ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (56,696)
  • 2000-2004  (56,696)
Collection
Keywords
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Morris, Julie; Valentine, R; Harrison, T (2002): 10Be imaging of sediment accretion and subduction along the northeast Japan and Costa Rica convergent margins. Geology, 30(1), 59-62, https://doi.org/10.1130/0091-7613(2002)030%3C0059:BIOSAA%3E2.0.CO;2
    Publication Date: 2024-01-09
    Description: Sediment accretion and subduction at convergent margins play an important role in the nature of hazardous interplate seismicity (the seismogenic zone) and the subduction recycling of volatiles and continentally derived materials to the Earth's mantle. Identifying and quantifying sediment accretion, essential for a complete mass balance across the margin, can be difficult. Seismic images do not define the processes by which a prism was built, and cored sediments may show disturbed magnetostratigraphy and sparse biostratigraphy. This contribution reports the first use of cosmogenic 10Be depth profiles to define the origin and structural evolution of forearc sedimentary prisms. Biostratigraphy and 10Be model ages generally are in good agreement for sediments drilled at Deep Sea Drilling Project Site 434 in the Japan forearc, and support an origin by imbricate thrusting for the upper section. Forearc sediments from Ocean Drilling Program Site 1040 in Costa Rica lack good fossil or paleomagnetic age control above the decollement. Low and homogeneous 10Be concentrations show that the prism sediments are older than 3-4 Ma, and that the prism is either a paleoaccretionary prism or it formed largely from slump deposits of apron sediments. Low 10Be in Costa Rican lavas and the absence of frontal accretion imply deeper sediment underplating or subduction erosion.
    Keywords: 170-1040B; 170-1040C; 56-434; 56-436; Costa Rica subduction complex, North Pacific Ocean; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; Glomar Challenger; Joides Resolution; Leg170; Leg56; North Pacific/RIDGE; North Pacific/TRENCH; Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Graham, I J; Carter, Robert M; Ditchburn, R G; Zondervan, A (2004): Chronostratigraphy of ODP 181, Site 1121 sediment core (Southwest Pacific Ocean), using 10Be/9Be dating of entrapped ferromanganese nodules. Marine Geology, 205(1-4), 227-247, https://doi.org/10.1016/S0025-3227(04)00025-8
    Publication Date: 2024-01-09
    Description: A 10Be/9Be-based chronostratigraphy has been determined for ODP 181, Site 1121 sediment core, recovered from the foot of the Campbell Plateau, Southwest Pacific Ocean. This core was drilled through the Campbell 'skin drift' in ca. 4500 m water depth on the mid-western margin of the extensive Campbell Nodule Field, beneath the flow of the major cold-water Deep Western Boundary Current (DWBC). In the absence of detailed biostratigraphy, beryllium isotopes have provided essential time information to allow palaeo-environmental interpretation to be undertaken on the upper 7 m of the core. Measured 10Be/9Be ratios of sediment, and of ferromanganese nodules entrapped in the sediment, decrease systematically with depth in the core, in accordance with radioactive decay. However, the 10Be/9Be data diverge from ca. 3 m below the seafloor (mbsf) to the top of the core, giving rise to several possible geochronological models. The preferred model assumes that the measured 10Be/9Be ratios of the nodule rims reflect initial 10Be/9Be ratios equivalent to contemporary seawater, and that these can be used to derive the true age of the sediment where the nodules occur. The nodule rim ages can be then used to interpret the sediment 10Be/9Be data, which indicate an overall age to ca. 7 mbsf of ca. 17.5 Ma. The derived chronology is consistent with diatom biostratigraphy, which indicates an age of 2.2-3.6 Ma at 1 mbsf. Calculated sedimentation rates range from 8 to 95 cm m.y.**-1, with an overall rate to 7 mbsf of ca. 39 cm m.y.**-1. The lowest rates generally coincide with the occurrence of entrapped nodules, and reflect periods of increased bottom current flow causing net sediment loss. Growth rates of individual nodules decrease towards the top of the sediment core, similar to the observed decrease in growth rate from core to rim of seafloor nodules from the Campbell Nodule Field. This may be related to an overall increase in the vigour of the DWBC from ca. 10 Ma to the present.
