lymphoid malignancies. We report that the Nijmegen breakage syndrome protein (NBS1) and histone gamma-H2AX, which associate with irradiation-induced DNA double-strand breaks (DSBs), are also found at sites of VDJ (variable, diversity, joining) recombination-induced DSBs. In developing thymocytes, NBS1 and gamma-H2AX form nuclear foci that colocalize with the T cell receptor alpha locus in response to recombination activating gene (RAG) protein-mediated VDJ cleavage. Our results suggest that surveillance of T cell receptor recombination intermediates by NBS1 and gamma-H2AX may be important for preventing oncogenic translocations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721589/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721589/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, H T -- Bhandoola, A -- Difilippantonio, M J -- Zhu, J -- Brown, M J -- Tai, X -- Rogakou, E P -- Brotz, T M -- Bonner, W M -- Ried, T -- Nussenzweig, A -- Z99 CA999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2000 Dec 8;290(5498):1962-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11110662" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Nucleus/metabolism ; DNA Damage ; DNA-Binding Proteins/metabolism ; Fluorescent Antibody Technique ; *Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor ; *Genes, T-Cell Receptor alpha ; Histones/*metabolism ; Homeodomain Proteins/metabolism ; Mice ; Mice, Transgenic ; Microscopy, Confocal ; Molecular Sequence Data ; Nuclear Proteins/*metabolism ; Phosphorylation ; *Recombination, Genetic ; T-Lymphocytes/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2000-02-11
    Description: The roles of phosphoinositide 3-kinase (PI3K) and phospholipase C (PLC) in chemoattractant-elicited responses were studied in mice lacking these key enzymes. PI3Kgamma was required for chemoattractant-induced production of phosphatidylinositol 3,4,5-trisphosphate [PtdIns (3,4,5)P3] and has an important role in chemoattractant-induced superoxide production and chemotaxis in mouse neutrophils and in production of T cell-independent antigen-specific antibodies composed of the immunoglobulin lambda light chain (TI-IglambdaL). The study of the mice lacking PLC-beta2 and -beta3 revealed that the PLC pathways have an important role in chemoattractant-mediated production of superoxide and regulation of protein kinases, but not chemotaxis. The PLC pathways also appear to inhibit the chemotactic activity induced by certain chemoattractants and to suppress TI-IglambdaL production.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Z -- Jiang, H -- Xie, W -- Zhang, Z -- Smrcka, A V -- Wu, D -- New York, N.Y. -- Science. 2000 Feb 11;287(5455):1046-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Rochester, Rochester, NY 14642, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10669417" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/immunology ; Chemokine CCL4 ; Chemotactic Factors/*pharmacology ; Chemotaxis, Leukocyte/*physiology ; Immunoglobulin lambda-Chains/biosynthesis ; Isoenzymes/*metabolism ; Macrophage Inflammatory Proteins/pharmacology ; Mice ; N-Formylmethionine Leucyl-Phenylalanine/pharmacology ; Neutrophil Infiltration ; Neutrophils/metabolism/*physiology ; Peritonitis/immunology ; Phosphatidylinositol 3-Kinases/*metabolism ; Phosphatidylinositol Phosphates/metabolism ; Phospholipase C beta ; Phosphorylation ; *Signal Transduction ; Skin Ulcer/pathology ; Superoxides/metabolism ; Type C Phospholipases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2000-07-06
    Description: Definition of cellular responses to cytokines often involves cross-communication through their respective receptors. Here, signaling by interferon-gamma (IFN-gamma) is shown to depend on the IFN-alpha/beta receptor components. Although these IFNs transmit signals through distinct receptor complexes, the IFN-alpha/beta receptor component, IFNAR1, facilitates efficient assembly of IFN-gamma-activated transcription factors. This cross talk is contingent on a constitutive subthreshold IFN-alpha/beta signaling and the association between the two nonligand-binding receptor components, IFNAR1 and IFNGR2, in the caveolar membrane domains. This aspect of signaling cross talk by IFNs may apply to other cytokines.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takaoka, A -- Mitani, Y -- Suemori, H -- Sato, M -- Yokochi, T -- Noguchi, S -- Tanaka, N -- Taniguchi, T -- New York, N.Y. -- Science. 2000 Jun 30;288(5475):2357-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10875919" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Membrane/*metabolism ; Cells, Cultured ; Cytopathogenic Effect, Viral ; DNA-Binding Proteins/metabolism ; Dimerization ; Encephalomyocarditis virus/drug effects/physiology ; Interferon Type I/*metabolism ; Interferon-alpha/genetics/metabolism/pharmacology ; Interferon-beta/genetics/metabolism/pharmacology ; Interferon-gamma/*metabolism/pharmacology ; Janus Kinase 1 ; Janus Kinase 2 ; Membrane Proteins ; Mice ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein-Tyrosine Kinases/metabolism ; *Proto-Oncogene Proteins ; *Receptor Cross-Talk ; Receptor, Interferon alpha-beta ; Receptors, Interferon/genetics/*metabolism ; Recombinant Proteins ; STAT1 Transcription Factor ; *Signal Transduction ; Trans-Activators/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-01-15
    Description: In Drosophila, the Jun amino-terminal kinase (JNK) homolog Basket (Bsk) is required for epidermal closure. Mutants for Src42A, a Drosophila c-src protooncogene homolog, are described. Src42A functions in epidermal closure during both embryogenesis and metamorphosis. The severity of the epidermal closure defect in the Src42A mutant depended on the amount of Bsk activity, and the amount of Bsk activity depended on the amount of Src42A. Thus, activation of the Bsk pathway is required downstream of Src42A in epidermal closure. This work confirms mammalian studies that demonstrated a physiological link between Src and JNK.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tateno, M -- Nishida, Y -- Adachi-Yamada, T -- New York, N.Y. -- Science. 2000 Jan 14;287(5451):324-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10634792" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Drosophila/embryology/genetics/*growth & development/metabolism ; *Drosophila Proteins ; Enzyme Activation ; Epidermis/embryology ; Genes, Insect ; Insect Proteins/genetics/metabolism ; JNK Mitogen-Activated Protein Kinases ; Metamorphosis, Biological ; Mitogen-Activated Protein Kinases/*metabolism ; Phenotype ; Phosphoprotein Phosphatases/genetics/metabolism ; Phosphorylation ; Phosphotyrosine/metabolism ; Point Mutation ; Protein-Tyrosine Kinases/genetics/*metabolism ; Proto-Oncogene Proteins/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-06-17
    Description: Mutations introduced into human growth hormone (hGH) (Thr175 --〉 Gly-hGH) and the extracellular domain of the hGH receptor (Trp104 --〉 Gly-hGHbp) created a cavity at the protein-protein interface that resulted in binding affinity being reduced by a factor of 10(6). A small library of indole analogs was screened for small molecules that bind the cavity created by the mutations and restore binding affinity. The ligand 5-chloro-2-trichloromethylimidazole was found to increase the affinity of the mutant hormone for its receptor more than 1000-fold. Cell proliferation and JAK2 phosphorylation assays showed that the mutant hGH activates growth hormone signaling in the presence of added ligand. This approach may allow other protein-protein and protein-nucleic acid interactions to be switched on or off by the addition or depletion of exogenous small molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Z -- Zhou, D -- Schultz, P G -- New York, N.Y. -- Science. 2000 Jun 16;288(5473):2042-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10856217" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cell Division ; Cell Line ; Human Growth Hormone/chemistry/genetics/*metabolism ; Imidazoles/*chemistry/metabolism ; Janus Kinase 2 ; Ligands ; Mice ; Molecular Sequence Data ; Peptide Library ; Phosphorylation ; Protein Binding ; Protein-Tyrosine Kinases/metabolism ; *Proto-Oncogene Proteins ; Receptors, Somatotropin/chemistry/genetics/*metabolism ; Signal Transduction ; Structure-Activity Relationship ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2000-02-26
    Description: The Gram-negative bacterium Helicobacter pylori is a causative agent of gastritis and peptic ulcer disease in humans. Strains producing the CagA antigen (cagA(+)) induce strong gastric inflammation and are strongly associated with gastric adenocarcinoma and MALT lymphoma. We show here that such strains translocate the bacterial protein CagA into gastric epithelial cells by a type IV secretion system, encoded by the cag pathogenicity island. CagA is tyrosine-phosphorylated and induces changes in the tyrosine phosphorylation state of distinct cellular proteins. Modulation of host cells by bacterial protein translocation adds a new dimension to the chronic Helicobacter infection with yet unknown consequences.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Odenbreit, S -- Puls, J -- Sedlmaier, B -- Gerland, E -- Fischer, W -- Haas, R -- New York, N.Y. -- Science. 2000 Feb 25;287(5457):1497-500.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig-Maximilians University Munich, D-80336 Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10688800" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; *Antigens, Bacterial ; Bacterial Proteins/genetics/*metabolism ; Biological Transport ; Enzyme Inhibitors/pharmacology ; Epithelial Cells/metabolism/microbiology ; Fluorescent Antibody Technique ; Gastric Mucosa/*metabolism/*microbiology ; Genes, Bacterial ; Genetic Complementation Test ; Genistein/pharmacology ; Helicobacter pylori/genetics/*metabolism/pathogenicity ; Humans ; Mutation ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein-Tyrosine Kinases/antagonists & inhibitors/metabolism ; Staurosporine/pharmacology ; Tumor Cells, Cultured ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2001-06-26
    Description: The Arc two-component signal transduction system mediates adaptive responses of Escherichia coli to changing respiratory conditions of growth. Under anaerobic conditions, the ArcB sensor kinase autophosphorylates and then transphosphorylates ArcA, a global transcriptional regulator that controls the expression of numerous operons involved in respiratory or fermentative metabolism. We show that oxidized forms of quinone electron carriers act as direct negative signals that inhibit autophosphorylation of ArcB during aerobiosis. Thus, the Arc signal transduction system provides a link between the electron transport chain and gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Georgellis, D -- Kwon, O -- Lin, E C -- GM40993/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Jun 22;292(5525):2314-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11423658" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis ; Bacterial Outer Membrane Proteins/*metabolism ; Electron Transport ; Escherichia coli/genetics/*metabolism ; *Escherichia coli Proteins ; Gene Expression Regulation, Bacterial ; Membrane Proteins/*metabolism ; Mutation ; Oxidation-Reduction ; Phosphorylation ; Protein Kinases/*metabolism ; Quinones/*metabolism ; *Repressor Proteins ; *Signal Transduction ; Ubiquinone/metabolism ; Vitamin K/*analogs & derivatives/metabolism ; *Vitamin K 2/*analogs & derivatives
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2001-09-22
    Description: Output from the circadian clock controls rhythmic behavior through poorly understood mechanisms. In Drosophila, null mutations of the neurofibromatosis-1 (Nf1) gene produce abnormalities of circadian rhythms in locomotor activity. Mutant flies show normal oscillations of the clock genes period (per) and timeless (tim) and of their corresponding proteins, but altered oscillations and levels of a clock-controlled reporter. Mitogen-activated protein kinase (MAPK) activity is increased in Nf1 mutants, and the circadian phenotype is rescued by loss-of-function mutations in the Ras/MAPK pathway. Thus, Nf1 signals through Ras/MAPK in Drosophila. Immunohistochemical staining revealed a circadian oscillation of phospho-MAPK in the vicinity of nerve terminals containing pigment-dispersing factor (PDF), a secreted output from clock cells, suggesting a coupling of PDF to Ras/MAPK signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, J A -- Su, H S -- Bernards, A -- Field, J -- Sehgal, A -- New York, N.Y. -- Science. 2001 Sep 21;293(5538):2251-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Center for Sleep and Respiratory Neurobiology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11567138" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Biological Clocks ; Brain/metabolism ; Calcium-Calmodulin-Dependent Protein Kinases/genetics/*metabolism ; *Circadian Rhythm ; Cyclic AMP Response Element-Binding Protein/genetics/metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Drosophila/genetics/*physiology ; *Drosophila Proteins ; *Extracellular Signal-Regulated MAP Kinases ; Genes, Insect ; Genes, Neurofibromatosis 1 ; Insect Proteins/*genetics/metabolism/*physiology ; MAP Kinase Signaling System ; Male ; Motor Activity ; Mutation ; Nerve Endings/metabolism ; Nerve Tissue Proteins/*genetics/*physiology ; Neuropeptides/genetics/metabolism ; Nuclear Proteins/genetics/metabolism ; Period Circadian Proteins ; Phosphorylation ; Signal Transduction ; Transgenes ; *ras GTPase-Activating Proteins ; ras Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2001-06-16
    Description: The microtubule-binding protein tau has been implicated in the pathogenesis of Alzheimer's disease and related disorders. However, the mechanisms underlying tau-mediated neurotoxicity remain unclear. We created a genetic model of tau-related neurodegenerative disease by expressing wild-type and mutant forms of human tau in the fruit fly Drosophila melanogaster. Transgenic flies showed key features of the human disorders: adult onset, progressive neurodegeneration, early death, enhanced toxicity of mutant tau, accumulation of abnormal tau, and relative anatomic selectivity. However, neurodegeneration occurred without the neurofibrillary tangle formation that is seen in human disease and some rodent tauopathy models. This fly model may allow a genetic analysis of the cellular mechanisms underlying tau neurotoxicity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wittmann, C W -- Wszolek, M F -- Shulman, J M -- Salvaterra, P M -- Lewis, J -- Hutton, M -- Feany, M B -- New York, N.Y. -- Science. 2001 Jul 27;293(5530):711-4. Epub 2001 Jun 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Division of Neuropathology, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Avenue, Room 514, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11408621" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/metabolism ; Aging ; Animals ; Animals, Genetically Modified ; Brain/pathology/ultrastructure ; *Disease Models, Animal ; *Drosophila melanogaster/genetics ; Humans ; Mutation ; Nerve Degeneration ; Nerve Endings/metabolism/ultrastructure ; Neurodegenerative Diseases/metabolism/*pathology ; Neurofibrillary Tangles/ultrastructure ; Neurons/metabolism/*ultrastructure ; Neuropil/ultrastructure ; Phosphorylation ; Vacuoles/ultrastructure ; tau Proteins/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-10-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bartek, J -- Lukas, J -- New York, N.Y. -- Science. 2001 Oct 5;294(5540):66-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Cancer Biology, Danish Cancer Society, DK-2100 Copenhagen, Denmark. bartek@biobase.dk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11588240" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/genetics ; *CDC2-CDC28 Kinases ; *Cell Cycle ; Cell Cycle Proteins/genetics/*metabolism ; Cell Membrane/metabolism ; Cell Nucleus/metabolism ; Cyclin E/genetics/*metabolism ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinases/*metabolism ; Cysteine Endopeptidases/metabolism ; *F-Box Proteins ; Female ; Gene Expression ; Humans ; Multienzyme Complexes/metabolism ; Mutation ; Neoplasms/etiology ; Ovarian Neoplasms/genetics ; Peptide Synthases/*metabolism ; Phosphorylation ; Proteasome Endopeptidase Complex ; Protein-Serine-Threonine Kinases/*metabolism ; SKP Cullin F-Box Protein Ligases ; *Ubiquitin-Protein Ligases ; Ubiquitins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-04-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berger, S L -- New York, N.Y. -- Science. 2001 Apr 6;292(5514):64-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Genetics Program, The Wistar Institute, Philadelphia, PA 19104, USA. berger@wistar.upenn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11294220" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Cell Cycle Proteins/genetics/metabolism ; Centromere/metabolism ; Chromatin/metabolism ; Fungal Proteins/chemistry/metabolism ; *Gene Expression Regulation, Fungal ; *Gene Silencing ; Heterochromatin/metabolism ; Histone Deacetylases/metabolism ; *Histone-Lysine N-Methyltransferase ; Histones/*metabolism ; Lysine/metabolism ; Methylation ; Methyltransferases/metabolism ; Phosphorylation ; Protein Binding ; Protein Methyltransferases ; Protein Structure, Tertiary ; *Saccharomyces cerevisiae Proteins ; Schizosaccharomyces/*genetics/metabolism ; *Schizosaccharomyces pombe Proteins ; Serine/metabolism ; Transcription Factors/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2001-08-18
