ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Protein Binding  (474)
  • History, 21st Century  (459)
  • Chemistry
  • Nature Publishing Group (NPG)  (948)
  • Alliance for Coastal Technologies
  • 1
    facet.materialart.
    Unknown
    Alliance for Coastal Technologies | Solomons, MD
    In:  http://aquaticcommons.org/id/eprint/3114 | 130 | 2011-09-29 17:51:58 | 3114 | University of Maryland Center for Environmental Science. Chesapeake Biological Laboratory
    Publication Date: 2021-07-01
    Description: The Alliance for Coastal Technologies (ACT) convened a workshop on Evaluating Approaches and Technologies for Monitoring Organic Contaminants in the Aquatic Environment in Ann Arbor, MI on July 21-23, 2006. The primary objectives of this workshop were to: 1) identify the priority management information needs relative to organic contaminant loading; 2) explore themost appropriate approaches to estimating mass loading; and 3) evaluate the current status of thesensor technology. To meet these objectives, a mixture of leading research scientists, resourcemanagers, and industry representatives were brought together for a focused two-day workshop.The workshop featured four plenary talks followed by breakout sessions in which arranged groupsof participants where charged to respond to a series of focused discussion questions.At present, there are major concerns about the inadequacies in approaches and technologies forquantifying mass emissions and detection of organic contaminants for protecting municipal watersupplies and receiving waters. Managers use estimates of land-based contaminant loadings torivers, lakes, and oceans to assess relative risk among various contaminant sources, determinecompliance with regulatory standards, and define progress in source reduction. However, accuratelyquantifying contaminant loading remains a major challenge. Loading occurs over a range ofhydrologic conditions, requiring measurement technologies that can accommodate a broad rangeof ambient conditions. In addition, in situ chemical sensors that provide a means for acquiringcontinuous concentration measurements are still under development, particularly for organic contaminantsthat typically occur at low concentrations. Better approaches and strategies for estimatingcontaminant loading, including evaluations of both sampling design and sensor technologies,need to be identified. The following general recommendations were made in an effort to advancefuture organic contaminant monitoring:1. Improve the understanding of material balance in aquatic systems and the relationship betweenpotential surrogate measures (e.g., DOC, chlorophyll, particle size distribution) and target constituents.2. Develop continuous real-time sensors to be used by managers as screening measures and triggersfor more intensive monitoring.3. Pursue surrogate measures and indicators of organic pollutant contamination, such as CDOM,turbidity, or non-equilibrium partitioning.4. Develop continuous field-deployable sensors for PCBs, PAHs, pyrethroids, and emerging contaminantsof concern and develop strategies that couple sampling approaches with tools that incorporatesensor synergy (i.e., measure appropriate surrogates along with the dissolved organics toallow full mass emission estimation).[PDF contains 20 pages]
    Description: NOAA
    Description: Alliance for Coastal Technologies, CBL/UMCES
    Keywords: Engineering ; Earth Sciences ; Environment ; Chemistry
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Alliance for Coastal Technologies | Solomons, MD
    In:  http://aquaticcommons.org/id/eprint/3110 | 130 | 2011-09-29 17:51:42 | 3110 | University of Maryland Center for Environmental Science. Chesapeake Biological Laboratory
    Publication Date: 2021-07-01
    Description: This Alliance for Coastal Technologies (ACT) workshop was convened to assess the availabilityand state of development of conductivity-temperature sensors that can meet the needs of coastalmonitoring and management communities. Rased on the discussion, there are presently a numberof commercial sensor options available, with a wide range of package configurations suitable fordeployment in a range of coastal environments. However, some of the central questions posedin the workshop planning documents were left somewhat unresolved. The workshop descriptionemphasized coastal management requirements and, in particular, whether less expensive, easilydeployed, lower-resolution instruments might serve many management needs. While several participantsexpressed interest in this class of conductivity-temperature sensors, based on input fromthe manufacturers, it is not