    Keywords: 181-1121; COMPCORE; Composite Core; Joides Resolution; Leg181; Ocean Drilling Program; ODP; South Pacific Ocean
    Type: Dataset
    Format: application/zip, 7 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Di Vincenzo, Gianfranco; Caburlotto, Andrea; Camerlenghi, Angelo (2001): 40Ar-39Ar investigation of volcanic clasts in glaciogenic sediments at Sites 1097 and 1103 (ODP Leg 178, Antarctic Peninsula). In: Barker, PF; Camerlenghi, A; Acton, GD; Ramsay, ATS (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 178, 1-26, https://doi.org/10.2973/odp.proc.sr.178.232.2001
    Publication Date: 2024-01-09
    Description: Three selected diamictite samples recovered within sequence group S3 at Sites 1097 (Sample 178-1097A-27R-1, 35-58 cm) and 1103 (Samples 178-1103A-31R-2, 0-4 cm, and 36R-3, 4-8 cm) of Ocean Drilling Program Leg 178 have been investigated by scanning electron microscope, electron microprobe, and 40Ar-39Ar laser-heating techniques. They contain variable proportions of fragments of volcanic rock groundmass (mostly in the range of 100-150 µm) with textures ranging from microcrystalline to ipocrystalline. Their rounded shapes indicate mechanical reworking. Fresh groundmass glasses, recognized only in grains from samples of Site 1103, show mainly a subalkaline affinity on the basis of total alkali-silica variations. However, they are characterized by relatively high TiO2 and P2O5 contents (1.4-2.8 and 0.1-0.9 wt%, respectively). Because of the small size of homogeneous grains (100-150 µm), they were not suitable for single-grain total fusion 40Ar-39Ar analyses. The incremental laser-heating technique was applied to milligram-sized samples (only for Samples 178-1097A-27R-1, 35-58 cm, and 178-1103A-36R-3, 4-8 cm) and to various small fractions (each consisting of 10 grains for the sample from Site 1097 and 30 grains for samples from Site 1103). The latter approach resulted in more effective resolution of sample heterogeneity. Argon ages from the small fractions show significantly different ranges in the three samples: 75-173 Ma for Sample 178-1097A-27R-1, 35-58 cm, 18-57 Ma for Sample 178-1103A-31R-2, 0-4 cm, and 7.6-50 Ma for Sample 178-1103A-36R-3, 4-8 cm. Ca/K ratios derived from argon isotopes at Site 1103 suggest that the data mainly refer to outgassing of groundmass glass. At Site 1103, we observe an overall apparent age increase with decreasing sample depth. This is compatible with glacial erosion that affected with time deeper levels of a volcanic sequence previously deposited on the continent. The youngest apparent age of 7.6 ± 0.7 Ma detected close to the bottom of Hole 1103A (340 meters below seafloor [mbsf]) is compatible with the age range of the diatom Actinocyclus ingens v. ovalis Zone (6.3-8.0 Ma) determined for the interval 320-355 mbsf and with the maximum ages derived from strontium isotope composition of barnacle fragments obtained at 262-263 mbsf at the same site. Nevertheless, this age cannot be taken as the maximum youngest age of the volcanic sequence sampled by glacial erosion or as the maximum age for the deposition of the Sequence S3 at 340 mbsf unless validated by further research.