    Description: Organelle transport by myosin-V is down-regulated during mitosis, presumably by myosin-V phosphorylation. We used mass spectrometry phosphopeptide mapping to show that the tail of myosin-V was phosphorylated in mitotic Xenopus egg extract on a single serine residue localized in the carboxyl-terminal organelle-binding domain. Phosphorylation resulted in the release of the motor from the organelle. The phosphorylation site matched the consensus sequence of calcium/calmodulin-dependent protein kinase II (CaMKII), and inhibitors of CaMKII prevented myosin-V release. The modulation of cargo binding by phosphorylation is likely to represent a general mechanism regulating organelle transport by myosin-V.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karcher, R L -- Roland, J T -- Zappacosta, F -- Huddleston, M J -- Annan, R S -- Carr, S A -- Gelfand, V I -- GM-52111/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 17;293(5533):1317-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11509731" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Biological Transport ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors/*metabolism ; Calmodulin-Binding Proteins/chemistry/genetics/*metabolism ; Cell Extracts ; Egtazic Acid/analogs & derivatives/pharmacology ; Enzyme Inhibitors/pharmacology ; Interphase ; Mass Spectrometry ; Melanophores/metabolism/ultrastructure ; Melanosomes/*metabolism ; *Mitosis ; Molecular Motor Proteins/*metabolism ; Molecular Sequence Data ; Mutation ; *Myosin Type V ; Nerve Tissue Proteins/chemistry/genetics/*metabolism ; Ovum ; Peptides/pharmacology ; Phosphopeptides/analysis/metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Recombinant Fusion Proteins/metabolism ; Transfection ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2001-08-04
    Description: Many hematopoietic cells undergo apoptosis when deprived of specific cytokines, and this process requires de novo RNA/protein synthesis. Using DNA microarrays to analyze interleukin-3 (IL-3)-dependent murine FL5.12 pro-B cells, we found that the gene undergoing maximal transcriptional induction after cytokine withdrawal is 24p3, which encodes a secreted lipocalin. Conditioned medium from IL-3-deprived FL5.12 cells contained 24p3 and induced apoptosis in naive FL5.12 cells even when IL-3 was present. 24p3 also induced apoptosis in a wide variety of leukocytes but not other cell types. Apoptotic sensitivity correlated with the presence of a putative 24p3 cell surface receptor. We conclude that IL-3 deprivation activates 24p3 transcription, leading to synthesis and secretion of 24p3, which induces apoptosis through an autocrine pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Devireddy, L R -- Teodoro, J G -- Richard, F A -- Green, M R -- New York, N.Y. -- Science. 2001 Aug 3;293(5531):829-34.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11486081" target="_blank"〉PubMed〈/a〉
    Keywords: Acute-Phase Proteins/*genetics/*metabolism ; Animals ; *Apoptosis/drug effects ; Autocrine Communication ; Carrier Proteins/metabolism ; Cell Line ; Cells, Cultured ; Culture Media, Conditioned ; Dexamethasone/pharmacology ; *Gene Expression Regulation ; Humans ; Insulin-Like Growth Factor I/pharmacology ; Interleukin-3/*metabolism ; Interleukins/metabolism ; Leukocytes/cytology/*physiology ; Lipocalins ; Mice ; Oligonucleotide Array Sequence Analysis ; Oncogene Proteins/*genetics/*metabolism ; Phosphorylation ; Proto-Oncogene Proteins ; Proto-Oncogene Proteins c-bcl-2/metabolism ; Receptors, Cell Surface/metabolism ; Recombinant Fusion Proteins/metabolism ; Transcription, Genetic ; Tumor Cells, Cultured ; bcl-Associated Death Protein ; bcl-X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2001-10-06
    Description: Although trafficking and degradation of several membrane proteins are regulated by ubiquitination catalyzed by E3 ubiquitin ligases, there has been little evidence connecting ubiquitination with regulation of mammalian G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) function. Agonist stimulation of endogenous or transfected beta2-adrenergic receptors (beta2ARs) led to rapid ubiquitination of both the receptors and the receptor regulatory protein, beta-arrestin. Moreover, proteasome inhibitors reduced receptor internalization and degradation, thus implicating a role for the ubiquitination machinery in the trafficking of the beta2AR. Receptor ubiquitination required beta-arrestin, which bound to the E3 ubiquitin ligase Mdm2. Abrogation of beta-arrestin ubiquitination, either by expression in Mdm2-null cells or by dominant-negative forms of Mdm2 lacking E3 ligase activity, inhibited receptor internalization with marginal effects on receptor degradation. However, a beta2AR mutant lacking lysine residues, which was not ubiquitinated, was internalized normally but was degraded ineffectively. These findings delineate an adapter role of beta-arrestin in mediating the ubiquitination of the beta2AR and indicate that ubiquitination of the receptor and of beta-arrestin have distinct and obligatory roles in the trafficking and degradation of this prototypic GPCR.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shenoy, S K -- McDonald, P H -- Kohout, T A -- Lefkowitz, R J -- HL16037/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2001 Nov 9;294(5545):1307-13. Epub 2001 Oct 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Medicine, Duke University Medical Center, Box 3821, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11588219" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrestins/*metabolism ; COS Cells ; Catalysis ; Cell Line ; Cricetinae ; Cricetulus ; Cysteine Endopeptidases/metabolism ; Humans ; Isoproterenol/pharmacology ; Ligases/metabolism ; Multienzyme Complexes/antagonists & inhibitors/metabolism ; Mutation ; *Nuclear Proteins ; Phosphorylation ; Proteasome Endopeptidase Complex ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-mdm2 ; Receptors, Adrenergic, beta-2/genetics/*metabolism ; Recombinant Proteins/metabolism ; Transfection ; Ubiquitin/*metabolism ; Ubiquitin-Protein Ligases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2001-03-07
    Description: EDG-1 is a heterotrimeric guanine nucleotide binding protein-coupled receptor (GPCR) for sphingosine-1-phosphate (SPP). Cell migration toward platelet-derived growth factor (PDGF), which stimulates sphingosine kinase and increases intracellular SPP, was dependent on expression of EDG-1. Deletion of edg-1 or inhibition of sphingosine kinase suppressed chemotaxis toward PDGF and also activation of the small guanosine triphosphatase Rac, which is essential for protrusion of lamellipodia and forward movement. Moreover, PDGF activated EDG-1, as measured by translocation of beta-arrestin and phosphorylation of EDG-1. Our results reveal a role for receptor cross-communication in which activation of a GPCR by a receptor tyrosine kinase is critical for cell motility.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hobson, J P -- Rosenfeldt, H M -- Barak, L S -- Olivera, A -- Poulton, S -- Caron, M G -- Milstien, S -- Spiegel, S -- CA61774/CA/NCI NIH HHS/ -- GM43880/GM/NIGMS NIH HHS/ -- HL-61365/HL/NHLBI NIH HHS/ -- NS19576/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2001 Mar 2;291(5509):1800-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20007, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11230698" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrestins/metabolism ; Cell Line ; Cell Membrane/metabolism ; Cells, Cultured ; *Chemotaxis/drug effects ; Gene Deletion ; Humans ; Immediate-Early Proteins/genetics/*metabolism ; *Lysophospholipids ; Mice ; Muscle, Smooth, Vascular/cytology/metabolism ; Phosphorylation ; Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors/metabolism ; Platelet-Derived Growth Factor/metabolism/*pharmacology ; Proto-Oncogene Proteins c-sis ; Receptor Cross-Talk ; *Receptors, Cell Surface ; *Receptors, G-Protein-Coupled ; Receptors, Lysophospholipid ; Receptors, Platelet-Derived Growth Factor/metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Sphingosine/*analogs & derivatives/*metabolism/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-06-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cantley, L C -- New York, N.Y. -- Science. 2001 Jun 15;292(5524):2019-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School and Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA. cantley@helix.mgh.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11408644" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Adaptor Proteins, Signal Transducing ; Animals ; Calcium/metabolism ; Cell Membrane/*metabolism ; Cell Nucleus/*metabolism ; GTP-Binding Protein alpha Subunits, Gq-G11 ; Heterotrimeric GTP-Binding Proteins/metabolism ; Hydrolysis ; Isoenzymes/*metabolism ; Membrane Lipids/metabolism ; Mice ; Obesity/genetics/metabolism ; Phosphatidylinositol 4,5-Diphosphate/*metabolism ; Phosphatidylinositol Phosphates/metabolism ; Phospholipase C beta ; Phosphorylation ; Protein Structure, Tertiary ; Proteins/chemistry/genetics/*metabolism ; Receptor, Serotonin, 5-HT2C ; Receptors, Serotonin/metabolism ; Signal Transduction ; Transcription Factors/chemistry/genetics/*metabolism ; Type C Phospholipases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2002-02-16
    Description: Phosphorylation of mitogen-activated protein kinases (MAPKs) on specific tyrosine and threonine sites by MAP kinase kinases (MAPKKs) is thought to be the sole activation mechanism. Here, we report an unexpected activation mechanism for p38alpha MAPK that does not involve the prototypic kinase cascade. Rather it depends on interaction of p38alpha with TAB1 [transforming growth factor-beta-activated protein kinase 1 (TAK1)-binding protein 1] leading to autophosphorylation and activation of p38alpha. We detected formation of a TRAF6-TAB1-p38alpha complex and showed stimulus-specific TAB1-dependent and TAB1-independent p38alpha activation. These findings suggest that alternative activation pathways contribute to the biological responses of p38alpha to various stimuli.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ge, Baoxue -- Gram, Hermann -- Di Padova, Franco -- Huang, Betty -- New, Liguo -- Ulevitch, Richard J -- Luo, Ying -- Han, Jiahuai -- AI41637/AI/NIAID NIH HHS/ -- HL07195/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2002 Feb 15;295(5558):1291-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11847341" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Binding Sites ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line ; *Drosophila Proteins ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Humans ; Imidazoles/pharmacology ; *Intracellular Signaling Peptides and Proteins ; MAP Kinase Kinase 6 ; *MAP Kinase Signaling System ; Membrane Glycoproteins/metabolism ; Mitogen-Activated Protein Kinase 14 ; Mitogen-Activated Protein Kinase Kinases/metabolism ; Mitogen-Activated Protein Kinases/antagonists & ; inhibitors/chemistry/genetics/*metabolism ; Mutation ; Peptide Mapping ; Peroxynitrous Acid/pharmacology ; Phosphorylation ; Proteins/metabolism ; Pyridines/pharmacology ; Receptors, Cell Surface/metabolism ; Recombinant Fusion Proteins/metabolism ; TNF Receptor-Associated Factor 6 ; Toll-Like Receptors ; Tumor Necrosis Factor-alpha/pharmacology ; Two-Hybrid System Techniques ; p38 Mitogen-Activated Protein Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-01-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ghosh, Anirvan -- New York, N.Y. -- Science. 2002 Jan 18;295(5554):449-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. aghosh@jhmi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11799227" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism ; Cyclic AMP Response Element-Binding Protein/metabolism ; Ephrin-B2 ; Glutamic Acid/metabolism ; Hippocampus/metabolism/physiology ; Ligands ; Membrane Proteins/*metabolism/pharmacology ; Mice ; *Neuronal Plasticity ; Neurons/metabolism/physiology ; Phosphorylation ; Protein Structure, Tertiary ; Receptor Protein-Tyrosine Kinases/chemistry/genetics/*metabolism ; Receptor, EphB4 ; Receptors, Eph Family ; Receptors, N-Methyl-D-Aspartate/chemistry/*metabolism ; Signal Transduction ; Synapses/*metabolism ; Synaptic Membranes/metabolism ; src-Family Kinases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2002-12-10
    Description: Multicellular organisms have three well-characterized subfamilies of mitogen-activated protein kinases (MAPKs) that control a vast array of physiological processes. These enzymes are regulated by a characteristic phosphorelay system in which a series of three protein kinases phosphorylate and activate one another. The extracellular signal-regulated kinases (ERKs) function in the control of cell division, and inhibitors of these enzymes are being explored as anticancer agents. The c-Jun amino-terminal kinases (JNKs) are critical regulators of transcription, and JNK inhibitors may be effective in control of rheumatoid arthritis. The p38 MAPKs are activated by inflammatory cytokines and environmental stresses and may contribute to diseases like asthma and autoimmunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, Gary L -- Lapadat, Razvan -- New York, N.Y. -- Science. 2002 Dec 6;298(5600):1911-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Colorado Health Sciences Center, Denver, CO 80262, USA. gary.johnson@uchsc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12471242" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Cell Division ; Cytokines/metabolism ; Enzyme Activation ; Gene Expression Regulation ; Humans ; MAP Kinase Kinase Kinases/metabolism ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase 1/metabolism ; Mitogen-Activated Protein Kinase 10 ; Mitogen-Activated Protein Kinase 3 ; Mitogen-Activated Protein Kinase 8 ; Mitogen-Activated Protein Kinase 9 ; Mitogen-Activated Protein Kinases/*metabolism ; Neoplasms/enzymology/pathology ; Phosphorylation ; Protein-Tyrosine Kinases/metabolism ; Transcription, Genetic ; p38 Mitogen-Activated Protein Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2002-01-19
    Description: Application of nerve growth factor (NGF) covalently cross-linked to beads increased the phosphorylation of TrkA and Akt, but not of mitogen-activated protein kinase, in cultured rat sympathetic neurons. NGF beads or iodine-125-labeled NGF beads supplied to distal axons resulted in the survival of over 80% of the neurons for 30 hours, with little or no retrograde transport of iodine-125-labeled NGF; whereas application of free iodine-125-labeled NGF (0.5 nanograms per milliliter) produced 20-fold more retrograde transport, but only 29% of the neurons survived. Thus, in contrast to widely accepted theory, a neuronal survival signal can reach the cell bodies unaccompanied by the NGF that initiated it.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉MacInnis, Bronwyn L -- Campenot, Robert B -- New York, N.Y. -- Science. 2002 Feb 22;295(5559):1536-9. Epub 2002 Jan 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, 6-14 Medical Sciences Building, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11799202" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*metabolism ; Cell Survival/drug effects ; Cells, Cultured ; Chromones/pharmacology ; Cross-Linking Reagents ; Enzyme Inhibitors/pharmacology ; Iodine Radioisotopes ; Microspheres ; Mitogen-Activated Protein Kinases/metabolism ; Morpholines/pharmacology ; Nerve Growth Factor/*metabolism/pharmacology ; Neurons/metabolism/*physiology ; Phosphatidylinositol 3-Kinases/antagonists & inhibitors/metabolism ; Phosphorylation ; Protein Transport ; *Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-akt ; Rats ; Rats, Sprague-Dawley ; Receptor, trkA/metabolism ; Signal Transduction ; Superior Cervical Ganglion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2002-11-02
