ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes
  • 1
    Publication Date: 2024-05-09
    Description: The study of the Calabrian Arc in the Ionian Sea is key to understanding of the geological processes in the Mediterranean Sea. We present the technical details and results of cruise CALAMARE08 with N/O Urania during spring 2008. We acquired a large set of geological and geophysical data, among them Multichannels Seismic and SBP, magnetometry, gravimetry, swath bathymetry and coring of sea bottom.
    Description: 1. CNR, Istituto Di Scienze Marine, Bologna, Italy 2. Dipartimento Sc.della Terra, Universita- di Parma 3. Universita’ di Bologna 4. Universita’ di Roma-3 5. Universite’ Brest 6. Istituto Nazionale di Geofisica e Vulcanologia, Roma-2, Roma, Italy 7. Istituto Idrografico della Marina, Genova
    Description: Published
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: Ionian Sea ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomalies ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-10
    Description: I bacini intramontani dell’Appennino centro-meridionale sono soggetti, sin dalla loro genesi (Pleistocene inferiore), a deformazioni del suolo, la cui non uniforme distribuzione e la cui diversa entità sono una risposta all’attività di faglie, intersecanti e bordanti le pianure, e al costipamento differenziale dei depositi costituenti le successioni sedimentarie di riempimento. Al fine di valutare la distribuzione spaziale dei movimenti verticali e le relative velocità, e di interpretarne correttamente le cause, è stato affrontato uno studio multidisciplinare che ha previsto l’elaborazione di dati radar con tecnica PSInSAR, lo studio geomorfologico e strutturale e l’analisi stratigrafica di dati di sottosuolo della piana di Venafro, ampia depressione tettonica interposta tra i M. delle Mainarde-M. di Venafro ed i M. del Matese e drenata dal F. Volturno. L’interpolazione dei dati PS, effettuata in ambiente GIS, riferita a due intervalli di tempo, 1995–2000 (ERS) e 2003–2008 (ENVISAT) ha permesso di valutare i ‘cumulative vertical displacements’ (mm), i ‘displacement rates’ (mm/a) e il ‘gradient field’ dei ‘displacement rates’, consentendo di individuare alcuni settori del bacino che si distinguono per tassi di subsidenza superiori alla media e per comportamento deformativo costante nel tempo. Risulta evidente una correlazione tra la distribuzione spaziale del quadro deformativo di natura interferometrica, lo sviluppo geometrico delle faglie che interessano la piana e la natura litologica del riempimento sedimentario. I valori maggiori di subsidenza si registrano nel settore centrale della piana, probabilmente indotti da un maggiore spessore dei depositi di riempimento, nonché dalla presenza di depositi argillo-sabbiosi poco addensati e più suscettibili al costipamento, così come dalla presenza di alcuni lineamenti tettonici orientati NE-SW e NW-SE. In particolare, i valori maggiori si registrano a valle di una scarpata morfologica, orientata NW-SE, coincidente anche con un importante ‘knick point’ del F. Volturno, oltre che a valle di una faglia, orientata NW-SE (Faglia dell’’Aquae Juliae’), attiva in tempi storici per aver dislocato l’acquedotto romano.
    Description: Published
    Description: Firenze
    Description: 2T. Tettonica attiva
    Description: 5IT. Osservazioni satellitari
    Description: open
    Keywords: PS InSAR ; Geomorphology ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-11-09
    Description: In this study, we present a three-dimensional P wave upper-mantle tomography model of the southwest Iberian margin and Alboran Sea based on teleseismic arrival times recorded by Iberian and Moroccan land stations and by a seafloor network deployed for 1 year in the Gulf of Cadiz area during the European Commission Integrated observations from NEAR shore sourcES of Tsunamis: towards an early warning system (EC NEAREST) project. The three-dimensional model was computed down to 600 kmdepth. The tomographic images exhibit significant velocity contrasts, as large as 3%, confirming the complex evolution of this plate boundary region. Prominent high-velocity anomalies are found beneath Betics-Alboran Sea, off-shore southwest Portugal, and north Portugal, at sublithospheric depths. The transition zones between high- and low-velocity anomalies in southwest and south Iberia are associated to the contact of oceanic and continental lithosphere. The fast structure below the Alboran Sea-Granada area depicts an L-shaped body steeply dipping from the uppermost mantle to the transition zone where it becomes less curved. This anomaly is consistent with the results of previous tomographic investigations and recent geophysical data such as stress distribution, GPS measurements of plate motion, and anisotropy patterns. In the Atlantic domain, under the Horseshoe Abyssal Plain, the main feature is a high-velocity zone found at uppermost mantle depths. This feature appears laterally separated from the positive anomaly recovered in the Alboran domain by the interposition of low-velocity zones which characterize the lithosphere beneath the southwest Iberian peninsula margin, suggesting that there is no continuity between the high-velocity anomalies of the two domains west and east of the Gibraltar Strait.