    Keywords: 178-1097A; 178-1103A; Drake Passage; DRILL; Drilling/drill rig; Joides Resolution; Leg178; Ocean Drilling Program; ODP; South Pacific Ocean
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: MacLeod, Kenneth G; Fullagar, Paul D; Huber, Brian T (2003): 87Sr/86Sr test of the degree of impact-induced slope failure in the Maastrichtian of the western North Atlantic. Geology, 31(4), 311-314, https://doi.org/10.1130/0091-7613(2003)031%3C0311:SSTOTD%3E2.0.CO;2
    Publication Date: 2024-01-09
    Description: Analyses of 87Sr/86Sr in foraminifera and sedimentological observations suggest that the Chicxulub impact was not the trigger for slumps or a hiatus within the Maastrichtian section recovered at Ocean Drilling Program Sites 1049, 1050, and 1052 (subtropical western North Atlantic). The slumps and hiatus occur within a sequence dominated by pelagic chalk. The 87Sr/86Sr measurements show a general increase through the Maastrichtian at each site, but suggest chronostratigraphic gaps on the order of 10 Myr across the slumps. Some of the slumps have burrowed upper surfaces and are composed of material that is older and coarser grained than the bounding chalks. Pelagic deposition punctuated by gravity flows easily explains the Maastrichtian record on Blake Nose, whereas an impact-based explanation for slumping is difficult to reconcile with sedimentological and geochemical observations.
    Keywords: 171-1049C; 171-1050C; 171-1052E; Blake Nose, North Atlantic Ocean; DRILL; Drilling/drill rig; Joides Resolution; Leg171B; Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Rommerskirchen, Florian; Eglinton, Geoffrey; Dupont, Lydie M; Güntner, Ute; Wenzel, Claudia; Rullkötter, Jürgen (2003): A north to south transect of Holocene southeast Atlantic continental margin sediments: Relationship between aerosol transport and compound-specific d13C land plant biomarker and pollen records. Geochemistry, Geophysics, Geosystems, 4(12), 1101, https://doi.org/10.1029/2003GC000541
    Publication Date: 2024-02-02
    Description: We examined near-surface, late Holocene deep-sea sediments at nine sites on a north-south transect from the Congo Fan (4°S) to the Cape Basin (30°S) along the Southwest African continental margin. Contents, distribution patterns and molecular stable carbon isotope signatures of long-chain n-alkanes (C27-C33) and n-alkanols (C22-C32) are indicators of land plant vegetation of different biosynthetic types, which can be correlated with concentrations and distributions of pollen taxa in the same sediments. Calculated clusters of wind trajectories and satellite Aerosol Index imagery afford information on the source areas for the lipids and pollen on land and their transport pathways to the ocean sites. This multidisciplinary approach on an almost continental scale provides clear evidence of latitudinal differences in lipid and pollen composition paralleling the major phytogeographic zonations on the adjacent continent. Dust and smoke aerosols are mainly derived from the western and central South African hinterland dominated by deserts, semi-deserts and savannah regions rich in C4 and CAM plants. The northern sites (Congo Fan area and northern Angola Basin), which get most of their terrestrial material from the Congo Basin and the Angolan highlands, may also receive some material from the Chad region. Very little aerosol from the African continent is transported to the most southerly sites in the Cape Basin. As can be expected from the present position of the phytogeographic zones, the carbon isotopic signatures of the n-alkanes and n-alkanols both become isotopically more enriched in 13C from north to south. The results of the study suggest that this combination of pollen data and compound-specific isotope geochemical proxies can be effectively applied in the reconstruction of past continental phytogeographic developments.