    Description: Parasites have evolved a plethora of mechanisms to ensure their propagation and evade antagonistic host responses. The intracellular protozoan parasite Theileria is the only eukaryote known to induce uncontrolled host cell proliferation. Survival of Theileria-transformed leukocytes depends strictly on constitutive nuclear factor kappa B (NF-kappaB) activity. We found that this was mediated by recruitment of the multisubunit IkappaB kinase (IKK) into large, activated foci on the parasite surface. IKK signalosome assembly was specific for the transforming schizont stage of the parasite and was down-regulated upon differentiation into the nontransforming merozoite stage. Our findings provide insights into IKK activation and how pathogens subvert host-cell signaling pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heussler, Volker T -- Rottenberg, Sven -- Schwab, Rebekka -- Kuenzi, Peter -- Fernandez, Paula C -- McKellar, Susan -- Shiels, Brian -- Chen, Zhijian J -- Orth, Kim -- Wallach, David -- Dobbelaere, Dirk A E -- GM63692/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Nov 1;298(5595):1033-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Pathology, Institute of Animal Pathology, University of Bern, CH-3012 Bern, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12411708" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Animals ; Antiprotozoal Agents/pharmacology ; Apoptosis ; Cattle ; Cell Cycle ; Cell Division ; Cell Line, Transformed ; Cell Nucleus/metabolism ; Down-Regulation ; I-kappa B Kinase ; I-kappa B Proteins/metabolism ; Leukocytes/enzymology/*parasitology/physiology ; Microscopy, Confocal ; NF-kappa B/metabolism ; Naphthoquinones/pharmacology ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; Signal Transduction ; Theileria/growth & development/metabolism/*pathogenicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2002-06-18
    Description: Mice homozygous for a single tyrosine mutation in LAT (linker for activation of T cells) exhibited an early block in T cell maturation but later developed a polyclonal lymphoproliferative disorder and signs of autoimmune disease. T cell antigen receptor (TCR)-induced activation of phospholipase C-gamma1 (PLC-gamma1) and of nuclear factor of activated T cells, calcium influx, interleukin-2 production, and cell death were reduced or abrogated in T cells from LAT mutant mice. In contrast, TCR-induced Erk activation was intact. These results identify a critical role for integrated PLC-gamma1 and Ras-Erk signaling through LAT in T cell development and homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sommers, Connie L -- Park, Cheung-Seog -- Lee, Jan -- Feng, Chiguang -- Fuller, Claudette L -- Grinberg, Alexander -- Hildebrand, Jay A -- Lacana, Emanuela -- Menon, Rashmi K -- Shores, Elizabeth W -- Samelson, Lawrence E -- Love, Paul E -- New York, N.Y. -- Science. 2002 Jun 14;296(5575):2040-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12065840" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Animals ; Antibodies, Antinuclear/blood ; Antigens, CD5/analysis ; Autoimmune Diseases/immunology ; CD4-Positive T-Lymphocytes/immunology/physiology ; Calcium/metabolism ; Calcium Signaling ; Carrier Proteins/*genetics/*physiology ; Cell Division ; Interleukin-2/biosynthesis ; Isoenzymes/*metabolism ; Lymphocyte Activation ; Lymphoproliferative Disorders/*etiology/immunology/pathology ; MAP Kinase Signaling System ; *Membrane Proteins ; Mice ; Mice, Inbred C57BL ; Mitogen-Activated Protein Kinases/metabolism ; Phenotype ; Phospholipase C gamma ; Phosphoproteins/*genetics/*physiology ; Phosphorylation ; *Point Mutation ; Receptors, Antigen, T-Cell/immunology/metabolism ; Signal Transduction ; T-Lymphocyte Subsets/immunology/physiology ; T-Lymphocytes/*immunology/physiology ; Thymus Gland/cytology/immunology/pathology ; Transcription Factors/metabolism ; Type C Phospholipases/*metabolism ; ras Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 1998-07-10
    Description: The Rad53 protein kinase of Saccharomyces cerevisiae is required for checkpoints that prevent cell division in cells with damaged or incompletely replicated DNA. The Rad9 protein was phosphorylated in response to DNA damage, and phosphorylated Rad9 interacted with the COOH-terminal forkhead homology-associated (FHA) domain of Rad53. Inactivation of this domain abolished DNA damage-dependent Rad53 phosphorylation, G2/M cell cycle phase arrest, and increase of RNR3 transcription but did not affect replication inhibition-dependent Rad53 phosphorylation. Thus, Rad53 integrates DNA damage signals by coupling with phosphorylated Rad9. The hitherto uncharacterized FHA domain appears to be a modular protein-binding domain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Z -- Hsiao, J -- Fay, D S -- Stern, D F -- New York, N.Y. -- Science. 1998 Jul 10;281(5374):272-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Yale University, New Haven, CT 06511, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9657725" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Cell Cycle Proteins ; Checkpoint Kinase 2 ; *DNA Damage ; DNA Replication/drug effects ; Fungal Proteins/*metabolism ; G2 Phase ; Hydroxyurea/pharmacology ; Methyl Methanesulfonate/pharmacology ; Mitosis ; Mutation ; Oligopeptides ; Peptides ; Phosphorylation ; Protein Kinases/chemistry/genetics/*metabolism ; *Protein-Serine-Threonine Kinases ; Saccharomyces cerevisiae/cytology/*metabolism ; *Saccharomyces cerevisiae Proteins ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 1998-01-24
    Description: The function and regulation of the receptorlike transmembrane protein tyrosine phosphatases (RPTPs) are not well understood. Ligand-induced dimerization inhibited the function of the epidermal growth factor receptor (EGFR)-RPTP CD45 chimera (EGFR-CD45) in T cell signal transduction. Properties of mutated EGFR-CD45 chimeras supported a general model for the regulation of RPTPs, derived from the crystal structure of the RPTPalpha membrane-proximal phosphatase domain. The phosphatase domain apparently forms a symmetrical dimer in which the catalytic site of one molecule is blocked by specific contacts with a wedge from the other.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Majeti, R -- Bilwes, A M -- Noel, J P -- Hunter, T -- Weiss, A -- New York, N.Y. -- Science. 1998 Jan 2;279(5347):88-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9417031" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD45/chemistry/*metabolism ; Binding Sites ; Calcium/metabolism ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Dimerization ; Epidermal Growth Factor/metabolism/pharmacology ; Humans ; Ligands ; Lymphocyte Activation ; Mutation ; Phosphorylation ; Protein Tyrosine Phosphatases/*antagonists & inhibitors/chemistry/metabolism ; Protein-Tyrosine Kinases/metabolism ; Receptor, Epidermal Growth Factor/chemistry/metabolism ; Receptors, Antigen, T-Cell/metabolism ; Recombinant Fusion Proteins/antagonists & inhibitors/chemistry/metabolism ; Signal Transduction ; T-Lymphocytes/immunology/*metabolism ; Tumor Cells, Cultured ; ZAP-70 Protein-Tyrosine Kinase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 1999-07-03
    Description: Regulation of N-methyl-D-aspartate (NMDA) receptor activity by kinases and phosphatases contributes to the modulation of synaptic transmission. Targeting of these enzymes near the substrate is proposed to enhance phosphorylation-dependent modulation. Yotiao, an NMDA receptor-associated protein, bound the type I protein phosphatase (PP1) and the adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase (PKA) holoenzyme. Anchored PP1 was active, limiting channel activity, whereas PKA activation overcame constitutive PP1 activity and conferred rapid enhancement of NMDA receptor currents. Hence, yotiao is a scaffold protein that physically attaches PP1 and PKA to NMDA receptors to regulate channel activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Westphal, R S -- Tavalin, S J -- Lin, J W -- Alto, N M -- Fraser, I D -- Langeberg, L K -- Sheng, M -- Scott, J D -- F32 NS010202/NS/NINDS NIH HHS/ -- GM 48231/GM/NIGMS NIH HHS/ -- NS10202/NS/NINDS NIH HHS/ -- NS10543/NS/NINDS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Jul 2;285(5424):93-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Vollum Institute, Oregon Health Sciences University, 3181 S.W. Sam Jackson Road, Portland, OR 97201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10390370" target="_blank"〉PubMed〈/a〉
    Keywords: A Kinase Anchor Proteins ; *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; Binding Sites ; Carrier Proteins/*metabolism ; Cell Line ; Cyclic AMP/analogs & derivatives/pharmacology ; Cyclic AMP-Dependent Protein Kinases/*metabolism ; Cytoskeletal Proteins/*metabolism ; Enzyme Inhibitors/pharmacology ; Holoenzymes/metabolism ; Humans ; Molecular Sequence Data ; Okadaic Acid/pharmacology ; Patch-Clamp Techniques ; Peptide Fragments/pharmacology ; Phosphoprotein Phosphatases/*metabolism ; Phosphorylation ; Rats ; Receptors, N-Methyl-D-Aspartate/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Thionucleotides/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 1999-10-26
    Description: During mammalian development, electrical activity promotes the calcium-dependent survival of neurons that have made appropriate synaptic connections. However, the mechanisms by which calcium mediates neuronal survival during development are not well characterized. A transcription-dependent mechanism was identified by which calcium influx into neurons promoted cell survival. The transcription factor MEF2 was selectively expressed in newly generated postmitotic neurons and was required for the survival of these neurons. Calcium influx into cerebellar granule neurons led to activation of p38 mitogen-activated protein kinase-dependent phosphorylation and activation of MEF2. Once activated, MEF2 regulated neuronal survival by stimulating MEF2-dependent gene transcription. These findings demonstrate that MEF2 is a calcium-regulated transcription factor and define a function for MEF2 during nervous system development that is distinct from previously well-characterized functions of MEF2 during muscle differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mao, Z -- Bonni, A -- Xia, F -- Nadal-Vicens, M -- Greenberg, M E -- 5T32NS07112/NS/NINDS NIH HHS/ -- NS28829/NS/NINDS NIH HHS/ -- P30-HD18655/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1999 Oct 22;286(5440):785-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuroscience, Department of Neurology, Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10531066" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Calcium/metabolism ; Calcium Channels, L-Type/metabolism ; Cell Differentiation ; Cell Survival ; Cells, Cultured ; Cerebellum/cytology/metabolism ; Cerebral Cortex/cytology/embryology/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Dimerization ; Immunohistochemistry ; MEF2 Transcription Factors ; Mitogen-Activated Protein Kinases/metabolism ; Mitosis ; Mutation ; Myogenic Regulatory Factors ; Neurons/*cytology/*metabolism ; Phosphorylation ; Rats ; Signal Transduction ; Transcription Factors/genetics/*metabolism ; *Transcription, Genetic ; Transfection ; p38 Mitogen-Activated Protein Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 1999-09-25
    Description: Inactivating mutations in the PTEN tumor suppressor gene, encoding a phosphatase, occur in three related human autosomal dominant disorders characterized by tumor susceptibility. Here it is shown that Pten heterozygous (Pten+/-) mutants develop a lethal polyclonal autoimmune disorder with features reminiscent of those observed in Fas-deficient mutants. Fas-mediated apoptosis was impaired in Pten+/- mice, and T lymphocytes from these mice show reduced activation-induced cell death and increased proliferation upon activation. Phosphatidylinositol (PI) 3-kinase inhibitors restored Fas responsiveness in Pten+/- cells. These results indicate that Pten is an essential mediator of the Fas response and a repressor of autoimmunity and thus implicate the PI 3-kinase/Akt pathway in Fas-mediated apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Di Cristofano, A -- Kotsi, P -- Peng, Y F -- Cordon-Cardo, C -- Elkon, K B -- Pandolfi, P P -- AR45482/AR/NIAMS NIH HHS/ -- CA-08748/CA/NCI NIH HHS/ -- CA-82328/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1999 Sep 24;285(5436):2122-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics-Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10497129" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Antinuclear/blood ; Antigens, CD95/*physiology ; *Apoptosis ; Autoimmune Diseases/*immunology/pathology ; B-Lymphocytes/immunology/pathology ; Female ; Heterozygote ; Immunoglobulin G/blood ; Kidney Diseases/*immunology/pathology ; Kidney Glomerulus/immunology/pathology ; Lymphocyte Activation ; Male ; Mice ; Mice, Inbred C57BL ; PTEN Phosphohydrolase ; Phosphatidylinositol 3-Kinases/antagonists & inhibitors/metabolism ; Phosphoric Monoester Hydrolases/genetics/*physiology ; Phosphorylation ; *Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-akt ; T-Lymphocytes/immunology/pathology ; *Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-05-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janknecht, R -- Hunter, T -- New York, N.Y. -- Science. 1999 Apr 16;284(5413):443-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Deparment of Biochemistry, Mayo Clinic, Rochester, MN 55905, USA. janknecht.ralf@mayo.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10232991" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Astrocytes/*cytology/metabolism ; Bone Morphogenetic Protein 2 ; Bone Morphogenetic Protein Receptors ; Bone Morphogenetic Proteins/metabolism/pharmacology ; Cell Differentiation ; Cell Nucleus/metabolism ; Cytokines/metabolism/*pharmacology ; DNA-Binding Proteins/metabolism ; Dimerization ; Glial Fibrillary Acidic Protein/genetics ; Growth Inhibitors/metabolism/pharmacology ; *Interleukin-6 ; Leukemia Inhibitory Factor ; Lymphokines/metabolism/pharmacology ; Models, Biological ; Nuclear Proteins/*metabolism ; Phosphorylation ; Promoter Regions, Genetic ; Receptors, Cell Surface/metabolism ; Receptors, Cytokine/metabolism ; *Receptors, Growth Factor ; Receptors, OSM-LIF ; STAT3 Transcription Factor ; *Signal Transduction ; Smad Proteins ; Trans-Activators/*metabolism ; *Transcriptional Activation ; *Transforming Growth Factor beta
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-02-05
    Description: The sterile alpha motif (SAM) domain is a protein interaction module that is present in diverse signal-transducing proteins. SAM domains are known to form homo- and hetero-oligomers. The crystal structure of the SAM domain from an Eph receptor tyrosine kinase, EphB2, reveals two large interfaces. In one interface, adjacent monomers exchange amino-terminal peptides that insert into a hydrophobic groove on each neighbor. A second interface is composed of the carboxyl-terminal helix and a nearby loop. A possible oligomer, constructed from a combination of these binding modes, may provide a platform for the formation of larger protein complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thanos, C D -- Goodwill, K E -- Bowie, J U -- New York, N.Y. -- Science. 1999 Feb 5;283(5403):833-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UCLA-DOE Laboratory of Structural Biology and Molecular Medicine and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9933164" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallization ; Crystallography, X-Ray ; Dimerization ; GRB10 Adaptor Protein ; Humans ; Hydrogen Bonding ; Kinesin/metabolism ; Models, Molecular ; Myosins/metabolism ; Phosphorylation ; *Protein Conformation ; Protein Structure, Secondary ; Protein Tyrosine Phosphatases/metabolism ; Proteins/metabolism ; Receptor Aggregation ; Receptor Protein-Tyrosine Kinases/*chemistry/metabolism ; Receptor, EphB2 ; Recombinant Proteins/chemistry/metabolism ; Surface Properties
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-11-27
    Description: Activation of the protein kinase Raf can lead to opposing cellular responses such as proliferation, growth arrest, apoptosis, or differentiation. Akt (protein kinase B), a member of a different signaling pathway that also regulates these responses, interacted with Raf and phosphorylated this protein at a highly conserved serine residue in its regulatory domain in vivo. This phosphorylation of Raf by Akt inhibited activation of the Raf-MEK-ERK signaling pathway and shifted the cellular response in a human breast cancer cell line from cell cycle arrest to proliferation. These observations provide a molecular basis for cross talk between two signaling pathways at the level of Raf and Akt.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zimmermann, S -- Moelling, K -- New York, N.Y. -- Science. 1999 Nov 26;286(5445):1741-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Medical Virology, University of Zurich, Gloriastrasse 30/32, CH-8028 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10576742" target="_blank"〉PubMed〈/a〉
    Keywords: *Cell Division ; Cell Line ; Chromones/pharmacology ; Cyclin-Dependent Kinase Inhibitor p21 ; Cyclins/metabolism ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Epidermal Growth Factor/pharmacology ; Flavonoids/pharmacology ; Humans ; *MAP Kinase Signaling System ; Morpholines/pharmacology ; Phosphatidylinositol 3-Kinases/antagonists & inhibitors/metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/*metabolism ; Proto-Oncogene Proteins/antagonists & inhibitors/*metabolism ; Proto-Oncogene Proteins c-akt ; Proto-Oncogene Proteins c-raf/antagonists & inhibitors/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Somatomedins/pharmacology ; Tetradecanoylphorbol Acetate/pharmacology ; Tumor Cells, Cultured ; ras Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-04-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burridge, K -- New York, N.Y. -- Science. 1999 Mar 26;283(5410):2028-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. kburridg@med.unc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10206910" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle Proteins/metabolism ; Cell Line ; Cell Movement ; GTP Phosphohydrolases/*metabolism ; GTP-Binding Proteins/*metabolism ; Intracellular Signaling Peptides and Proteins ; Myosin Light Chains/*metabolism ; Myosin-Light-Chain Kinase/antagonists & inhibitors/*metabolism ; Myosin-Light-Chain Phosphatase ; Phosphoprotein Phosphatases/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; *Signal Transduction ; cdc42 GTP-Binding Protein ; p21-Activated Kinases ; rac GTP-Binding Proteins ; rho-Associated Kinases ; rhoA GTP-Binding Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 1999-02-26