    Description: Published
    Description: 1587–1601
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Upper-mantle seismic tomography ; land and marine seismic networks ; SW Iberian margin ; Alboran Sea ; Atlantic domain ; Gulf of Cadiz ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-07-14
    Description: The presence in the Earth’s mantle of even small amounts of water and other volatiles has major effects: first, it lowers drastically mantle’s viscosity, thereby facilitating convection and plate tectonics; second, it lowers the melting temperature of the rising mantle affecting the formation of the oceanic crust. H2O concentration in oceanic basalts stays below 0.2 wt% except for basalts sampled near “hot spots” that contain significantly more H2O than normal MORB, implying that their mantle plume sources are unusually H2O-rich. Basalts sampled in the Equatorial Atlantic close to the Romanche transform, a thermal minimum in the Ridge system, have a H2O content that increases as the ridge is cooled approaching the transform offset. These basalts are Na-rich, being generated by low degrees of melting of the mantle, and contain unusually high ratios of light versus heavy rare earth elements implying the presence of garnet in the melting region. H2O enrichment is due not to an unusually H2O-rich mantle source, but to a low extent of melting of the upwelling mantle, confined to a deep wet melting region. Numerical models predict that this wet melting process takes place mostly in the mantle zone of stability of garnet. This prediction is verified by the geochemistry of our basalts showing that garnet must indeed have been present in their mantle source. Thus, oceanic basalts are H2O-rich not only near “hot spots”, but also at “cold spots”.
    Description: Published
    Description: 671-690
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: open
    Keywords: Water in the Mantle ; Melting Model ; Mantle Flow ; Mid Atlantic Ridge ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-07-14
    Description: A major step in the "Wilson Cycle" is the splitting of a continent and the birth of a new ocean, with the consequent formation of passive plate margins. The transition from a continental to an oceanic rift can be observed today nowhere better than in the Red Sea/Gulf of Aden system. We have carried out during several years a number of expeditions in the axial portion of the Northern Red Sea, in the region where the northernmost nuclei of axial emplacement of oceanic crust can be observed. High resolution multibeam, magnetics, gravity and multichannel seismic reflection surveys from the Thetis Deep revealed rates and modes of initial pulses of sea floor spreading, velocity of S to N axial propagation of the oceanic rift, evolution of initial MORB-type crust and nature of the mantle thermal anomaly that caused the transition from a continental to an oceanic rift. The Thetis deep is made of three en echelon fault-bounded axial basins that are joined together with axial volcanic ridges and a large number of scattered small central volcanoes. The southern basin shows a strong linear magnetic anomaly corresponding to the axial neo-volcanic zone. Two negative symmetric anomalies identified as Matuyama are present in the southernmost part of this basin, suggesting that the emplacement of oceanic crust at this site started roughly 2.5 Ma, with an average half spreading rate of 6 mm/yr. The central sub-basin is also characterized by a strongly magnetic linear neo- volcanic zone that, however, is flanked only by a small, "vanishing" symmetrical negative anomaly suggesting emplacement of oceanic crust not earlier than about 1 Ma. The northern sub-basin does not show a clearly defined linear neo-volcanic zone although it displays a strong central magnetization suggesting initial emplacement of oceanic crust 〈 0.7 Ma. This pattern implies a south to north time progression of the initial emplacement of oceanic crust within the Thetis system, with a propagation rate of about 20 mm/yr. Gravity data inversions constrained by seismic data reveal that the oceanic crust extends from the axial neo-volcanic ridges toward the master faults of the axial depression with crustal thickness ranging from 4 to 6 km. The increasing thickness of basaltic crust toward the edges of the basin together with higher degree of melting, inferred by the geochemistry of the basaltic glasses, and higher central magnetization of the northernmost and youngest basin suggest a pulse of faster spreading rate at the onset of sea-floor spreading.