    Keywords: 175-1075A; 175-1079A; 175-1082A; 175-1084A; Angola Basin; Benguela Current, South Atlantic Ocean; DRILL; Drilling/drill rig; GeoB; GeoB1008-3; GeoB1016-3; GeoB1028-5; GeoB1710-3; GeoB1722-1; Geosciences, University of Bremen; Gravity corer (Kiel type); Joides Resolution; Leg175; M20/2; M6/6; Meteor (1986); Namibia continental slope; Ocean Drilling Program; ODP; SL; Walvis Ridge, Southeast Atlantic Ocean
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ragueneau, Olivier; Tréguer, Paul; Leynaert, Aude; Anderson, Robert F; Brzezinski, Mark A; DeMaster, David J; Dugdale, Richard; Dymond, Jack R; Fischer, Gerhard; Francois, Roger; Heinze, Christoph; Maier-Reimer, Ernst; Martin-Jézéquel, Véronique; Nelson, David M; Quéguiner, Bernard (2000): A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global and Planetary Change, 26(4), 317-365, https://doi.org/10.1016/S0921-8181(00)00052-7
    Publication Date: 2023-08-15
    Description: Due to the major role played by diatoms in the biological pump of CO2, and to the presence of silica-rich sediments in areas that play a major role in air-sea CO2 exchange (e.g. the Southern Ocean and the Equatorial Pacific), opal has a strong potential as a proxy for paleoproductivity reconstructions. However, because of spatial variations in the biogenic silica preservation, and in the degree of coupling between the marine Si and C biogeochemical cycles, paleoreconstructions are not straitghtforward. A better calibration of this proxy in the modern ocean is required, which needs a good understanding of the mechanisms that control the Si cycle, in close relation to the carbon cycle. This review of the Si cycle in the modern ocean starts with the mechanisms that control the uptake of silicic acid (Si(OH)4) by diatoms and the subsequent silicification processes, the regulatory mechanisms of which are uncoupled. This has strong implications for the direct measurement in the field of the kinetics of Si(OH)4 uptake and diatom growth. It also strongly influences the Si:C ratio within diatoms, clearly linked to environmental conditions. Diatoms tend to dominate new production at marine ergoclines. At depth, they also succeed to form mats, which sedimentation is at the origin of laminated sediments and marine sapropels. The concentration of Si(OH)4 with respect to other macronutrients exerts a major influence on diatom dominance and on the rain ratio between siliceous and calcareous material, which severely impacts surface waters pCO2. A compilation of biogenic fluxes collected at about 40 sites by means of sediment traps also shows a remarkable pattern of increasing BSi:Corg ratio along the path of the "conveyor belt", accompanying the relative enrichment of waters in Si compared to N and P. This observation suggests an extension of the Si pump model described by Dugdale and Wilkerson (1989, doi:10.1038/34630), giving to Si(OH)4 a major role in the control of the rain ratio, which is of major importance in the global carbon cycle. The fate of the BSi produced in surface waters is then described, in relation to Corg, in terms of both dissolution and preservation mechanisms. Difficulties in quantifying the dissolution of biogenic silica in the water column as well as the sinking rates and forms of BSi to the deep, provide evidence for a major gap in our understanding of the mechanisms controlling the competition between retention in and export from surface waters. The relative influences of environmental conditions, seasonality, food web structure or aggregation are however explored. Quantitatively, assuming steady state, the measurements of the opal rain rate by means of sediment traps matches reasonably well those obtained by adding the recycling and burial fluxes in the underlying abyssal sediments, for most of the sites where such a comparison is possible. The major exception is the Southern Ocean where sediment focusing precludes the closing of mass balances. Focusing in fact is also an important aspect of the downward revision of the importance of Southern Ocean sediments in the global biogenic silica accumulation. Qualitatively, little is known about the duration of the transfer through the deep and the quality of the material that reaches the seabed, which is suggested to represent a major gap in our understanding of the processes governing the early diagenesis of BSi in sediments. The sediment composition (special emphasis on Al availability), the sedimentation rate or bioturbation are shown to exert an important control on the competition between dissolution and preservation of BSi in sediments. It is suggested that a primary control on the kinetic and thermodynamic properties of BSi dissolution, both in coastal and abyssal sediments, is exerted by water column processes, either occuring in surface waters during the formation of the frustules, or linked to the transfer of the particles through the water column, which duration may influence the quality of the biogenic rain. This highlights the importance of studying the factors controlling the degree of coupling between pelagic and benthic processes in various regions of the world ocean, and its consequences, not only in terms of benthic biology but also for the constitution of the sediment archive. The last section, first calls for the end of the "NPZD" models, and for the introduction of processes linked to the Si cycle, into models describing the phytoplankton cycles in surface waters and the early diagenesis of BSi in sediments. It also calls for the creation of an integrated 1-D diagnostic model of the Si:C coupling, for a better understanding of the interactions between surface waters, deep waters and the upper sedimentary column. The importance of Si(OH)4 in the control of the rain ratio and the improved parametrization of the Si cycle in the 1-D diagnostic models should lead to a reasonable incorporation of the Si cycle into 3-D regional circulation models and OGCMs, with important implications for climate change studies and paleoreconstructions at regional and global scale.