    Description: Although broken chromosomes can induce apoptosis, natural chromosome ends (telomeres) do not trigger this response. It is shown that this suppression of apoptosis involves the telomeric-repeat binding factor 2 (TRF2). Inhibition of TRF2 resulted in apoptosis in a subset of mammalian cell types. The response was mediated by p53 and the ATM (ataxia telangiectasia mutated) kinase, consistent with activation of a DNA damage checkpoint. Apoptosis was not due to rupture of dicentric chromosomes formed by end-to-end fusion, indicating that telomeres lacking TRF2 directly signal apoptosis, possibly because they resemble damaged DNA. Thus, in some cells, telomere shortening may signal cell death rather than senescence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karlseder, J -- Broccoli, D -- Dai, Y -- Hardy, S -- de Lange, T -- GM49046/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Feb 26;283(5406):1321-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10021, USA. Cell Genesys, Foster City, CA 94405, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10037601" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae/genetics/physiology ; Animals ; *Apoptosis ; Ataxia Telangiectasia/pathology ; Ataxia Telangiectasia Mutated Proteins ; B-Lymphocytes/cytology ; Cell Cycle Proteins ; Cell Line ; Cells, Cultured ; Cloning, Molecular ; DNA Damage ; DNA-Binding Proteins/chemistry/genetics/*physiology ; Genetic Vectors ; Humans ; In Situ Nick-End Labeling ; Mice ; Mitosis ; Phosphorylation ; *Protein-Serine-Threonine Kinases ; Proteins/metabolism ; T-Lymphocytes/cytology ; Telomere/*physiology ; Telomeric Repeat Binding Protein 2 ; Tumor Cells, Cultured ; Tumor Suppressor Protein p53/*metabolism ; Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 1999-09-08
    Description: Targeting of protein modification enzymes is a key biochemical step to achieve specific and effective posttranslational modifications. Two alternatively spliced ZIP1 and ZIP2 proteins are described, which bind to both Kvbeta2 subunits of potassium channel and protein kinase C (PKC) zeta, thereby acting as a physical link in the assembly of PKCzeta-ZIP-potassium channel complexes. ZIP1 and ZIP2 differentially stimulate phosphorylation of Kvbeta2 by PKCzeta. They also interact to form heteromultimers, which allows for a hybrid stimulatory activity to PKCzeta. Finally, ZIP1 and ZIP2 coexist in the same cell type and are elevated differentially by neurotrophic factors. These results provide a mechanism for specificity and regulation of PKCzeta-targeted phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gong, J -- Xu, J -- Bezanilla, M -- van Huizen, R -- Derin, R -- Li, M -- NS33324/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1999 Sep 3;285(5433):1565-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10477520" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Amino Acid Sequence ; Animals ; Binding Sites ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line ; Cerebellum/metabolism ; DNA, Complementary ; Isoenzymes/metabolism ; Molecular Sequence Data ; Myelin Basic Protein/metabolism ; Nerve Growth Factors/pharmacology ; Neurons/*metabolism ; Phosphorylation ; Potassium Channels/*metabolism ; Protein Kinase C/*metabolism ; Pyramidal Cells/metabolism ; RNA, Messenger/genetics/metabolism ; Rats ; Rats, Sprague-Dawley ; Recombinant Fusion Proteins/chemistry/metabolism ; Substrate Specificity ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 1999-08-07
    Description: During the immediate-early response of mammalian cells to mitogens, histone H3 is rapidly and transiently phosphorylated by one or more unidentified kinases. Rsk-2, a member of the pp90rsk family of kinases implicated in growth control, was required for epidermal growth factor (EGF)-stimulated phosphorylation of H3. RSK-2 mutations in humans are linked to Coffin-Lowry syndrome (CLS). Fibroblasts derived from a CLS patient failed to exhibit EGF-stimulated phosphorylation of H3, although H3 was phosphorylated during mitosis. Introduction of the wild-type RSK-2 gene restored EGF-stimulated phosphorylation of H3 in CLS cells. In addition, disruption of the RSK-2 gene by homologous recombination in murine embryonic stem cells abolished EGF-stimulated phosphorylation of H3. H3 appears to be a direct or indirect target of Rsk-2, suggesting that chromatin remodeling might contribute to mitogen-activated protein kinase-regulated gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sassone-Corsi, P -- Mizzen, C A -- Cheung, P -- Crosio, C -- Monaco, L -- Jacquot, S -- Hanauer, A -- Allis, C D -- GM40922/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Aug 6;285(5429):886-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS, INSERM, ULP, B. P. 163, 67404 Illkirch-Strasbourg, France. paolosc@igbmc.u-strasbg.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10436156" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Abnormalities, Multiple/genetics/metabolism ; Animals ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cell Line, Transformed ; Cell Nucleus/metabolism ; Cells, Cultured ; Epidermal Growth Factor/*pharmacology ; Gene Expression Regulation ; Gene Targeting ; Histones/*metabolism ; Humans ; Mice ; Mitosis ; Mutation ; Phosphorylation ; Ribosomal Protein S6 Kinases/genetics/*metabolism ; Signal Transduction ; Stem Cells/cytology/metabolism ; Syndrome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Breaker, R R -- New York, N.Y. -- Science. 2000 Dec 15;290(5499):2095-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA. ronald.breaker@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11187837" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Catalytic Domain ; DNA/*metabolism ; DNA, Catalytic/*chemistry/*metabolism ; Nucleic Acid Conformation ; Oxidation-Reduction ; Phosphorylation ; RNA/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-12-09
    Description: Hepatitis C virus (HCV) infection is a global health problem affecting an estimated 170 million individuals worldwide. We report the identification of multiple independent adaptive mutations that cluster in the HCV nonstructural protein NS5A and confer increased replicative ability in vitro. Among these adaptive mutations were a single amino acid substitution that allowed HCV RNA replication in 10% of transfected hepatoma cells and a deletion of 47 amino acids encompassing the interferon (IFN) sensitivity determining region (ISDR). Independent of the ISDR, IFN-alpha rapidly inhibited HCV RNA replication in vitro. This work establishes a robust, cell-based system for genetic and functional analyses of HCV replication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blight, K J -- Kolykhalov, A A -- Rice, C M -- AI40034/AI/NIAID NIH HHS/ -- CA57973/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2000 Dec 8;290(5498):1972-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110-1093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11110665" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Hepacivirus/drug effects/genetics/*physiology ; Humans ; Interferon-alpha/pharmacology ; Mutation ; Phosphorylation ; Point Mutation ; RNA Replicase/genetics/metabolism ; RNA, Viral/*biosynthesis ; *Replicon ; Sequence Deletion ; Transfection ; Tumor Cells, Cultured ; Viral Nonstructural Proteins/*genetics/*metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 1999-12-30
    Description: Expression of Q205L Galphao (Galphao*), an alpha subunit of heterotrimeric guanine nucleotide-binding proteins (G proteins) that lacks guanosine triphosphatase (GTPase) activity in NIH-3T3 cells, results in transformation. Expression of Galphao* in NIH-3T3 cells activated signal transducer and activator of transcription 3 (Stat3) but not mitogen-activated protein (MAP) kinases 1 or 2. Coexpression of dominant negative Stat3 inhibited Galphao*-induced transformation of NIH-3T3 cells and activation of endogenous Stat3. Furthermore, Galphao* expression increased activity of the tyrosine kinase c-Src, and the Galphao*-induced activation of Stat3 was blocked by expression of Csk (carboxyl-terminal Src kinase), which inactivates c-Src. The results indicate that Stat3 can function as a downstream effector for Galphao* and mediate its biological effects.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ram, P T -- Horvath, C M -- Iyengar, R -- 1F32 CA79134-01/CA/NCI NIH HHS/ -- DK-38671/DK/NIDDK NIH HHS/ -- GM-54508/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Jan 7;287(5450):142-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Immunobiology Center, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA. ramp01@doc.mssm.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10615050" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Cell Line, Transformed ; *Cell Transformation, Neoplastic ; DNA-Binding Proteins/*metabolism ; Enzyme Activation ; GTP-Binding Protein alpha Subunits ; Genes, Reporter ; Heterotrimeric GTP-Binding Proteins/genetics/*metabolism ; MAP Kinase Signaling System ; Mice ; Mitogen-Activated Protein Kinase 1/metabolism ; Mitogen-Activated Protein Kinases/metabolism ; Neurites/physiology ; Neuronal Plasticity ; Neurons/metabolism/physiology ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein-Tyrosine Kinases/metabolism ; STAT3 Transcription Factor ; Signal Transduction ; Trans-Activators/*metabolism ; Transfection ; src-Family Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carr, A M -- New York, N.Y. -- Science. 2000 Mar 10;287(5459):1765-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Cell Mutation Unit, Sussex University, Falmer, Brighton BN1 9RR, UK. a.m.carr@sussex.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10755928" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins ; Checkpoint Kinase 2 ; *DNA Damage ; DNA-Binding Proteins ; G1 Phase ; G2 Phase ; Genes, Tumor Suppressor ; Humans ; *Interphase ; Mice ; Neoplasms/etiology ; Phosphorylation ; Phosphoserine/metabolism ; *Protein Kinases ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Signal Transduction ; Transcription, Genetic ; Tumor Suppressor Protein p53/*metabolism ; Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-07-07
    Description: In Neurospora crassa, white collar 1 (WC-1), a transcriptional activator and positive clock element, is rhythmically expressed from a nonrhythmic steady-state pool of wc-1 transcript, consistent with posttranscriptional regulation of rhythmicity. Mutations in frq influence both the level and periodicity of WC-1 expression, and driven FRQ expression not only depresses its own endogenous levels, but positively regulates WC-1 synthesis with a lag of about 8 hours, a delay similar to that seen in the wild-type clock. FRQ thus plays dual roles in the Neurospora clock and thereby, with WC-1, forms a second feedback loop that would promote robustness and stability in this circadian system. The existence also of interlocked loops in Drosophila melanogaster and mouse clocks suggests that such interlocked loops may be a conserved aspect of circadian timing systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, K -- Loros, J J -- Dunlap, J C -- MH44651/MH/NIMH NIH HHS/ -- R37-GM 34985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Jul 7;289(5476):107-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Dartmouth Medical School, Hanover, NH 03755-3844, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10884222" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Circadian Rhythm ; DNA-Binding Proteins/biosynthesis/chemistry/genetics/*metabolism ; Darkness ; Feedback ; Fungal Proteins/genetics/*metabolism ; Gene Expression Regulation, Fungal ; Humans ; Kinetics ; Light ; Molecular Sequence Data ; Mutation ; Neurospora crassa/genetics/metabolism/*physiology ; Phosphorylation ; RNA, Fungal/genetics/metabolism ; RNA, Messenger/genetics/metabolism ; Sequence Alignment ; Signal Transduction ; Transcription Factors/biosynthesis/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-03-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abid, K -- Quadri, R -- Negro, F -- New York, N.Y. -- Science. 2000 Mar 3;287(5458):1555.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Gastroenterology and Hepatology, University of Geneva Medical School, Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10733410" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Drug Resistance, Microbial ; Eukaryotic Initiation Factor-2/chemistry/metabolism ; Genotype ; Hepacivirus/*drug effects/genetics ; Hepatitis C/virology ; Humans ; Interferon-alpha/*pharmacology ; Phosphorylation ; Viral Envelope Proteins/*chemistry/*physiology ; eIF-2 Kinase/*antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-05-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Young, M W -- New York, N.Y. -- Science. 2000 Apr 21;288(5465):451-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetics and National Science Foundation Center for Biological Timing, The Rockefeller University, New York, NY 10021. young@rockvax.rockefeller.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10798982" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Clocks/genetics ; *Casein Kinase Iepsilon ; Casein Kinases ; Cell Cycle Proteins ; *Circadian Rhythm/genetics ; Cloning, Molecular ; Cricetinae ; Drosophila/genetics ; *Drosophila Proteins ; Genes, Insect ; Humans ; Intracellular Signaling Peptides and Proteins ; Mesocricetus ; Nuclear Proteins/genetics/metabolism ; Period Circadian Proteins ; Phosphorylation ; Point Mutation ; Protein Kinases/chemistry/*genetics/*metabolism ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2000-03-04
    Description: Understanding biology at the single-cell level requires simultaneous measurements of biochemical parameters and behavioral characteristics in individual cells. Here, the output of individual flagellar motors in Escherichia coli was measured as a function of the intracellular concentration of the chemotactic signaling protein. The concentration of this molecule, fused to green fluorescent protein, was monitored with fluorescence correlation spectroscopy. Motors from different bacteria exhibited an identical steep input-output relation, suggesting that they actively contribute to signal amplification in chemotaxis. This experimental approach can be extended to quantitative in vivo studies of other biochemical networks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cluzel, P -- Surette, M -- Leibler, S -- New York, N.Y. -- Science. 2000 Mar 3;287(5458):1652-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Princeton University, Princeton, NJ 08544, USA. phcluzel@phoenix.princeton.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10698740" target="_blank"〉PubMed〈/a〉
    Keywords: *Bacterial Proteins ; Chemotaxis/*physiology ; Escherichia coli/genetics/*physiology ; Flagella/*physiology ; Green Fluorescent Proteins ; Luminescent Proteins ; Membrane Proteins/genetics/*metabolism ; Molecular Motor Proteins/*physiology ; Movement ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; Spectrometry, Fluorescence ; Transformation, Bacterial ; Video Recording
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2000-02-05
    Description: Cell-mediated (type-1) immunity is necessary for immune protection against most intracellular pathogens and, when excessive, can mediate organ-specific autoimmune destruction. Mice deficient in Eta-1 (also called osteopontin) gene expression have severely impaired type-1 immunity to viral infection [herpes simplex virus-type 1 (KOS strain)] and bacterial infection (Listeria monocytogenes) and do not develop sarcoid-type granulomas. Interleukin-12 (IL-12) and interferon-gamma production is diminished, and IL-10 production is increased. A phosphorylation-dependent interaction between the amino-terminal portion of Eta-1 and its integrin receptor stimulated IL-12 expression, whereas a phosphorylation-independent interaction with CD44 inhibited IL-10 expression. These findings identify Eta-1 as a key cytokine that sets the stage for efficient type-1 immune responses through differential regulation of macrophage IL-12 and IL-10 cytokine expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ashkar, S -- Weber, G F -- Panoutsakopoulou, V -- Sanchirico, M E -- Jansson, M -- Zawaideh, S -- Rittling, S R -- Denhardt, D T -- Glimcher, M J -- Cantor, H -- AI12184/AI/NIAID NIH HHS/ -- AI37833/AI/NIAID NIH HHS/ -- CA76176/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 2000 Feb 4;287(5454):860-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Skeletal Disorders and Rehabilitation, Department of Orthopedic Surgery, Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10657301" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD44/metabolism ; Granuloma/immunology ; Herpes Simplex/immunology ; Herpesvirus 1, Human/immunology ; Hypersensitivity, Delayed ; Interferon-gamma/biosynthesis ; Interleukin-10/*biosynthesis ; Interleukin-12/*biosynthesis ; Keratitis, Herpetic/immunology ; Listeriosis/immunology ; Lymphocyte Activation ; Macrophages/*immunology ; Mice ; Mice, Inbred C3H ; Mice, Inbred C57BL ; Mice, Nude ; Osteopontin ; Phosphorylation ; Receptors, Vitronectin/metabolism ; Sialoglycoproteins/*immunology/metabolism/pharmacology ; T-Lymphocytes/*immunology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2000-04-25