clear that simply relaxing the present level of resolution of existing instrumentswill result in instruments of significantly lower unit cost. Conductivity-temperature sensorsare available near or under the $1,000 unit cost that was operationally defined at the workshopas a breakpoint for what might be considered to be a "low cost" sensor. For the manufacturers, akey consideration before undertaking the effort to develop lower cost sensors is whether there willbe a significant market. In terms of defining "low cost," it was also emphasized that the "life cyclecosts" for a given instrument must be considered (e.g., including personnel costs for deploymentand maintenance). An adequate market survey to demonstrate likely applications and a viablemarket for lower cost sensors is needed. Another topic for the workshop was the introductionto the proposed ACT verification for conductivity-temperature sensors. Following a summaryof the process as envisioned by ACT, initial feedback was solicited. Protocol development willbe pursued further in a workshop involving ACT personnel and conductivity-temperature sensormanufacturers.[PDF contains 28 pages]
    Description: NOAA
    Description: Alliance for Coastal Technologies, CBL/UMCES
    Keywords: Earth Sciences ; Environment ; Chemistry
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Alliance for Coastal Technologies | Solomons, MD
    In:  http://aquaticcommons.org/id/eprint/3126 | 130 | 2011-09-29 17:52:50 | 3126
    Publication Date: 2021-06-25
    Description: The Alliance for Coastal Technologies (ACT) Workshop "Applications of in situ Fluorometers inNearshore Waters" was held in Cape Elizabeth, Maine, February 2-4,2005, with sponsorship bythe Gulf of Maine Ocean Observing System (GoMOOS), one of the ACT partner organization.The purpose of the workshop was to explore recent trends in fluorometry as it relates to resourcemanagement applications in nearshore environments. Participants included representatives fromstate and federal environmental management agencies as well as research institutions, many ofwhom are currently using this technology in their research and management applications.Manufacturers and developers of fluorometric measuring systems also attended the meeting.The Workshop attendees discussed the historical and present uses of fluorometry technology andidentified the great potential for its use by coastal managers to fulfill their regulatory andmanagement objectives. Participants also identified some of the challenges associated with thecorrect use of Fluorometers to estimate biomass and the rate of primary productivity. TheWorkshop concluded that in order to expand the existing use of fluorometers in both academicand resource management disciplines, several issues concerning data collection, instrumentcalibration, and data interpretation needed to be addressed. Participants identified twelverecommendations, the top five of which are listed below:Recommendations1) Develop a "Guide" that describes the most important aspects of fluorescencemeasurements. This guide should be written by an expert party, with both research andindustry input, and should be distributed by all manufacturers with theirinstrumentation. The guide should also be made available on the ACT website as wellas those of other relevant organizations. The guide should include discussions on thefollowing topics:The benefits of using fluorometers in research and resource managementapplications;What fluorometers can and cannot provide in terms of measurements;The necessary assumptions required before applying fluorometry;Characterization and calibration of fluorometers; (pdf contains 32 pages)
    Description: NOAA
    Description: Alliance for Coastal Technologies, CBL/UMCES
    Keywords: Environment ; Chemistry
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-04-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Check Hayden, Erika -- England -- Nature. 2010 Apr 1;464(7289):664-7. doi: 10.1038/464664a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20360709" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Data Mining ; Gene Expression Regulation ; Genes/genetics ; Genome, Human/*genetics ; Genomics/history/trends ; History, 20th Century ; History, 21st Century ; Human Genome Project/history ; Humans ; *Models, Biological ; Molecular Biology/*history ; Neoplasms/genetics/therapy ; RNA, Untranslated/genetics/metabolism ; Sea Urchins/embryology/genetics ; Systems Biology/*trends ; Tumor Suppressor Protein p53/chemistry/genetics/metabolism ; *Uncertainty
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-11-26