    Keywords: Barcelona Coast; ORFOIS; Origin and Fate of Biogenic Particle Fluxes in the Ocean; Pertuis Charentais; Silicon Cycling in the World Ocean; SINOPS; Taranto Mare Piccolo
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-07-10
    Keywords: Abditodendrix rhomboidalis; Adercotryma sp.; Alliatinella panayensis; Allogromiina sp.; Ammobaculites sp.; Ammodiscus catinus; Ammodiscus flavians; Ammonia beccarii; Ammonia sp.; Ammoscalaria cf. psd.; Ammoscalaria sp.; Amphistegina sp.; Angulogenerina angulosa; Assilina sp.; Astrononion sp.; Bolivina dilatata; Bolivina limbata; Bolivina persiensis; Bolivina variabilis; Bolivinellina cf. pescicula; Brizalina subspathulata; Bulimina elongata; Bulimina marginata; Buliminella elegantissima; Cancris auriculus; Caribeanella elatensis; Cassidelina sp.; Cassidelina spinescens; Cassidulina minuta; Cibicides aravaensis; Cibicides mahabethi; Cibicides mayori; Cibicides pseudolobatulus; Cibicides sp.; Cibicides tenuimargo; Cibicidoides pseudoungerianus; Cibicidoides sp.; Cornuspira planorbis; Counting 〉125 µm fraction; Cribrostomoides sp.; Cushmanina sp.; Cycloforina collumnosa; Cycloforina sp.; Cymbaloporella tabellaeformis; Cymbaloporetta sp.; Dentalina sp.; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Diocibicides biserialis; Discorbinella bertheloti; Eggerella sp.; Elphidium sp.; Epistominella sp.; Evolutononion sp.; Evolvocassidulina belfordi; Favulina melosquamosa; Fursencoina sp.; Fursenkoina hybrida; Gavelinopsis praegeri; GeoTü; Glandulina laevigata; Glandulina sp.; Globocassidulina cf. n.; Globocassidulina oriangulata; Globotextularia sp.; Glomospira charoides; Gyroidina soldanii; Haddonia sp.; Hanzawaia sp.; Haplophragmoides bradyi; Hormosina guttifera; Hyalinonetrion gracilis; Labrospira sp.; Lagena cf. simistriata; Lagenammina cf. atlantica; Lagenammina difflugiformis; Lagenammina sp.; Lagena sp.; Lagena strumosa; Lamarckina ventricosa; Lenticulina sp.; Loxostomina amygdalaeformis; Loxostomina cf. africanus; Loxostomina cf. singularae; Loxostomina limbata; M5/2; M5/2_100MC; Meteor (1986); Miliolinella cf. hybrida; Miliolinella sp.; Miliolinella subrotunda; Millettiana millettii; Morulaeplecta sp.; MUC; MultiCorer; Neoeponides bradyi; Neorotalia sp.; Neouvigerina ampullacea; Neouvigerina interrupta; Neouvigerina porrecta; Nodellum sp.; Nonionoides grateloupii; Paleoceanography at Tübingen University; Palliolatella bradii; Paracassidulina neocarinata; Paratrochammina mad.; Paratrochammina sp.; Patellinella sp.; Paumotua terebra; Peneroplis planatus; Pentagonia sp.; Plotnikovina cf. aequa; Pseudogaudryina sp.; Pseudomassilina australis; Pulsiphonina sp.; Pygmaeoseistron sp.; Pyrgo rotalaria; Pyrgo sp.; Quinqueloculina eburnea; Quinqueloculina patagonica; Quinqueloculina sp.; Reussella neopolitana; Rheopax sp.; Robertinoides bradyi; Rosalina orientalis; Rosalina suezensis; Saccammina sp.; Sagrinella lobata; Sahulia kerimbaensis; Sigmoiliuita sp.; Sigmoilopsis minuta; Siphonaperta horrida; Siphonaperta hybrida; Siphonaperta pittensis; Siphonina tubulosa; Siphotextularia heterostoma; Siphouvigerina fimbriata; Sorites variabilis; Spirillina vivipara; Spiroloculina aff. communis; Spiroloculina antillarum; Spiroloculina cf. pellucida; Spiroloculina hybrida; Spiroloculina sp.; Spirophthalmidium cf. elegans; Spirotextularia floridana; Svratkina sp.; Textularia cushmani; Tretomphalus bulloides; Triloculina affinis; Triloculina tricarinata; Trochammina globigeriniformis; Trochammina sp.; Tubular agglutinants; Valvulineria laevigata; Vasicostella inflatiperforata; Wiesnerella sp.