    Description: The tau mutation is a semidominant autosomal allele that dramatically shortens period length of circadian rhythms in Syrian hamsters. We report the molecular identification of the tau locus using genetically directed representational difference analysis to define a region of conserved synteny in hamsters with both the mouse and human genomes. The tau locus is encoded by casein kinase I epsilon (CKIepsilon), a homolog of the Drosophila circadian gene double-time. In vitro expression and functional studies of wild-type and tau mutant CKIepsilon enzyme reveal that the mutant enzyme has a markedly reduced maximal velocity and autophosphorylation state. In addition, in vitro CKIepsilon can interact with mammalian PERIOD proteins, and the mutant enzyme is deficient in its ability to phosphorylate PERIOD. We conclude that tau is an allele of hamster CKIepsilon and propose a mechanism by which the mutation leads to the observed aberrant circadian phenotype in mutant animals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869379/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869379/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lowrey, P L -- Shimomura, K -- Antoch, M P -- Yamazaki, S -- Zemenides, P D -- Ralph, M R -- Menaker, M -- Takahashi, J S -- R01MH56647/MH/NIMH NIH HHS/ -- R37MH39592/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2000 Apr 21;288(5465):483-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology and Physiology, Howard Hughes Medical Institute, Northwestern University, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10775102" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Casein Kinases ; Cell Cycle Proteins ; Chromosome Mapping ; *Circadian Rhythm/genetics ; Cloning, Molecular ; Cricetinae ; Female ; Heterozygote ; Humans ; Male ; Mesocricetus ; Mice ; Microsatellite Repeats ; Molecular Sequence Data ; Nuclear Proteins/genetics/metabolism ; Period Circadian Proteins ; Phenotype ; Phosphorylation ; *Point Mutation ; Polymerase Chain Reaction ; Polymorphism, Genetic ; Protein Kinases/chemistry/*genetics/*metabolism ; RNA, Messenger/genetics/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Suprachiasmatic Nucleus/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-09-08
    Description: Systematic efforts are currently under way to construct defined sets of cloned genes for high-throughput expression and purification of recombinant proteins. To facilitate subsequent studies of protein function, we have developed miniaturized assays that accommodate extremely low sample volumes and enable the rapid, simultaneous processing of thousands of proteins. A high-precision robot designed to manufacture complementary DNA microarrays was used to spot proteins onto chemically derivatized glass slides at extremely high spatial densities. The proteins attached covalently to the slide surface yet retained their ability to interact specifically with other proteins, or with small molecules, in solution. Three applications for protein microarrays were demonstrated: screening for protein-protein interactions, identifying the substrates of protein kinases, and identifying the protein targets of small molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉MacBeath, G -- Schreiber, S L -- New York, N.Y. -- Science. 2000 Sep 8;289(5485):1760-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Genomics Research, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA. gavin_macbeath@harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10976071" target="_blank"〉PubMed〈/a〉
    Keywords: Biochemistry/*methods ; Biotin/metabolism ; Digoxigenin/metabolism ; Fluorescence ; Fluorescent Dyes ; Ligands ; *Molecular Probe Techniques ; Phosphorylation ; Piperazines/pharmacology ; *Protein Binding ; Protein Folding ; Protein Kinases/*metabolism ; Proteins/*chemistry/*metabolism ; Robotics ; Serum Albumin, Bovine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2000-03-17
    Description: Phospholipase C and two inositol polyphosphate (IP) kinases constitute a signaling pathway that regulates nuclear messenger RNA export through production of inositol hexakisphosphate (IP6). The inositol 1,4,5-trisphosphate kinase of this pathway in Saccharomyces cerevisiae, designated Ipk2, was found to be identical to Arg82, a regulator of the transcriptional complex ArgR-Mcm1. Synthesis of inositol 1,4,5,6-tetrakisphosphate, but not IP6, was required for gene regulation through ArgR-Mcm1. Thus, the phospholipase C pathway produces multiple IP messengers that modulate distinct nuclear processes. The results reveal a direct mechanism by which activation of IP signaling may control gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Odom, A R -- Stahlberg, A -- Wente, S R -- York, J D -- New York, N.Y. -- Science. 2000 Mar 17;287(5460):2026-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Pharmacology and Cancer Biology and of Biochemistry, Duke University Medical Center, DUMC 3813, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10720331" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arginine/metabolism ; Cell Nucleus/enzymology/*metabolism ; DNA-Binding Proteins/metabolism ; *Gene Expression Regulation, Fungal ; Inositol 1,4,5-Trisphosphate/metabolism ; Inositol Phosphates/*metabolism ; Minichromosome Maintenance 1 Protein ; Molecular Sequence Data ; Phosphoric Monoester Hydrolases/metabolism ; Phosphorylation ; Phosphotransferases (Alcohol Group Acceptor)/chemistry/*metabolism ; Phytic Acid/metabolism ; Saccharomyces cerevisiae/enzymology/*genetics ; Signal Transduction ; Transcription Factors/metabolism ; *Transcription, Genetic ; Type C Phospholipases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2000-10-06
    Description: Interactions between the T cell receptor (TCR) and major histocompatibility complex antigens are essential for the survival and homeostasis of peripheral T lymphocytes. However, little is known about the TCR signaling events that result from these interactions. The peripheral T cell pool of p56lck (lck)-deficient mice was reconstituted by the expression of an inducible lck transgene. Continued survival of peripheral naive T cells was observed for long periods after switching off the transgene. Adoptive transfer of T cells from these mice into T lymphopoienic hosts confirmed that T cell survival was independent of lck but revealed its essential role in TCR-driven homeostatic proliferation of naive T cells in response to the T cell-deficient host environment. These data suggest that survival and homeostatic expansion depend on different signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seddon, B -- Legname, G -- Tomlinson, P -- Zamoyska, R -- New York, N.Y. -- Science. 2000 Oct 6;290(5489):127-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Immunology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11021796" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD3/metabolism ; CD4-Positive T-Lymphocytes/immunology/physiology ; CD8-Positive T-Lymphocytes/immunology/physiology ; Cell Division ; Cell Survival ; Doxycycline/pharmacology ; Gene Expression ; Homeostasis ; Lymphocyte Activation ; Lymphocyte Count ; Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics/*physiology ; Lymphocyte Transfusion ; Lymphoid Tissue/cytology/immunology ; Mice ; Mice, Knockout ; Mice, Transgenic ; Phosphorylation ; Proto-Oncogene Proteins c-bcl-2/genetics/metabolism ; Receptors, Antigen, T-Cell/metabolism ; Signal Transduction ; T-Lymphocyte Subsets/immunology/physiology ; T-Lymphocytes/immunology/*physiology/transplantation ; Thymus Gland/cytology/immunology ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-11-04
    Description: Establishment and maintenance of an intracellular niche are critical to the success of an intracellular pathogen. Here, the pore-forming protein listeriolysin O (LLO), secreted by Listeria monocytogenes, was shown to contain a PEST-like sequence (P, Pro; E, Glu; S, Ser; T, Thr) that is essential for the virulence and intracellular compartmentalization of this pathogen. Mutants lacking the PEST-like sequence entered the host cytosol but subsequently permeabilized and killed the host cell. LLO lacking the PEST-like sequence accumulated in the host-cell cytosol, suggesting that this sequence targets LLO for degradation. Transfer of the sequence to perfringolysin O transformed this toxic cytolysin into a nontoxic derivative that facilitated intracellular growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Decatur, A L -- Portnoy, D A -- AI10283/AI/NIAID NIH HHS/ -- AI27655/AI/NIAID NIH HHS/ -- R01 AI027655/AI/NIAID NIH HHS/ -- R37 AI029619/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2000 Nov 3;290(5493):992-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, Division of Infectious Diseases, School of Public Health, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11062133" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Bacterial Toxins/chemistry ; Cell Line ; Cytosol/metabolism ; Heat-Shock Proteins/*chemistry/genetics/*metabolism/toxicity ; Hemolysin Proteins ; L-Lactate Dehydrogenase/metabolism ; Listeria monocytogenes/genetics/metabolism/*pathogenicity ; Listeriosis/microbiology ; Macrophages/microbiology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Mutation ; Phagosomes/microbiology ; Phosphorylation ; Sequence Deletion ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2000-03-24
    Description: To elucidate mechanisms that control and execute activity-dependent synaptic plasticity, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPA-Rs) with an electrophysiological tag were expressed in rat hippocampal neurons. Long-term potentiation (LTP) or increased activity of the calcium/calmodulin-dependent protein kinase II (CaMKII) induced delivery of tagged AMPA-Rs into synapses. This effect was not diminished by mutating the CaMKII phosphorylation site on the GluR1 AMPA-R subunit, but was blocked by mutating a predicted PDZ domain interaction site. These results show that LTP and CaMKII activity drive AMPA-Rs to synapses by a mechanism that requires the association between GluR1 and a PDZ domain protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hayashi, Y -- Shi, S H -- Esteban, J A -- Piccini, A -- Poncer, J C -- Malinow, R -- New York, N.Y. -- Science. 2000 Mar 24;287(5461):2262-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10731148" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Catalytic Domain ; Cell Line ; Hippocampus/cytology/metabolism ; Humans ; *Long-Term Potentiation ; Membrane Potentials ; Mutation ; Organ Culture Techniques ; Patch-Clamp Techniques ; Phosphorylation ; Protein Structure, Tertiary ; Proteins/*metabolism ; Pyramidal Cells/metabolism/*physiology ; Rats ; Receptors, AMPA/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Synapses/*metabolism ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-03-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Olson, E N -- New York, N.Y. -- Science. 2001 Mar 23;291(5512):2327-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. eolson@hamon.swmed.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11269304" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Blood Cells ; Bone Morphogenetic Proteins/metabolism ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Central Nervous System/embryology/metabolism ; Cytoskeletal Proteins/metabolism ; Drosophila/embryology/metabolism ; *Drosophila Proteins ; *Embryonic Induction ; Endoderm/physiology ; Gene Expression Regulation, Developmental ; Glycogen Synthase Kinase 3 ; Heart/*embryology ; Hematopoiesis ; Insect Proteins/metabolism ; Intercellular Signaling Peptides and Proteins ; Mesoderm/cytology/physiology ; Notochord/metabolism ; Phosphorylation ; Proteins/*metabolism ; Signal Transduction ; *Trans-Activators ; Transcription Factors/metabolism ; Vertebrates/embryology ; Wnt Proteins ; Wnt3 Protein ; *Xenopus Proteins ; Zebrafish Proteins ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2001-11-27
    Description: The checkpoint kinases ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3 related) transduce genomic stress signals to halt cell cycle progression and promote DNA repair. We report the identification of an ATR-interacting protein (ATRIP) that is phosphorylated by ATR, regulates ATR expression, and is an essential component of the DNA damage checkpoint pathway. ATR and ATRIP both localize to intranuclear foci after DNA damage or inhibition of replication. Deletion of ATR mediated by the Cre recombinase caused the loss of ATR and ATRIP expression, loss of DNA damage checkpoint responses, and cell death. Therefore, ATR is essential for the viability of human somatic cells. Small interfering RNA directed against ATRIP caused the loss of both ATRIP and ATR expression and the loss of checkpoint responses to DNA damage. Thus, ATRIP and ATR are mutually dependent partners in cell cycle checkpoint signaling pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cortez, D -- Guntuku, S -- Qin, J -- Elledge, S J -- New York, N.Y. -- Science. 2001 Nov 23;294(5547):1713-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verna and Mars McLean Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11721054" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; Ataxia Telangiectasia Mutated Proteins ; *Cell Cycle ; *Cell Cycle Proteins ; Cell Death ; Cell Line ; Cell Survival ; Conserved Sequence ; DNA Damage ; DNA-Binding Proteins ; *Exodeoxyribonucleases ; Exons/genetics ; Gene Deletion ; Genes, Essential/genetics ; HeLa Cells ; Humans ; Integrases/genetics/metabolism ; Molecular Sequence Data ; Molecular Weight ; Phosphoproteins/genetics/*metabolism ; Phosphorylation ; Precipitin Tests ; Protein Binding ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Sequence Alignment ; *Signal Transduction ; Viral Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2001-02-27
    Description: Previous findings suggest that during cognate T cell-B cell interactions, major histocompatability complex (MHC) class II molecules transduce signals, leading to Src-family kinase activation, Ca2+ mobilization, and proliferation. Here, we show that antigen stimulation of resting B cells induces MHC class II molecules to associate with Immunoglobulin (Ig)-alpha/Ig-beta (CD79a/CD79b) heterodimers, which function as signal transducers upon MHC class II aggregation by the T cell receptor (TCR). The B cell receptor (BCR) and MHC class II/Ig-alpha/Ig-beta are distinct complexes, yet class II-associated Ig-alpha/beta appears to be derived from BCR. Hence, Ig-alpha/beta are used in a sequential fashion for transduction of antigen and cognate T cell help signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lang, P -- Stolpa, J C -- Freiberg, B A -- Crawford, F -- Kappler, J -- Kupfer, A -- Cambier, J C -- AI 20519/AI/NIAID NIH HHS/ -- AI 22295/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2001 Feb 23;291(5508):1537-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Integrated Department of Immunology, University of Colorado Health Sciences Center, and National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11222857" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens/immunology ; Antigens, CD/*metabolism ; Antigens, CD79 ; B-Lymphocytes/*immunology/metabolism ; Cells, Cultured ; Dimerization ; Enzyme Activation ; Histocompatibility Antigens Class II/immunology/*metabolism ; Immunoblotting ; Lymphocyte Activation ; Mice ; Mice, Transgenic ; Phosphorylation ; Phosphotyrosine/metabolism ; Precipitin Tests ; Protein-Tyrosine Kinases/metabolism ; Receptors, Antigen, B-Cell/immunology/*metabolism ; Receptors, Antigen, T-Cell/immunology/*metabolism ; *Signal Transduction ; T-Lymphocytes/immunology/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2001-07-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Laporte, S A -- Oakley, R H -- Caron, M G -- New York, N.Y. -- Science. 2001 Jul 6;293(5527):62-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute Laboratories, Departments of Cell Biology and Medicine, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11441172" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-2 Receptor Agonists ; Albuterol/pharmacology ; Animals ; Calcium Channels, L-Type/*metabolism ; Cyclic AMP/metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Heterotrimeric GTP-Binding Proteins/metabolism ; Hippocampus ; Isoproterenol/pharmacology ; Ligands ; Macromolecular Substances ; Neurons/drug effects/enzymology/metabolism ; Phosphorylation ; Protein Subunits ; Rats ; Receptors, Adrenergic, beta-2/*metabolism ; *Signal Transduction/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-09-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blakely, R D -- New York, N.Y. -- Science. 2001 Sep 28;293(5539):2407-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vanderbilt Center for Molecular Neuroscience, Nashville, TN 37232, USA. randy.blakely@mcmail.vanderbilt.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11577225" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Biological Transport ; Carrier Proteins/*metabolism ; Dendrites/*metabolism ; Dopamine/*metabolism ; Dopamine D2 Receptor Antagonists ; Dopamine Plasma Membrane Transport Proteins ; Glutamates/metabolism ; Humans ; *Membrane Glycoproteins ; *Membrane Transport Proteins ; *Nerve Tissue Proteins ; Neurons/metabolism/physiology ; Parkinson Disease/metabolism/therapy ; Phosphorylation ; Protein Kinase C/metabolism ; Rats ; Receptors, Dopamine D2/metabolism ; Receptors, Metabotropic Glutamate/metabolism ; Substantia Nigra/cytology/*metabolism ; Subthalamic Nucleus/physiology ; Synapses/metabolism ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-05-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Trautmann, A -- Vivier, E -- New York, N.Y. -- Science. 2001 Jun 1;292(5522):1667-8. Epub 2001 May 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire d'Immuno-Pharmacologie, CNRS UPR 415, ICGM, Paris, France. trautmann@cochin.inserm.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11349139" target="_blank"〉PubMed〈/a〉