    Description: Published
    Description: San Francisco
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: open
    Keywords: Spatial variations attributed to seafloor spreading ; Oceanic crust ; Seafloor morphology, geology, and geophysics ; Mid-ocean ridges ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-06-30
    Description: In the present work, the Differential SAR Interferometry (DInSAR) technique has been applied to study the surface movements affecting the sedimentary basin of Cassino municipality. Two datasets of SAR images, provided by ERS 1-2 and Envisat missions, have been acquired from 1992 to 2010. Such datasets have been processed independently each other and with different techniques nevertheless providing compatible results. DInSAR data show a subsidence rate mostly located in the northeast side of the city, with a subsidence rate decreasing from about 5–6 mm/yr in the period 1992–2000 to about 1–2 mm/yr between 2004 and 2010, highlighting a progressive reduction of the phenomenon. Based on interferometric results and geological/geotechnical observations, the explanation of the detected movements allows to confirm the anthropogenic (surface effect due to building construction) and geological causes (thickness and characteristics of the compressible stratum)
    Description: Published
    Description: 9676-9690
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: open
    Keywords: Differential SAR Interferometry; SBAS; IPTA; Cassino plain; subsidence ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-11-26
    Description: The complexity of volcano-hosted hydrothermal systems is such that thorough characterization requires extensive and interdisciplinary work. We use here an integrated multidisciplinary approach, combining geological investigations with hydrogeochemical and soil degassing prospecting, and resistivity surveys, to provide a comprehensive characterization of the shallow structure of the southwestern Ischia's hydrothermal system. We show that the investigated area is characterized by a structural setting that, although very complex, can be schematized in three sectors, namely, the extra caldera sector (ECS), caldera floor sector (CFS), and resurgent caldera sector (RCS). This contrasted structural setting governs fluid circulation. Geochemical prospecting shows, in fact, that the caldera floor sector, a structural and topographic low, is the area where CO2-rich (〉40 cm3/l) hydrothermally mature (log Mg/Na ratios 〈 −3) waters, of prevalently meteoric origin (δ18O 〈 −5.5‰), preferentially flow and accumulate. This pervasive hydrothermal circulation within the caldera floor sector, being also the source of significant CO2 soil degassing (〉150 g m−2 d−1), is clearly captured by electrical resistivity tomography (ERT) and transient electromagnetic (TEM) surveys as a highly conductive (resistivity 〈 3 Ω·m) layer from depths of ~100 m, and therefore within the Mount Epomeo Green Tuff (MEGT) formation. Our observations indicate, instead, that less-thermalized fluids prevail in the extra caldera and resurgent caldera sectors, where highly conductive seawater-like (total dissolved solid, TDS 〉 10,000 mg/l) and poorly conductive meteoric-derived (TDS 〈 4,000 mg/l) waters are observed, respectively. We finally integrate our observations to build a general model for fluid circulation in the shallowest (〈0.5 km) part of Ischia's hydrothermal system.
    Description: Published
    Description: Q07017
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: ERT ; TEM ; Ischia ; fluid geochemistry ; hydrothermal systems ; resurgent caldera ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.05. Models and Forecasts ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Istituto Nazionale di Geofisica e Vulcanologia, Editrice Compositori
    Publication Date: 2019-11-04
    Description: A one-day symposium on new and conventional ideas in plate tectonics and Mediterranean geodynamics was held in Rome on February 19, 2003 at the headquarters of INGV. There were two main reasons for such an initiative. The first was an invitation to Giancarlo Scalera from the «Gabriele D’Annunzio» University of Chieti to present his alternative ideas on global tectonics to final year students of the Regional Geology course. The second was a reciprocal invitation to Giusy Lavecchia and Francesco Stoppa to explain their criticisms of the application of subduction-related models to Italian geology and to present their data on the recently discovered intra-Apennines carbonatite occurrences. It was decided to dedicate an entire day to seminars, involving people with a more conventional approach to geodynamics, especially those involved with seismic tomography. In the last few years, high-resolution mantle tomographic models have been widely used to unravel the geometry of subduction zones. A turning point in the field, however, was a review paper written by Fukao et al. (Rev. Geophysics, 39, 291-323, 2001) showing that there was no clear evidence for slab subduction down to the core-mantle boundary, thus posing a major problem on the balance between the lithosphere subducted at consuming plate margins and the large amount of oceanic lithosphere accreted at diverging plate margins. This prompted the need to re-evaluate the nature of subduction and plate margin evolution. Accepting the theory of plate tectonics, many problems remain open, especially those regarding plate driving mechanisms and their possible link with the forces developed at the core-mantle boundary. Might these forces trigger pulsating tectonic and magmatic activity, with mantle upwellings and large-scale emission of CO2, capable of causing dramatic changes in the composition of the atmosphere and changes at the Earth’s surface? Could these lead to major catastrophic changes in Earth history? During the one-day symposium, a stimulating discussion took place involving different interpretations of observations, especially those relating to the geodynamics of the Mediterranean region. Although the papers in this collection do not provide unique solutions, they do, however, provide new insights into some problems and in some cases suggest new interpretations. Many questions also arise about the relationships between the tectonics of the lithosphere and the deep mantle processes. May the denser portions of the inner parts of the Earth transform into shallower, lighter chemical phases, with a possible increase in the Earth’s volume? May the asthenosphere above growing plume heads be capable of dragging the overlying lithosphere? May mantle plumes be wet rather than hot? Some papers consider gravitation to be a driving mechanism for the nucleation of contractional belts and others even doubt the compressional origin of orogens. Finally – as a link to fundamental physics – an original mechanism of energy conversion from gravitons to photons is proposed as a supply of energy for global tectonic processes. Obviously, because of an often diverse philosophical and scientific background, it is difficult for the ideas presented in this supplement to be shared by all readers and contributors. But we hope that these ideas will help to encourage critical evaluations of some commonly accepted concepts in modern plate tectonic theory. European geoscientists have available to them an exceptional natural laboratory – the Mediterranean and surrounding orogens – complete with all of its paradoxes and contradictions. In this natural laboratory, we hope that new evidence and new solutions to a variety of problems outside of the Mediterranean region will be found!