    Type: Dataset
    Format: text/tab-separated-values, 1056 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-07-10
    Keywords: Abditodendrix rhomboidalis; Adercotryma sp.; Alliatinella panayensis; Allogromiina sp.; Ammobaculites sp.; Ammodiscus catinus; Ammodiscus flavians; Ammonia beccarii; Ammonia sp.; Ammoscalaria cf. psd.; Ammoscalaria sp.; Amphistegina sp.; Angulogenerina angulosa; Assilina sp.; Astrononion sp.; Bolivina dilatata; Bolivina limbata; Bolivina persiensis; Bolivina variabilis; Bolivinellina cf. pescicula; Brizalina subspathulata; Bulimina elongata; Bulimina marginata; Buliminella elegantissima; Cancris auriculus; Caribeanella elatensis; Cassidelina sp.; Cassidelina spinescens; Cassidulina minuta; Cibicides aravaensis; Cibicides mahabethi; Cibicides mayori; Cibicides pseudolobatulus; Cibicides sp.; Cibicides tenuimargo; Cibicidoides pseudoungerianus; Cibicidoides sp.; Cornuspira planorbis; Counting 〉125 µm fraction; Cribrostomoides sp.; Cushmanina sp.; Cycloforina collumnosa; Cycloforina sp.; Cymbaloporella tabellaeformis; Cymbaloporetta sp.; Dentalina sp.; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Diocibicides biserialis; Discorbinella bertheloti; Eggerella sp.; Elphidium sp.; Epistominella sp.; Evolutononion sp.; Evolvocassidulina belfordi; Favulina melosquamosa; Fursencoina sp.; Fursenkoina hybrida; Gavelinopsis praegeri; GeoTü; Glandulina laevigata; Glandulina sp.; Globocassidulina cf. n.; Globocassidulina oriangulata; Globotextularia sp.; Glomospira charoides; Gyroidina soldanii; Haddonia sp.; Hanzawaia sp.; Haplophragmoides bradyi; Hormosina guttifera; Hyalinonetrion gracilis; Labrospira sp.; Lagena cf. simistriata; Lagenammina cf. atlantica; Lagenammina difflugiformis; Lagenammina sp.; Lagena sp.; Lagena strumosa; Lamarckina ventricosa; Lenticulina sp.; Loxostomina amygdalaeformis; Loxostomina cf. africanus; Loxostomina cf. singularae; Loxostomina limbata; M5/2; M5/2_107MC; Meteor (1986); Miliolinella cf. hybrida; Miliolinella sp.; Miliolinella subrotunda; Millettiana millettii; Morulaeplecta sp.; MUC; MultiCorer; Neoeponides bradyi; Neorotalia sp.; Neouvigerina ampullacea; Neouvigerina interrupta; Neouvigerina porrecta; Nodellum sp.; Nonionoides grateloupii; Paleoceanography at Tübingen University; Palliolatella bradii; Paracassidulina neocarinata; Paratrochammina mad.; Paratrochammina sp.; Patellinella sp.; Paumotua terebra; Peneroplis planatus; Pentagonia sp.; Plotnikovina cf. aequa; Pseudogaudryina sp.; Pseudomassilina australis; Pulsiphonina sp.; Pygmaeoseistron sp.; Pyrgo rotalaria; Pyrgo sp.; Quinqueloculina eburnea; Quinqueloculina patagonica; Quinqueloculina sp.; Reussella neopolitana; Rheopax sp.; Robertinoides bradyi; Rosalina orientalis; Rosalina suezensis; Saccammina sp.; Sagrinella lobata; Sahulia kerimbaensis; Sigmoiliuita