    Keywords: Agrin/chemistry/genetics/*physiology ; Animals ; Antigen-Presenting Cells/*physiology/ultrastructure ; Dendrites/physiology ; Glycosylation ; Immunologic Memory ; Long-Term Potentiation ; Lymphocyte Activation ; Membrane Microdomains/physiology ; Neuromuscular Junction/*physiology ; Neurons/*physiology ; Phosphorylation ; Receptor Aggregation ; Receptors, Antigen, T-Cell/physiology ; Receptors, Cholinergic/metabolism ; Signal Transduction ; Synapses/physiology ; T-Lymphocytes/*physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dlakic, M -- New York, N.Y. -- Science. 2001 Jan 26;291(5504):547.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, The University of Michigan Medical School, Ann Arbor, MI 48109-0606, USA. mensur@umich.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11158662" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Toxins/analysis/*metabolism/toxicity ; Cell Cycle/drug effects ; *Cell Cycle Proteins ; Cell Nucleus/chemistry/metabolism ; Deoxyribonuclease I/*metabolism ; *Nuclear Proteins ; Phosphoric Monoester Hydrolases/*metabolism ; Phosphorylation ; Protein-Tyrosine Kinases/metabolism ; cdc25 Phosphatases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2001-10-27
    Description: Single-molecule imaging techniques were used to reveal the binding of individual cyclic adenosine 3',5'-monophosphate molecules to heterotrimeric guanine nucleotide-binding protein coupled receptors on the surface of living Dictyostelium discoideum cells. The binding sites were uniformly distributed and diffused rapidly in the plane of the membrane. The probabilities of individual association and dissociation events were greater for receptors at the anterior end of the cell. Agonist-induced receptor phosphorylation had little effect on any of the monitored properties, whereas G protein coupling influenced the binding kinetics. These observations illustrate the dynamic properties of receptors involved in gradient sensing and suggest that these may be polarized in chemotactic cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ueda, M -- Sako, Y -- Tanaka, T -- Devreotes, P -- Yanagida, T -- New York, N.Y. -- Science. 2001 Oct 26;294(5543):864-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Recognition and Formation, Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Corporation (JST)., Osaka 562-0035, Japan. ueda@phys1.med.osaka-u.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11679673" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carbocyanines/metabolism ; Cell Membrane/metabolism ; *Chemotaxis ; Cyclic AMP/*metabolism ; Dictyostelium/cytology/genetics/metabolism/*physiology ; Diffusion ; Guanosine Diphosphate/pharmacology ; Guanosine Triphosphate/pharmacology ; Heterotrimeric GTP-Binding Proteins/genetics/*metabolism ; Kinetics ; Microscopy, Fluorescence ; Mutation ; Phosphorylation ; Pseudopodia/metabolism ; Receptors, Cyclic AMP/*metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2001-10-13
    Description: Increases in the intracellular concentration of calcium ([Ca2+]i) activate various signaling pathways that lead to the expression of genes that are essential for dendritic development, neuronal survival, and synaptic plasticity. The mode of Ca2+ entry into a neuron plays a key role in determining which signaling pathways are activated and thus specifies the cellular response to Ca2+. Ca2+ influx through L-type voltage-activated channels (LTCs) is particularly effective at activating transcription factors such as CREB and MEF-2. We developed a functional knock-in technique to investigate the features of LTCs that specifically couple them to the signaling pathways that regulate gene expression. We found that an isoleucine-glutamine ("IQ") motif in the carboxyl terminus of the LTC that binds Ca2+-calmodulin (CaM) is critical for conveying the Ca2+ signal to the nucleus. Ca2+-CaM binding to the LTC was necessary for activation of the Ras/mitogen-activated protein kinase (MAPK) pathway, which conveys local Ca2+ signals from the mouth of the LTC to the nucleus. CaM functions as a local Ca2+ sensor at the mouth of the LTC that activates the MAPK pathway and leads to the stimulation of genes that are essential for neuronal survival and plasticity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dolmetsch, R E -- Pajvani, U -- Fife, K -- Spotts, J M -- Greenberg, M E -- NS28829/NS/NINDS NIH HHS/ -- P30-HD18655/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2001 Oct 12;294(5541):333-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuroscience, Children's Hospital and Department of Neurobiology, Harvard Medical School, Enders Pediatric Research Laboratories, Room 260, 300 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11598293" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Calcium/*metabolism ; Calcium Channels, L-Type/chemistry/genetics/*metabolism ; Calcium Signaling ; Calmodulin/*metabolism ; Cell Membrane/metabolism ; Cell Nucleus/*metabolism ; Cells, Cultured ; Cerebral Cortex/cytology ; Cyclic AMP Response Element-Binding Protein/metabolism ; DNA-Binding Proteins/metabolism ; Enzyme Activation ; Gene Expression Regulation ; *MAP Kinase Signaling System ; MEF2 Transcription Factors ; Mitogen-Activated Protein Kinases/metabolism ; Molecular Sequence Data ; Mutation ; Myogenic Regulatory Factors ; Neurons/*metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Protein Structure, Tertiary ; Rats ; Rats, Long-Evans ; Transcription Factors/metabolism ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2001-12-18
    Description: Hepatitis B virus (HBV) infects more than 300 million people and is a leading cause of liver cancer and disease. The HBV HBx protein is essential for infection; HBx activation of Src is important for HBV DNA replication. In our study, HBx activated cytosolic calcium-dependent proline-rich tyrosine kinase-2 (Pyk2), a Src kinase activator. HBx activation of HBV DNA replication was blocked by inhibiting Pyk2 or calcium signaling mediated by mitochondrial calcium channels, which suggests that HBx targets mitochondrial calcium regulation. Reagents that increased cytosolic calcium substituted for HBx protein in HBV DNA replication. Thus, alteration of cytosolic calcium was a fundamental requirement for HBV replication and was mediated by HBx protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bouchard, M J -- Wang, L H -- Schneider, R J -- F32CA-4476/CA/NCI NIH HHS/ -- R0ICA-565633/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2001 Dec 14;294(5550):2376-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11743208" target="_blank"〉PubMed〈/a〉
    Keywords: Calcium/metabolism ; Calcium Channels/metabolism ; *Calcium Signaling ; Cyclosporine/pharmacology ; Cytosol/metabolism ; *DNA Replication ; DNA, Viral/biosynthesis ; Egtazic Acid/*analogs & derivatives/pharmacology ; Enzyme Activation ; Focal Adhesion Kinase 2 ; Genome, Viral ; Hepatitis B virus/genetics/*physiology ; Humans ; Mitochondria/metabolism ; Phosphorylation ; Plasmids ; Protein-Tyrosine Kinases/metabolism ; Signal Transduction ; Trans-Activators/genetics/*metabolism ; Transcription, Genetic ; Transfection ; Tumor Cells, Cultured ; Virus Replication ; src-Family Kinases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-08-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levitan, I B -- Cibulsky, S M -- New York, N.Y. -- Science. 2001 Aug 17;293(5533):1270-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11509717" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate Ribose/metabolism ; Amino Acid Motifs ; Animals ; Calcium Channels/chemistry/*metabolism ; Catalysis ; Catalytic Domain ; Crystallography, X-Ray ; Evolution, Molecular ; Ion Channel Gating ; Ion Channels/chemistry/genetics/*metabolism ; *Membrane Proteins ; Mutation ; NAD/metabolism ; Patch-Clamp Techniques ; Phosphorylation ; Protein Kinases/chemistry/genetics/*metabolism ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases ; Pyrophosphatases/*metabolism ; TRPM Cation Channels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-12-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heldin, C H -- Ericsson, J -- New York, N.Y. -- Science. 2001 Dec 7;294(5549):2111-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ludwig Institute for Cancer Research, Box 595, Biomedical Center, SE-751 24 Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11739942" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Amyloid Precursor Protein Secretases ; Animals ; Aspartic Acid Endopeptidases ; Cell Division ; Cell Membrane/*metabolism ; Cell Nucleus/metabolism ; Dimerization ; Endopeptidases/metabolism ; Endoplasmic Reticulum/metabolism ; *Gene Expression Regulation ; Humans ; Ligands ; Mice ; Models, Biological ; Nuclear Localization Signals ; Phosphorylation ; Protein Structure, Tertiary ; Receptor, Epidermal Growth Factor/chemistry/*metabolism ; Receptor, ErbB-4 ; *Signal Transduction ; Transcription, Genetic ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2001-10-27
    Description: In response to DNA damage, eukaryotic cells activate checkpoint pathways that arrest cell cycle progression and induce the expression of genes required for DNA repair. In budding yeast, the homothallic switching (HO) endonuclease creates a site-specific double-strand break at the mating type (MAT) locus. Continuous HO expression results in the phosphorylation of Rad53, which is dependent on products of the ataxia telangiectasia mutated-related MEC1 gene and other checkpoint genes, including DDC1, RAD9, and RAD24. Chromatin immunoprecipitation experiments revealed that the Ddc1 protein associates with a region near the MAT locus after HO expression. Ddc1 association required Rad24 but not Mec1 or Rad9. Mec1 also associated with a region near the cleavage site after HO expression, but this association is independent of Ddc1, Rad9, and Rad24. Thus, Mec1 and Ddc1 are recruited independently to sites of DNA damage, suggesting the existence of two separate mechanisms involved in recognition of DNA damage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kondo, T -- Wakayama, T -- Naiki, T -- Matsumoto, K -- Sugimoto, K -- New York, N.Y. -- Science. 2001 Oct 26;294(5543):867-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Science, Graduate School of Science, Nagoya University, CREST, Japan Science and Technology Corporation, Chikusa-ku, Nagoya 464-0814, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11679674" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle ; Cell Cycle Proteins/metabolism ; Cell Nucleus/metabolism ; Checkpoint Kinase 2 ; Cytoplasm/metabolism ; *DNA Damage ; DNA Repair ; DNA, Fungal/genetics/*metabolism ; DNA-Binding Proteins ; Deoxyribonucleases, Type II Site-Specific/metabolism ; Fungal Proteins/*metabolism ; Genes, Fungal ; Genes, Mating Type, Fungal ; Genes, cdc ; Intracellular Signaling Peptides and Proteins ; Mutation ; Nuclear Proteins ; Peptides/genetics ; Phosphorylation ; Protein-Serine-Threonine Kinases/metabolism ; Recombinant Fusion Proteins/metabolism ; Recombination, Genetic ; *Saccharomyces cerevisiae Proteins ; Saccharomycetales/cytology/genetics/*metabolism ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-10-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ikeda, S R -- New York, N.Y. -- Science. 2001 Oct 12;294(5541):318-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉the Laboratory of Molecular Physiology, Guthrie Research Institute, Sayre, PA 18840, USA. sikeda@inet.guthrie.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11598289" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Amino Acid Motifs ; Animals ; Calcium/*metabolism ; Calcium Channel Blockers/pharmacology ; Calcium Channels, L-Type/chemistry/genetics/*metabolism ; Calcium Signaling ; Calmodulin/metabolism ; Cell Membrane/metabolism ; Cell Nucleus/*metabolism ; Cerebral Cortex/cytology ; Cyclic AMP Response Element-Binding Protein/metabolism ; MAP Kinase Signaling System ; Mutation ; Neurons/*metabolism ; Nimodipine/pharmacology ; Phosphorylation ; Rats ; Synaptic Transmission ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2001-05-26
    Description: Dysfunction of the tubby protein results in maturity-onset obesity in mice. Tubby has been implicated as a transcription regulator, but details of the molecular mechanism underlying its function remain unclear. Here we show that tubby functions in signal transduction from heterotrimeric GTP-binding protein (G protein)-coupled receptors. Tubby localizes to the plasma membrane by binding phosphatidylinositol 4,5-bisphosphate through its carboxyl terminal "tubby domain." X-ray crystallography reveals the atomic-level basis of this interaction and implicates tubby domains as phosphorylated-phosphatidyl- inositol binding factors. Receptor-mediated activation of G protein alphaq (Galphaq) releases tubby from the plasma membrane through the action of phospholipase C-beta, triggering translocation of tubby to the cell nucleus. The localization of tubby-like protein 3 (TULP3) is similarly regulated. These data suggest that tubby proteins function as membrane-bound transcription regulators that translocate to the nucleus in response to phosphoinositide hydrolysis, providing a direct link between G-protein signaling and the regulation of gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Santagata, S -- Boggon, T J -- Baird, C L -- Gomez, C A -- Zhao, J -- Shan, W S -- Myszka, D G -- Shapiro, L -- New York, N.Y. -- Science. 2001 Jun 15;292(5524):2041-50. Epub 2001 May 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ruttenberg Cancer Center, Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine of New York University, 1425 Madison Avenue New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11375483" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; Cell Membrane/metabolism ; Cell Nucleus/*metabolism ; Cells, Cultured ; Crystallography, X-Ray ; GTP-Binding Protein alpha Subunits, Gq-G11 ; Gene Expression Regulation ; Heterotrimeric GTP-Binding Proteins/*metabolism ; Humans ; Isoenzymes/*metabolism ; Membrane Lipids/metabolism ; Mice ; Models, Biological ; Molecular Sequence Data ; Nuclear Localization Signals ; Obesity/genetics/metabolism ; Phosphatidylinositol 4,5-Diphosphate/*metabolism ; Phosphatidylinositol Phosphates/metabolism ; Phospholipase C beta ; Phosphorylation ; Protein Structure, Tertiary ; Proteins/chemistry/genetics/*metabolism ; Receptor, Serotonin, 5-HT2C ; Receptors, Muscarinic/metabolism ; Receptors, Serotonin/metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Transcription Factors/chemistry/genetics/*metabolism ; Type C Phospholipases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-03-28
    Description: The dynamic glycosylation of serine or threonine residues on nuclear and cytosolic proteins by O-linked beta-N-acetylglucosamine (O-GlcNAc) is abundant in all multicellular eukaryotes. On several proteins, O-GlcNAc and O-phosphate alternatively occupy the same or adjacent sites, leading to the hypothesis that one function of this saccharide is to transiently block phosphorylation. The diversity of proteins modified by O-GlcNAc implies its importance in many basic cellular and disease processes. Here we systematically examine the current data implicating O-GlcNAc as a regulatory modification important to signal transduction cascades.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wells, L -- Vosseller, K -- Hart, G W -- CA42486/CA/NCI NIH HHS/ -- CA83261/CA/NCI NIH HHS/ -- GM20528/GM/NIGMS NIH HHS/ -- HD13563/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2001 Mar 23;291(5512):2376-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11269319" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylglucosamine/*metabolism ; Animals ; Cell Nucleus/*metabolism ; Cytoplasm/*metabolism ; Glucose/metabolism ; Glycoproteins/metabolism ; Glycosylation ; Humans ; N-Acetylglucosaminyltransferases/metabolism ; Nuclear Proteins/metabolism ; Phosphorylation ; Proteins/*metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2002-06-01