    Description: In physiological settings, nucleic-acid translocases must act on substrates occupied by other proteins, and an increasingly appreciated role of translocases is to catalyse protein displacement from RNA and DNA. However, little is known regarding the inevitable collisions that must occur, and the fate of protein obstacles and the mechanisms by which they are evicted from DNA remain unexplored. Here we sought to establish the mechanistic basis for protein displacement from DNA using RecBCD as a model system. Using nanofabricated curtains of DNA and multicolour single-molecule microscopy, we visualized collisions between a model translocase and different DNA-bound proteins in real time. We show that the DNA translocase RecBCD can disrupt core RNA polymerase, holoenzymes, stalled elongation complexes and transcribing RNA polymerases in either head-to-head or head-to-tail orientations, as well as EcoRI(E111Q), lac repressor and even nucleosomes. RecBCD did not pause during collisions and often pushed proteins thousands of base pairs before evicting them from DNA. We conclude that RecBCD overwhelms obstacles through direct transduction of chemomechanical force with no need for specific protein-protein interactions, and that proteins can be removed from DNA through active disruption mechanisms that act on a transition state intermediate as they are pushed from one nonspecific site to the next.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230117/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230117/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Finkelstein, Ilya J -- Visnapuu, Mari-Liis -- Greene, Eric C -- F32GM80864/GM/NIGMS NIH HHS/ -- GM074739/GM/NIGMS NIH HHS/ -- GM082848/GM/NIGMS NIH HHS/ -- R01 CA146940/CA/NCI NIH HHS/ -- R01 GM074739/GM/NIGMS NIH HHS/ -- R01 GM074739-01A1/GM/NIGMS NIH HHS/ -- R01 GM074739-05/GM/NIGMS NIH HHS/ -- R01 GM082848/GM/NIGMS NIH HHS/ -- R01 GM082848-01A1/GM/NIGMS NIH HHS/ -- R01 GM082848-04/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Dec 16;468(7326):983-7. doi: 10.1038/nature09561. Epub 2010 Nov 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21107319" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophage lambda/genetics ; Biocatalysis ; DNA/genetics/*metabolism ; DNA, Viral/genetics/metabolism ; DNA-Binding Proteins/*metabolism ; DNA-Directed RNA Polymerases/chemistry/metabolism ; Deoxyribonuclease EcoRI/metabolism ; Escherichia coli/enzymology ; Exodeoxyribonuclease V/*metabolism ; Holoenzymes/chemistry/metabolism ; Lac Repressors/metabolism ; Microscopy, Fluorescence ; *Movement ; Nucleosomes/metabolism ; Promoter Regions, Genetic/genetics ; Protein Binding ; Quantum Dots ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-10-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2010 Sep 30;467(7315):499-500. doi: 10.1038/467499b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20881967" target="_blank"〉PubMed〈/a〉
    Keywords: European Union ; Financing, Organized/economics ; Germany ; History, 20th Century ; History, 21st Century ; Internationality ; Politics ; Research Support as Topic/economics/history ; Science/economics/history/*standards/*trends
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-01-16
    Description: Form I Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase), a complex of eight large (RbcL) and eight small (RbcS) subunits, catalyses the fixation of atmospheric CO(2) in photosynthesis. The limited catalytic efficiency of Rubisco has sparked extensive efforts to re-engineer the enzyme with the goal of enhancing agricultural productivity. To facilitate such efforts we analysed the formation of cyanobacterial form I Rubisco by in vitro reconstitution and cryo-electron microscopy. We show that RbcL subunit folding by the GroEL/GroES chaperonin is tightly coupled with assembly mediated by the chaperone RbcX(2). RbcL monomers remain partially unstable and retain high affinity for GroEL until captured by RbcX(2). As revealed by the structure of a RbcL(8)-(RbcX(2))(8) assembly intermediate, RbcX(2) acts as a molecular staple in stabilizing the RbcL subunits as dimers and facilitates RbcL(8) core assembly. Finally, addition of RbcS results in RbcX(2) release and holoenzyme formation. Specific assembly chaperones may be required more generally in the formation of complex oligomeric structures when folding is closely coupled to assembly.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Cuimin -- Young, Anna L -- Starling-Windhof, Amanda -- Bracher, Andreas -- Saschenbrecker, Sandra -- Rao, Bharathi Vasudeva -- Rao, Karnam Vasudeva -- Berninghausen, Otto -- Mielke, Thorsten -- Hartl, F Ulrich -- Beckmann, Roland -- Hayer-Hartl, Manajit -- England -- Nature. 2010 Jan 14;463(7278):197-202. doi: 10.1038/nature08651.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20075914" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/metabolism ; Chaperonin 10/metabolism ; Chaperonin 60/metabolism ; Cryoelectron Microscopy ; Holoenzymes/chemistry/metabolism ; Models, Molecular ; Molecular Chaperones/chemistry/*metabolism ; Protein Binding ; *Protein Folding ; *Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Ribulose-Bisphosphate Carboxylase/*chemistry/*metabolism/ultrastructure ; Synechococcus/*chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-04-03