sp.; Sigmoilopsis minuta; Siphonaperta horrida; Siphonaperta hybrida; Siphonaperta pittensis; Siphonina tubulosa; Siphotextularia heterostoma; Siphouvigerina fimbriata; Sorites variabilis; Spirillina vivipara; Spiroloculina aff. communis; Spiroloculina antillarum; Spiroloculina cf. pellucida; Spiroloculina hybrida; Spiroloculina sp.; Spirophthalmidium cf. elegans; Spirotextularia floridana; Svratkina sp.; Textularia cushmani; Total counts; Tretomphalus bulloides; Triloculina affinis; Triloculina tricarinata; Trochammina globigeriniformis; Trochammina sp.; Tubular agglutinants; Valvulineria laevigata; Vasicostella inflatiperforata; Wiesnerella sp.
    Type: Dataset
    Format: text/tab-separated-values, 1062 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-07-10
    Keywords: Abditodendrix rhomboidalis; Adercotryma sp.; Alliatinella panayensis; Allogromiina sp.; Ammobaculites sp.; Ammodiscus catinus; Ammodiscus flavians; Ammonia beccarii; Ammonia sp.; Ammoscalaria cf. psd.; Ammoscalaria sp.; Amphistegina sp.; Angulogenerina angulosa; Assilina sp.; Astrononion sp.; Bolivina dilatata; Bolivina limbata; Bolivina persiensis; Bolivina variabilis; Bolivinellina cf. pescicula; Brizalina subspathulata; Bulimina elongata; Bulimina marginata; Buliminella elegantissima; Cancris auriculus; Caribeanella elatensis; Cassidelina sp.; Cassidelina spinescens; Cassidulina minuta; Cibicides aravaensis; Cibicides mahabethi; Cibicides mayori; Cibicides pseudolobatulus; Cibicides sp.; Cibicides tenuimargo; Cibicidoides pseudoungerianus; Cibicidoides sp.; Cornuspira planorbis; Counting 〉125 µm fraction; Cribrostomoides sp.; Cushmanina sp.; Cycloforina collumnosa; Cycloforina sp.; Cymbaloporella tabellaeformis; Cymbaloporetta sp.; Dentalina sp.; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Diocibicides biserialis; Discorbinella bertheloti; Eggerella sp.; Elphidium sp.; Epistominella sp.; Evolutononion sp.; Evolvocassidulina belfordi; Favulina melosquamosa; Fursencoina sp.; Fursenkoina hybrida; Gavelinopsis praegeri; GeoTü; Glandulina laevigata; Glandulina sp.; Globocassidulina cf. n.; Globocassidulina oriangulata; Globotextularia sp.; Gyroidina soldanii; Haddonia sp.; Hanzawaia sp.; Haplophragmoides bradyi; Hormosina guttifera; Hyalinonetrion gracilis; Labrospira sp.; Lagena cf. simistriata; Lagenammina cf. atlantica; Lagenammina difflugiformis; Lagenammina sp.; Lagena sp.; Lagena strumosa; Lamarckina ventricosa; Lenticulina sp.; Loxostomina cf. africanus; Loxostomina cf. singularae; Loxostomina limbata; M5/2; M5/2_88MC; Meteor (1986); Miliolinella cf. hybrida; Miliolinella sp.; Miliolinella subrotunda; Millettiana millettii; Morulaeplecta sp.; MUC; MultiCorer; Neorotalia sp.; Neouvigerina ampullacea; Neouvigerina interrupta; Neouvigerina porrecta; Nodellum sp.; Nonionoides grateloupii; Paleoceanography