    Description: Signals propagated through the B cell antigen receptor (BCR) are vital for the development and survival of B lymphocytes in both the bone marrow and the periphery. These signals not only guide maturation and activation but also affect the removal of potentially self-reactive B lymphocytes. Interestingly, these signals are known to be either ligand-independent ("tonic" signals) or induced by ligand (antigen) binding to the BCR. We focus on the problems that occur in B cell development due to defects in signals emanating from the BCR. In addition, we present the B Cell Antigen Receptor Pathway, an STKE Connections Map that illustrates the events involved in B cell signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gauld, Stephen B -- Dal Porto, Joseph M -- Cambier, John C -- New York, N.Y. -- Science. 2002 May 31;296(5573):1641-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Integrated Department of Immunology, University of Colorado Health Sciences Center, and National Jewish Medical Research Center, 1400 Jackson Street, Denver, CO 80206, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12040177" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD19/metabolism ; Autoimmune Diseases/immunology ; B-Lymphocytes/*immunology/metabolism/physiology ; Humans ; Immunologic Deficiency Syndromes/immunology ; Lymphocyte Activation ; Phosphorylation ; Protein-Tyrosine Kinases/metabolism ; Receptors, Antigen, B-Cell/chemistry/*metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-02-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, Gary -- New York, N.Y. -- Science. 2002 Feb 15;295(5558):1249-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Colorado Health Sciences Center, Denver, CO 80262, USA. gary.johnson@uchsc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11847330" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Motifs ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Carrier Proteins/chemistry/*metabolism ; Cell Line ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Humans ; Imidazoles/pharmacology ; *Intracellular Signaling Peptides and Proteins ; MAP Kinase Kinase 6 ; MAP Kinase Kinase Kinases/metabolism ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase 14 ; Mitogen-Activated Protein Kinases/chemistry/*metabolism ; Phosphorylation ; Protein Binding ; Proteins/metabolism ; Pyridines/pharmacology ; Recombinant Proteins/metabolism ; TNF Receptor-Associated Factor 6 ; p38 Mitogen-Activated Protein Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2002-05-25
    Description: The mating response of the budding yeast Saccharomyces cerevisiae is mediated by a prototypical heterotrimeric GTP-binding protein (G protein) and mitogen-activated protein kinase (MAPK) cascade. Although signal transmission by such pathways has been modeled in detail, postreceptor down-regulation is less well understood. The pheromone-responsive G protein alpha subunit (Galpha) of yeast down-regulates the mating signal, but its targets are unknown. We have found that Galpha binds directly to the mating-specific MAPK in yeast cells responding to pheromone. This interaction contributes both to modulation of the mating signal and to the chemotropic response, and it demonstrates direct communication between the top and bottom of a Galpha-MAPK pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Metodiev, Metodi V -- Matheos, Dina -- Rose, Mark D -- Stone, David E -- New York, N.Y. -- Science. 2002 May 24;296(5572):1483-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Laboratory for Molecular Biology, University of Illinois at Chicago, 900 South Ashland Avenue (M/C 567), Chicago, IL 60607, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12029138" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; Down-Regulation ; *GTP-Binding Protein alpha Subunits ; GTP-Binding Protein alpha Subunits, Gq-G11 ; *GTP-Binding Protein beta Subunits ; Guanosine Diphosphate/metabolism ; Heterotrimeric GTP-Binding Proteins/chemistry/genetics/*metabolism ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinases/*metabolism ; Molecular Sequence Data ; Mutation ; Pheromones/pharmacology ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae/genetics/*metabolism/physiology ; Saccharomyces cerevisiae Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-02-16
    Description: GSK3/SHAGGY is a highly conserved serine/threonine kinase implicated in many signaling pathways in eukaryotes. Although many GSK3/SHAGGY-like kinases have been identified in plants, little is known about their functions in plant growth and development. Here we show that the Arabidopsis BRASSINOSTEROID-INSENSITIVE 2 (BIN2) gene encodes a GSK3/SHAGGY-like kinase. Gain-of-function mutations within its coding sequence or its overexpression inhibit brassinosteroid (BR) signaling, resulting in plants that resemble BR-deficient and BR-response mutants. In contrast, reduced BIN2 expression via cosuppression partially rescues a weak BR-signaling mutation. Thus, BIN2 acts as a negative regulator to control steroid signaling in plants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Jianming -- Nam, Kyoung Hee -- GM60519/GM/NIGMS NIH HHS/ -- R01 GM060519/GM/NIGMS NIH HHS/ -- R01 GM060519-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Feb 15;295(5558):1299-301.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11847343" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/*enzymology/genetics/growth & development/metabolism ; Arabidopsis Proteins/chemistry/*genetics/*metabolism ; Calcium-Calmodulin-Dependent Protein Kinases/chemistry ; Cloning, Molecular ; *Drosophila Proteins ; Genes, Plant ; Glycogen Synthase Kinase 3 ; Humans ; Molecular Sequence Data ; Mutation ; Phenotype ; Phosphorylation ; Plant Growth Regulators/*metabolism ; Plants, Genetically Modified ; Protein Kinases/chemistry/*genetics/*metabolism ; Protein-Serine-Threonine Kinases/chemistry ; Recombinant Fusion Proteins/metabolism ; Sequence Homology, Amino Acid ; *Signal Transduction ; Steroids/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2002-05-11
    Description: The bacterium Wolbachia manipulates reproduction in millions of insects worldwide; the most common effect is cytoplasmic incompatibility (CI). We found that CI resulted from delayed nuclear envelope breakdown of the male pronucleus in Nasonia vitripennis. This caused asynchrony between the male and female pronuclei and, ultimately, loss of paternal chromosomes at the first mitosis. When Wolbachia were present in the egg, synchrony was restored, which explains suppression of CI in these crosses. These results suggest that Wolbachia target cell cycle regulatory proteins. A striking consequence of CI is that it alters the normal pattern of reciprocal centrosome inheritance in Nasonia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tram, Uyen -- Sullivan, William -- GM16409/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 May 10;296(5570):1124-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cell, and Developmental Biology, 319 Sinsheimer Labs, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12004132" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CDC2 Protein Kinase/metabolism ; Centrosome/physiology ; Chromosomes/physiology ; Cytoplasm/physiology ; Embryo, Nonmammalian/physiology ; Female ; Fertilization ; Histones/metabolism ; Male ; *Mitosis ; Motion Pictures as Topic ; Nuclear Envelope/*physiology ; Ovum/microbiology/physiology ; Phosphorylation ; Spermatozoa/microbiology/physiology ; Spindle Apparatus/physiology ; Time Factors ; Wasps/embryology/*microbiology/*physiology ; Wolbachia/*physiology ; Zygote/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-06-01
    Description: Phosphorylated lipids are produced at cellular membranes during signaling events and contribute to the recruitment and activation of various signaling components. The role of phosphoinositide 3-kinase (PI3K), which catalyzes the production of phosphatidylinositol-3,4,5-trisphosphate, in cell survival pathways; the regulation of gene expression and cell metabolism; and cytoskeletal rearrangements are highlighted. The PI3K pathway is implicated in human diseases including diabetes and cancer, and understanding the intricacies of this pathway may provide new avenues for therapuetic intervention.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cantley, Lewis C -- R01 GM041890/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 May 31;296(5573):1655-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School and Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115-5713, USA. cantley@helix.mgh.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12040186" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Phosphoinositide-Dependent Protein Kinases ; Animals ; Cell Membrane/metabolism ; Cell Physiological Phenomena ; Diabetes Mellitus, Type 2/drug therapy/metabolism ; Humans ; Models, Biological ; Neoplasms/drug therapy/metabolism ; Phosphatidylinositol 3-Kinases/*metabolism ; Phosphatidylinositol 4,5-Diphosphate/metabolism ; Phosphatidylinositol Phosphates/chemistry/*metabolism ; Phosphorylation ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-akt ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-01-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arlot-Bonnemains, Yannick -- Prigent, Claude -- New York, N.Y. -- Science. 2002 Jan 18;295(5554):455-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Groupe Cycle Cellulaire, UMR 6061 Genetique et Developpement, CNRS-Universite de Rennes I, IFR 97 Genomique Fonctionnelle et Sante, Faculte de Medecine, CS 34317, 35043 Rennes Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11799231" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst/metabolism ; *CDC2-CDC28 Kinases ; Calcium/*metabolism ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Calmodulin/metabolism ; Cell Extracts ; Centrosome/drug effects/*metabolism ; Cyclin E/metabolism ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinases/metabolism ; DNA Replication/drug effects ; Embryo, Nonmammalian/cytology/metabolism ; Enzyme Activation ; Hydroxyurea/pharmacology ; Nuclear Proteins/metabolism ; Ovum/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/metabolism ; Protein-Tyrosine Kinases/metabolism ; *S Phase/drug effects ; Xenopus ; Xenopus Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-02-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sisodia, Sangram S -- New York, N.Y. -- Science. 2002 Feb 1;295(5556):805-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Neurobiology, Chicago, IL 60637, USA. ssisodia@drugs.bsd.uchicago.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11823626" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Alzheimer Disease/etiology/metabolism ; Amyloid Precursor Protein Secretases ; Amyloid beta-Peptides/metabolism ; Amyloid beta-Protein Precursor/*metabolism ; Animals ; Aspartic Acid Endopeptidases/metabolism ; *Axonal Transport ; Axons/metabolism ; Brain/metabolism ; Carrier Proteins/metabolism ; Endopeptidases ; Humans ; Kinesin/chemistry/*metabolism ; Membrane Proteins/metabolism ; Mice ; Microtubule-Associated Proteins/metabolism ; Neurons/*metabolism ; Phosphorylation ; Protein Transport ; Synapses/metabolism ; Transport Vesicles/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-06-01
    Description: Transforming growth factor-beta (TGF-beta) superfamily members regulate a plethora of developmental processes, and disruption of their activity has been implicated in a variety of human diseases ranging from cancer to chondrodysplasias and pulmonary hypertension. Intense investigations have revealed that SMAD proteins constitute the basic components of the core intracellular signaling cascade and that SMADs function by carrying signals from the cell surface directly to the nucleus. Recent insights have revealed how SMAD proteins themselves are regulated and how appropriate subcellular localization of SMADs and TGF-beta transmembrane receptors is controlled. Current research efforts investigating the contribution of SMAD-independent pathways promise to reveal advances to enhance our understanding of the signaling cascade.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Attisano, Liliana -- Wrana, Jeffrey L -- New York, N.Y. -- Science. 2002 May 31;296(5573):1646-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Cell Biology, University of Toronto, Toronto M5S 1A8, Canada. liliana.attisano@utoronto.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12040180" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Membrane/metabolism ; Cell Nucleus/metabolism ; DNA-Binding Proteins/*metabolism ; Humans ; Ligands ; Ligases/metabolism ; Models, Biological ; Phosphorylation ; Receptors, Transforming Growth Factor beta/chemistry/*metabolism ; *Signal Transduction ; Transcription Factors/metabolism ; Transcription, Genetic ; Transforming Growth Factor beta/*metabolism ; Ubiquitin-Protein Ligases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 1998-11-13
    Description: Caspases are intracellular proteases that function as initiators and effectors of apoptosis. The kinase Akt and p21-Ras, an Akt activator, induced phosphorylation of pro-caspase-9 (pro-Casp9) in cells. Cytochrome c-induced proteolytic processing of pro-Casp9 was defective in cytosolic extracts from cells expressing either active Ras or Akt. Akt phosphorylated recombinant Casp9 in vitro on serine-196 and inhibited its protease activity. Mutant pro-Casp9(Ser196Ala) was resistant to Akt-mediated phosphorylation and inhibition in vitro and in cells, resulting in Akt-resistant induction of apoptosis. Thus, caspases can be directly regulated by protein phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cardone, M H -- Roy, N -- Stennicke, H R -- Salvesen, G S -- Franke, T F -- Stanbridge, E -- Frisch, S -- Reed, J C -- CA-69381/CA/NCI NIH HHS/ -- CA-69515/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 13;282(5392):1318-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program on Apoptosis and Cell Death Research, The Burnham Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9812896" target="_blank"〉PubMed〈/a〉
    Keywords: *Apoptosis ; Caspase 9 ; Caspase Inhibitors ; Caspases/*metabolism ; Cell Line ; Cytochrome c Group/pharmacology ; Enzyme Precursors/metabolism ; Humans ; Mass Spectrometry ; Mutation ; Peptide Fragments/metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-akt ; Proto-Oncogene Proteins p21(ras)/metabolism ; Recombinant Fusion Proteins/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 1998-11-30
    Description: Proteolysis of mitotic cyclins depends on a multisubunit ubiquitin-protein ligase, the anaphase promoting complex (APC). Proteolysis commences during anaphase, persisting throughout G1 until it is terminated by cyclin-dependent kinases (CDKs) as cells enter S phase. Proteolysis of mitotic cyclins in yeast was shown to require association of the APC with the substrate-specific activator Hct1 (also called Cdh1). Phosphorylation of Hct1 by CDKs blocked the Hct1-APC interaction. The mutual inhibition between APC and CDKs explains how cells suppress mitotic CDK activity during G1 and then establish a period with elevated kinase activity from S phase until anaphase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zachariae, W -- Schwab, M -- Nasmyth, K -- Seufert, W -- New York, N.Y. -- Science. 1998 Nov 27;282(5394):1721-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9831566" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase ; Anaphase-Promoting Complex-Cyclosome ; CDC2 Protein Kinase/metabolism ; Cdh1 Proteins ; Cyclin-Dependent Kinases/*metabolism ; Cyclins/*metabolism ; Fungal Proteins/*metabolism ; G1 Phase ; Ligases/*metabolism ; Mitosis ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; S Phase ; Saccharomyces cerevisiae/cytology/*metabolism ; *Saccharomyces cerevisiae Proteins ; *Ubiquitin-Protein Ligase Complexes ; Ubiquitin-Protein Ligases ; Ubiquitins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 1998-09-25