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: alternative theories in the Earth sciences ; conventional theories in the Earth sciences ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 78012 bytes
    Format: 7264144 bytes
    Format: 5097129 bytes
    Format: 1911585 bytes
    Format: 1660281 bytes
    Format: 2195335 bytes
    Format: 4373266 bytes
    Format: 1470973 bytes
    Format: 720760 bytes
    Format: 5563234 bytes
    Format: 3327762 bytes
    Format: 3125259 bytes
    Format: 164985 bytes
    Format: 61896 bytes
    Format: 60272 bytes
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-12-11
    Description: For any scientist working in seismotectonics, the Calabrian Arc represents the most challenging area of Italy. Lying on top of a subduction zone, it is characterised by a complex geological structure largely inherited from the early stages of the collision between the Africa and Eurasia plates. The current and extremely vigorous seismogenic processes, although generated by a mechanism driven by the subduction, are no longer a direct consequence of plate convergence. About one fourth of the largest Italian earthquakes concentrates in a narrow strip of land (roughly 200x70 km) corresponding to the administrative region of Calabria. The present-day seismicity, both shallow and deep, provides little help in detecting the most insidious seismogenic structures, nor does the available record of GPS-detected strains. In addition to its fierce seismicity, the Calabrian Arc also experiences uplift at rates that are the largest in Italy, thus suggesting that active tectonic processes are faster here than elsewhere in the country. Calabrian earthquakes are strong yet inherently elusive, and even the largest of those that have occurred over the past two centuries do not appear to have caused unambiguous surface faulting. The identified active structures are not sufficient to explain in full the historical seismicity record, suggesting that some of the main seismogenic sources still lie unidentified, for instance in the offshore. As a result, the seismogenic processes of Calabria have been the object of a lively debate at least over the past three decades. In this work we propose to use the current geodynamic framework of the Calabrian Arc as a guidance to resolve the ambiguities that concern the identification of the presumed known seismogenic sources, and to identify those as yet totally unknown. Our proposed scheme is consistent with the location of the largest earthquakes, the recent evolution of the regions affected by seismogenic faulting, and the predictions of current evolutionary models of the crust overlying a W-dipping subduction zone.
    Description: Published
    Description: 365-388
    Description: 4IT. Banche dati
    Description: JCR Journal
    Description: open
    Keywords: Calabrian Arc ; Calabrian earthquakes ; Seismotectonics ; Seismogenic sources ; DISS database ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: The active tectonics at the front of the Southern Apennines and in the Adriatic foreland is characterized by E-W striking, right-lateral seismogenic faults, interpreted as reactivated inherited discontinuities. The best studied among these is the Molise-Gondola shear zone (MGsz). The interaction of these shear zones with the Apennines chain is not yet clear. To address this open question we developed a set of scaled analogue experiments, aimed at analyzing: 1) how dextral strike-slip motion along a pre-existing zone of weakness within the foreland propagates toward the surface and affects the orogenic wedge; 2) the propagation of deformation as a function of displacement; 3) any insights on the active tectonics of Southern Italy. Our results stress the primary role played by these inherited structures when reactivated, and confirm that regional E-W dextral shear zones are a plausible way of explaining the seismotectonic setting of the external areas of the Southern Apennines.
    Description: INGV, Università degli Studi di Pavia
    Description: Published
    Description: 21
    Description: open
    Keywords: Active strike-slip fault ; sandbox model ; southern Italy ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 5190977 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...