    Description: Jasmonoyl-isoleucine (JA-Ile) is a plant hormone that regulates a broad array of plant defence and developmental processes. JA-Ile-responsive gene expression is regulated by the transcriptional activator MYC2 that interacts physically with the jasmonate ZIM-domain (JAZ) repressor proteins. On perception of JA-Ile, JAZ proteins are degraded and JA-Ile-dependent gene expression is activated. The molecular mechanisms by which JAZ proteins repress gene expression remain unknown. Here we show that the Arabidopsis JAZ proteins recruit the Groucho/Tup1-type co-repressor TOPLESS (TPL) and TPL-related proteins (TPRs) through a previously uncharacterized adaptor protein, designated Novel Interactor of JAZ (NINJA). NINJA acts as a transcriptional repressor whose activity is mediated by a functional TPL-binding EAR repression motif. Accordingly, both NINJA and TPL proteins function as negative regulators of jasmonate responses. Our results point to TPL proteins as general co-repressors that affect multiple signalling pathways through the interaction with specific adaptor proteins. This new insight reveals how stress-related and growth-related signalling cascades use common molecular mechanisms to regulate gene expression in plants.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849182/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849182/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pauwels, Laurens -- Barbero, Gemma Fernandez -- Geerinck, Jan -- Tilleman, Sofie -- Grunewald, Wim -- Perez, Amparo Cuellar -- Chico, Jose Manuel -- Bossche, Robin Vanden -- Sewell, Jared -- Gil, Eduardo -- Garcia-Casado, Gloria -- Witters, Erwin -- Inze, Dirk -- Long, Jeff A -- De Jaeger, Geert -- Solano, Roberto -- Goossens, Alain -- R01 GM072764/GM/NIGMS NIH HHS/ -- R01 GM072764-06/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Apr 1;464(7289):788-91. doi: 10.1038/nature08854.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, B-9052 Gent, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20360743" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/cytology/*drug effects/*metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Cyclopentanes/antagonists & inhibitors/*pharmacology ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Models, Biological ; Oxylipins/antagonists & inhibitors/*pharmacology ; Plants, Genetically Modified ; Protein Binding ; Repressor Proteins/genetics/*metabolism ; Signal Transduction/*drug effects ; Two-Hybrid System Techniques
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-10-12
    Description: Jasmonates are a family of plant hormones that regulate plant growth, development and responses to stress. The F-box protein CORONATINE INSENSITIVE 1 (COI1) mediates jasmonate signalling by promoting hormone-dependent ubiquitylation and degradation of transcriptional repressor JAZ proteins. Despite its importance, the mechanism of jasmonate perception remains unclear. Here we present structural and pharmacological data to show that the true Arabidopsis jasmonate receptor is a complex of both COI1 and JAZ. COI1 contains an open pocket that recognizes the bioactive hormone (3R,7S)-jasmonoyl-l-isoleucine (JA-Ile) with high specificity. High-affinity hormone binding requires a bipartite JAZ degron sequence consisting of a conserved alpha-helix for COI1 docking and a loop region to trap the hormone in its binding pocket. In addition, we identify a third critical component of the jasmonate co-receptor complex, inositol pentakisphosphate, which interacts with both COI1 and JAZ adjacent to the ligand. Our results unravel the mechanism of jasmonate perception and highlight the ability of F-box proteins to evolve as multi-component signalling hubs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988090/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988090/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheard, Laura B -- Tan, Xu -- Mao, Haibin -- Withers, John -- Ben-Nissan, Gili -- Hinds, Thomas R -- Kobayashi, Yuichi -- Hsu, Fong-Fu -- Sharon, Michal -- Browse, John -- He, Sheng Yang -- Rizo, Josep -- Howe, Gregg A -- Zheng, Ning -- P30 DK056341/DK/NIDDK NIH HHS/ -- P30 DK056341-10/DK/NIDDK NIH HHS/ -- R01 AI068718/AI/NIAID NIH HHS/ -- R01 AI068718-04/AI/NIAID NIH HHS/ -- R01 CA107134/CA/NCI NIH HHS/ -- R01 CA107134-07/CA/NCI NIH HHS/ -- R01 GM057795/GM/NIGMS NIH HHS/ -- R01 GM057795-12/GM/NIGMS NIH HHS/ -- R01AI068718/AI/NIAID NIH HHS/ -- R01GM57795/GM/NIGMS NIH HHS/ -- T32 GM07270/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Nov 18;468(7322):400-5. doi: 10.1038/nature09430. Epub 2010 Oct 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Box 357280, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20927106" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/chemistry/metabolism ; Arabidopsis/chemistry/metabolism ; Arabidopsis Proteins/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Cyclopentanes/chemistry/*metabolism ; F-Box Proteins/chemistry/metabolism ; Indenes/chemistry/metabolism ; Inositol Phosphates/*metabolism ; Isoleucine/analogs & derivatives/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Oxylipins/chemistry/*metabolism ; Peptide Fragments/chemistry/metabolism ; Plant Growth Regulators/chemistry/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Repressor Proteins/*chemistry/*metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-02-25
    Description: Tumours with mutant BRAF are dependent on the RAF-MEK-ERK signalling pathway for their growth. We found that ATP-competitive RAF inhibitors inhibit ERK signalling in cells with mutant BRAF, but unexpectedly enhance signalling in cells with wild-type BRAF. Here we demonstrate the mechanistic basis for these findings. We used chemical genetic methods to show that drug-mediated transactivation of RAF dimers is responsible for paradoxical activation of the enzyme by inhibitors. Induction of ERK signalling requires direct binding of the drug to the ATP-binding site of one kinase of the dimer and is dependent on RAS activity. Drug binding to one member of RAF homodimers (CRAF-CRAF) or heterodimers (CRAF-BRAF) inhibits one protomer, but results in transactivation of the drug-free protomer. In BRAF(V600E) tumours, RAS is not activated, thus transactivation is minimal and ERK signalling is inhibited in cells exposed to RAF inhibitors. These results indicate that RAF inhibitors will be effective in tumours in which BRAF is mutated. Furthermore, because RAF inhibitors do not inhibit ERK signalling in other cells, the model predicts that they would have a higher therapeutic index and greater antitumour activity than mitogen-activated protein kinase (MEK) inhibitors, but could also cause toxicity due to MEK/ERK activation. These predictions have been borne out in a recent clinical trial of the RAF inhibitor PLX4032 (refs 4, 5). The model indicates that promotion of RAF dimerization by elevation of wild-type RAF expression or RAS activity could lead to drug resistance in mutant BRAF tumours. In agreement with this prediction, RAF inhibitors do not inhibit ERK signalling in cells that coexpress BRAF(V600E) and mutant RAS.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3178447/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3178447/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Poulikakos, Poulikos I -- Zhang, Chao -- Bollag, Gideon -- Shokat, Kevan M -- Rosen, Neal -- 1P01CA129243-02/CA/NCI NIH HHS/ -- 2R01EB001987/EB/NIBIB NIH HHS/ -- P01 CA129243-010002/CA/NCI NIH HHS/ -- R01 EB001987/EB/NIBIB NIH HHS/ -- U01 CA091178/CA/NCI NIH HHS/ -- U01 CA091178-01/CA/NCI NIH HHS/ -- England -- Nature. 2010 Mar 18;464(7287):427-30. doi: 10.1038/nature08902.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Molecular Pharmacology and Chemistry and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20179705" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Catalytic Domain ; Cell Line ; Cell Line, Tumor ; Enzyme Activation/drug effects ; Extracellular Signal-Regulated MAP Kinases/*metabolism ; Humans ; Indoles/pharmacology ; MAP Kinase Signaling System/*drug effects ; Mice ; Mitogen-Activated Protein Kinase Kinases/metabolism ; Models, Biological ; Neoplasms/drug therapy/enzymology/genetics/metabolism ; Phosphorylation ; Protein Binding ; Protein Kinase Inhibitors/metabolism/*pharmacology/therapeutic use ; Protein Multimerization ; Proto-Oncogene Proteins B-raf/antagonists & ; inhibitors/chemistry/genetics/*metabolism ; Sulfonamides/pharmacology ; Transcriptional Activation/*drug effects ; raf Kinases/*antagonists & inhibitors/chemistry/genetics/*metabolism ; ras Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...