    Description: Phosphorylation sites in members of the protein kinase A (PKA), PKG, and PKC kinase subfamily are conserved. Thus, the PKB kinase PDK1 may be responsible for the phosphorylation of PKC isotypes. PDK1 phosphorylated the activation loop sites of PKCzeta and PKCdelta in vitro and in a phosphoinositide 3-kinase (PI 3-kinase)-dependent manner in vivo in human embryonic kidney (293) cells. All members of the PKC family tested formed complexes with PDK1. PDK1-dependent phosphorylation of PKCdelta in vitro was stimulated by combined PKC and PDK1 activators. The activation loop phosphorylation of PKCdelta in response to serum stimulation of cells was PI 3-kinase-dependent and was enhanced by PDK1 coexpression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Le Good, J A -- Ziegler, W H -- Parekh, D B -- Alessi, D R -- Cohen, P -- Parker, P J -- New York, N.Y. -- Science. 1998 Sep 25;281(5385):2042-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Protein Phosphorylation Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9748166" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Phosphoinositide-Dependent Protein Kinases ; Binding Sites ; Cell Line ; Chromones/pharmacology ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Humans ; Isoenzymes/*metabolism ; Morpholines/pharmacology ; Phosphatidylcholines/pharmacology ; Phosphatidylinositol 3-Kinases/*metabolism ; Phosphatidylinositol Phosphates ; Phosphatidylserines/pharmacology ; Phosphorylation ; Protein Kinase C/*metabolism ; Protein Kinase C beta ; Protein-Serine-Threonine Kinases/*metabolism ; Recombinant Proteins/metabolism ; Tetradecanoylphorbol Acetate/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 1998-02-07
    Description: Mitogen stimulation of cytoskeletal changes and c-jun amino-terminal kinases is mediated by Rac small guanine nucleotide-binding proteins. Vav, a guanosine diphosphate (GDP)-guanosine triphosphate (GTP) exchange factor for Rac that stimulates the exchange of bound GDP for GTP, bound to and was directly controlled by substrates and products of phosphoinositide (PI) 3-kinase. The PI 3-kinase substrate phosphatidylinositol-4,5-bisphosphate inhibited activation of Vav by the tyrosine kinase Lck, whereas the product phosphatidylinositol-3,4,5-trisphosphate enhanced phosphorylation and activation of Vav by Lck. Control of Vav in response to mitogens by the products of PI 3-kinase suggests a mechanism for Ras-dependent activation of Rac.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Han, J -- Luby-Phelps, K -- Das, B -- Shu, X -- Xia, Y -- Mosteller, R D -- Krishna, U M -- Falck, J R -- White, M A -- Broek, D -- CA50261/CA/NCI NIH HHS/ -- CA71443/CA/NCI NIH HHS/ -- GM31278/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jan 23;279(5350):558-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033-0800, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9438848" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Enzyme Activation ; GTP Phosphohydrolases/*metabolism ; GTP-Binding Proteins/*metabolism ; Guanine Nucleotide Exchange Factors ; Guanosine Diphosphate/*metabolism ; Guanosine Triphosphate/metabolism ; Inositol 1,4,5-Trisphosphate/metabolism/pharmacology ; Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism ; Mutagenesis, Site-Directed ; Oncogene Proteins/chemistry/*metabolism ; Phosphatidylinositol 3-Kinases/*metabolism ; Phosphatidylinositol 4,5-Diphosphate/metabolism/pharmacology ; Phosphatidylinositol Phosphates/metabolism/pharmacology ; Phosphatidylinositols/*metabolism/pharmacology ; Phosphorylation ; Proteins/metabolism ; Proto-Oncogene Proteins c-vav ; Rats ; rac GTP-Binding Proteins ; ras Guanine Nucleotide Exchange Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-12-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nebreda, A R -- Gavin, A C -- New York, N.Y. -- Science. 1999 Nov 12;286(5443):1309-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Heidelberg, Germany. nebreda@embl-heidelberg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10610536" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; *Cell Cycle ; *Cell Survival ; Cerebellum/cytology ; Enzyme Activation ; Humans ; *MAP Kinase Signaling System ; Meiosis ; Metaphase ; Mitogen-Activated Protein Kinases/metabolism ; Neurons/cytology ; Phosphorylation ; Ribosomal Protein S6 Kinases/chemistry/*metabolism ; Signal Transduction ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 1999-03-26
    Description: Spatially resolved fluorescence resonance energy transfer (FRET) measured by fluorescence lifetime imaging microscopy (FLIM), provides a method for tracing the catalytic activity of fluorescently tagged proteins inside live cell cultures and enables determination of the functional state of proteins in fixed cells and tissues. Here, a dynamic marker of protein kinase Calpha (PKCalpha) activation is identified and exploited. Activation of PKCalpha is detected through the binding of fluorescently tagged phosphorylation site-specific antibodies; the consequent FRET is measured through the donor fluorophore on PKCalpha by FLIM. This approach enabled the imaging of PKCalpha activation in live and fixed cultured cells and was also applied to pathological samples.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ng, T -- Squire, A -- Hansra, G -- Bornancin, F -- Prevostel, C -- Hanby, A -- Harris, W -- Barnes, D -- Schmidt, S -- Mellor, H -- Bastiaens, P I -- Parker, P J -- New York, N.Y. -- Science. 1999 Mar 26;283(5410):2085-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Protein Phosphorylation Laboratory and Cell Biophysics Laboratory, Imperial Cancer Research Fund (ICRF), 44 Lincoln's Inn Fields, London, WC2A 3PX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10092232" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Breast Neoplasms/enzymology ; COS Cells ; Catalysis ; Cytoplasm/enzymology ; Endoplasmic Reticulum/enzymology ; Energy Transfer ; Enzyme Activation ; Fluorescence ; Fluorescent Dyes ; Golgi Apparatus/enzymology ; Green Fluorescent Proteins ; Humans ; Immune Sera ; Isoenzymes/immunology/*metabolism ; Luminescent Proteins ; Mice ; *Microscopy, Fluorescence ; Phosphorylation ; Phosphothreonine/immunology/metabolism ; Protein Kinase C/immunology/*metabolism ; Protein Kinase C-alpha ; Tetradecanoylphorbol Acetate/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-01-15
    Description: Many distinct signaling pathways allow the cell to receive, process, and respond to information. Often, components of different pathways interact, resulting in signaling networks. Biochemical signaling networks were constructed with experimentally obtained constants and analyzed by computational methods to understand their role in complex biological processes. These networks exhibit emergent properties such as integration of signals across multiple time scales, generation of distinct outputs depending on input strength and duration, and self-sustaining feedback loops. Feedback can result in bistable behavior with discrete steady-state activities, well-defined input thresholds for transition between states and prolonged signal output, and signal modulation in response to transient stimuli. These properties of signaling networks raise the possibility that information for "learned behavior" of biological systems may be stored within intracellular biochemical reactions that comprise signaling pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhalla, U S -- Iyengar, R -- GM-54508/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Jan 15;283(5400):381-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Mount Sinai School of Medicine, New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9888852" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcineurin/metabolism ; Calcium/metabolism ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; *Cell Cycle Proteins ; Computer Simulation ; Cyclic AMP/metabolism ; Dual Specificity Phosphatase 1 ; Enzyme Activation ; Epidermal Growth Factor/pharmacology ; Feedback ; Immediate-Early Proteins/metabolism ; Isoenzymes/metabolism ; Kinetics ; Long-Term Potentiation ; Memory ; *Models, Biological ; Neurons/metabolism ; Phospholipase C gamma ; *Phosphoprotein Phosphatases ; Phosphorylation ; Protein Kinase C/metabolism ; Protein Phosphatase 1 ; Protein Tyrosine Phosphatases/metabolism ; Receptor, Epidermal Growth Factor/metabolism ; Receptors, N-Methyl-D-Aspartate/metabolism ; Second Messenger Systems ; *Signal Transduction ; Synapses/metabolism ; Type C Phospholipases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-12-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dickinson, H -- New York, N.Y. -- Science. 1999 Nov 26;286(5445):1690-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, University of Oxford, Oxford, UK. hugh.dickinson@plants.ox.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10610566" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Brassica/genetics/metabolism/*physiology ; Genes, Plant ; Germination ; Glycoproteins/metabolism ; Phosphorylation ; Plant Proteins/*genetics/*metabolism ; Plant Structures/genetics/metabolism ; Pollen/genetics/metabolism/*physiology ; Protein Kinases/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-02-26
    Description: Protein-interacting modules help determine the specificity of signal transduction events, and protein phosphorylation can modulate the assembly of such modules into specific signaling complexes. Although phosphotyrosine-binding modules have been well-characterized, phosphoserine- or phosphothreonine-binding modules have not been described. WW domains are small protein modules found in various proteins that participate in cell signaling or regulation. WW domains of the essential mitotic prolyl isomerase Pin1 and the ubiquitin ligase Nedd4 bound to phosphoproteins, including physiological substrates of enzymes, in a phosphorylation-dependent manner. The Pin1 WW domain functioned as a phosphoserine- or phosphothreonine-binding module, with properties similar to those of SRC homology 2 domains. Phosphoserine- or phosphothreonine-binding activity was required for Pin1 to interact with its substrates in vitro and to perform its essential function in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, P J -- Zhou, X Z -- Shen, M -- Lu, K P -- R01GM56230/GM/NIGMS NIH HHS/ -- R01GM58556/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Feb 26;283(5406):1325-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Biology Program, Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10037602" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Calcium-Binding Proteins/chemistry/*metabolism ; Cell Cycle Proteins/metabolism ; Endosomal Sorting Complexes Required for Transport ; HeLa Cells ; Humans ; *Ligases ; Peptidylprolyl Isomerase/chemistry/genetics/*metabolism ; Phosphopeptides/metabolism ; Phosphoproteins/*metabolism ; Phosphorylation ; Phosphoserine/*metabolism ; Phosphothreonine/*metabolism ; Point Mutation ; Signal Transduction ; *Ubiquitin-Protein Ligases ; *cdc25 Phosphatases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 1999-05-29
    Description: Plants constantly monitor their light environment in order to grow and develop optimally, in part through use of the phytochromes, which sense red/far-red light. A phytochrome binding protein, PKS1 (phytochrome kinase substrate 1), was identified that is a substrate for light-regulated phytochrome kinase activity in vitro. In vivo experiments suggest that PKS1 is phosphorylated in a phytochrome-dependent manner and negatively regulates phytochrome signaling. The data suggest that phytochromes signal by serine-threonine phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fankhauser, C -- Yeh, K C -- Lagarias, J C -- Zhang, H -- Elich, T D -- Chory, J -- R01GM52413/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 May 28;284(5419):1539-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Biology Laboratory, Howard Hughes Medical Institute, Salk Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10348744" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/genetics/*metabolism ; *Arabidopsis Proteins ; Carrier Proteins/chemistry/genetics/*metabolism ; Genes, Plant ; *Intracellular Signaling Peptides and Proteins ; *Light ; Molecular Sequence Data ; Mutation ; Phosphoproteins/chemistry/genetics/*metabolism ; Phosphorylation ; *Photoreceptor Cells ; Phytochrome/*metabolism ; Phytochrome A ; Phytochrome B ; *Plant Proteins ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 1999-08-14
    Description: The three-dimensional (3D) structure of the intrinsically dimeric insulin receptor bound to its ligand, insulin, was determined by electron cryomicroscopy. Gold-labeled insulin served to locate the insulin-binding domain. The 3D structure was then fitted with available known high-resolution domain substructures to obtain a detailed contiguous model for this heterotetrameric transmembrane receptor. The 3D reconstruction indicates that the two alpha subunits jointly participate in insulin binding and that the kinase domains in the two beta subunits are in a juxtaposition that permits autophosphorylation of tyrosine residues in the first step of insulin receptor activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luo, R Z -- Beniac, D R -- Fernandes, A -- Yip, C C -- Ottensmeyer, F P -- New York, N.Y. -- Science. 1999 Aug 13;285(5430):1077-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10446056" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; Dimerization ; Gold ; Image Processing, Computer-Assisted ; Insulin/*chemistry/metabolism ; Ligands ; Microscopy, Electron, Scanning Transmission ; Models, Molecular ; Phosphorylation ; Protein Conformation ; Protein-Tyrosine Kinases/chemistry/metabolism ; Receptor, Insulin/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 1999-04-09
    Description: The gene encoding inhibitor of kappa B (IkappaB) kinase alpha (IKKalpha; also called IKK1) was disrupted by gene targeting. IKKalpha-deficient mice died perinatally. In IKKalpha-deficient fetuses, limb outgrowth was severely impaired despite unaffected skeletal development. The epidermal cells in IKKalpha-deficient fetuses were highly proliferative with dysregulated epidermal differentiation. In the basal layer, degradation of IkappaB and nuclear localization of nuclear factor kappa B (NF-kappaB) were not observed. Thus, IKKalpha is essential for NF-kappaB activation in the limb and skin during embryogenesis. In contrast, there was no impairment of NF-kappaB activation induced by either interleukin-1 or tumor necrosis factor-alpha in IKKalpha-deficient embryonic fibroblasts and thymocytes, indicating that IKKalpha is not essential for cytokine-induced activation of NF-kappaB.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takeda, K -- Takeuchi, O -- Tsujimura, T -- Itami, S -- Adachi, O -- Kawai, T -- Sanjo, H -- Yoshikawa, K -- Terada, N -- Akira, S -- New York, N.Y. -- Science. 1999 Apr 9;284(5412):313-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Department of Pathology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10195895" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cytoplasm/metabolism ; DNA-Binding Proteins/metabolism ; Epidermis/cytology/*embryology/metabolism ; Extremities/*embryology/growth & development ; Gene Expression Regulation, Developmental ; Gene Targeting ; I-kappa B Kinase ; I-kappa B Proteins ; Interleukin-1/pharmacology ; Keratinocytes/cytology/metabolism ; Limb Buds/enzymology ; Limb Deformities, Congenital/*enzymology/genetics ; Mice ; *Myogenic Regulatory Factors ; NF-kappa B/metabolism ; Nuclear Proteins/genetics ; Phosphorylation ; Protein-Serine-Threonine Kinases/deficiency/genetics/*metabolism ; Skin Abnormalities/*enzymology/genetics ; Transcription Factor RelA ; Tumor Necrosis Factor-alpha/pharmacology ; Twist Transcription Factor
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2000-01-05
    Description: The mitogen-activated protein (MAP) kinase cascade is inactivated at the level of MAP kinase by members of the MAP kinase phosphatase (MKP) family, including MKP-1. MKP-1 was a labile protein in CCL39 hamster fibroblasts; its degradation was attenuated by inhibitors of the ubiquitin-directed proteasome complex. MKP-1 was a target in vivo and in vitro for p42(MAPK) or p44(MAPK), which phosphorylates MKP-1 on two carboxyl-terminal serine residues, Serine 359 and Serine 364. This phosphorylation did not modify MKP-1's intrinsic ability to dephosphorylate p44(MAPK) but led to stabilization of the protein. These results illustrate the importance of regulated protein degradation in the control of mitogenic signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brondello, J M -- Pouyssegur, J -- McKenzie, F R -- GM26939/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Dec 24;286(5449):2514-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Signaling, Developmental Biology and Cancer Research, CNRS UMR 6543, Centre A. Lacassagne, 33 Avenue de Valombrose, Nice 06189, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10617468" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood ; *Cell Cycle Proteins ; Cell Division ; Cell Line ; Cricetinae ; Culture Media ; Cysteine Endopeptidases/metabolism ; Cysteine Proteinase Inhibitors/pharmacology ; Dual Specificity Phosphatase 1 ; Estradiol/pharmacology ; Humans ; Immediate-Early Proteins/chemistry/*metabolism ; Leucine/analogs & derivatives/pharmacology ; Leupeptins/pharmacology ; MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase 1/*metabolism ; Mitogen-Activated Protein Kinase 3 ; Mitogen-Activated Protein Kinases/*metabolism ; Multienzyme Complexes/metabolism ; Mutation ; Nitrophenols/metabolism ; Organophosphorus Compounds/metabolism ; *Phosphoprotein Phosphatases ; Phosphorylation ; Proteasome Endopeptidase Complex ; Protein Phosphatase 1 ; Protein Tyrosine Phosphatases/chemistry/*metabolism ; Ubiquitins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...