at Tübingen University; Palliolatella bradii; Paracassidulina neocarinata; Paratrochammina mad.; Paratrochammina sp.; Patellinella sp.; Paumotua terebra; Peneroplis planatus; Pentagonia sp.; Plotnikovina cf. aequa; Pseudogaudryina sp.; Pseudomassilina australis; Pulsiphonina sp.; Pygmaeoseistron sp.; Pyrgo rotalaria; Pyrgo sp.; Quinqueloculina eburnea; Quinqueloculina patagonica; Quinqueloculina sp.; Reussella neopolitana; Rheopax sp.; Robertinoides bradyi; Rosalina orientalis; Rosalina suezensis; Saccammina sp.; Sagrinella lobata; Sahulia kerimbaensis; Sigmoiliuita sp.; Sigmoilopsis minuta; Siphonaperta horrida; Siphonaperta hybrida; Siphonaperta pittensis; Siphonina tubulosa; Siphotextularia heterostoma; Siphouvigerina fimbriata; Sorites variabilis; Spirillina vivipara; Spiroloculina aff. communis; Spiroloculina antillarum; Spiroloculina cf. pellucida; Spiroloculina hybrida; Spiroloculina sp.; Spirophthalmidium cf. elegans; Spirotextularia floridana; Svratkina sp.; Textularia cushmani; Total counts; Tretomphalus bulloides; Triloculina affinis; Triloculina tricarinata; Trochammina globigeriniformis; Trochammina sp.; Tubular agglutinants; Valvulineria laevigata; Vasicostella inflatiperforata; Wiesnerella sp.
    Type: Dataset
    Format: text/tab-separated-values, 890 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-07-10
    Keywords: Abditodendrix rhomboidalis; Adercotryma sp.; Alliatinella panayensis; Allogromiina sp.; Ammobaculites sp.; Ammodiscus catinus; Ammodiscus flavians; Ammonia beccarii; Ammonia sp.; Ammoscalaria cf. psd.; Ammoscalaria sp.; Amphistegina sp.; Angulogenerina angulosa; Assilina sp.; Astrononion sp.; Bolivina dilatata; Bolivina limbata; Bolivina persiensis; Bolivina variabilis; Bolivinellina cf. pescicula; Brizalina subspathulata; Bulimina elongata; Bulimina marginata; Buliminella elegantissima; Cancris auriculus; Caribeanella elatensis; Cassidelina sp.; Cassidelina spinescens; Cassidulina minuta; Cibicides aravaensis; Cibicides mahabethi; Cibicides mayori; Cibicides pseudolobatulus; Cibicides sp.; Cibicides tenuimargo; Cibicidoides pseudoungerianus; Cibicidoides sp.; Cornuspira planorbis; Counting 〉125 µm fraction; Cribrostomoides sp.; Cushmanina sp.; Cycloforina collumnosa; Cycloforina sp.; Cymbaloporella tabellaeformis; Cymbaloporetta sp.; Dentalina sp.; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Diocibicides biserialis; Discorbinella bertheloti; Eggerella sp.; Elphidium sp.; Epistominella sp.; Evolutononion sp.; Evolvocassidulina belfordi; Favulina melosquamosa; Fursencoina sp.; Fursenkoina hybrida; Gavelinopsis praegeri; GeoTü; Glandulina laevigata; Glandulina sp.; Globocassidulina cf. n.; Globocassidulina oriangulata; Globotextularia sp.; Glomospira charoides; Gyroidina soldanii; Haddonia sp.; Hanzawaia sp.; Haplophragmoides bradyi; Hormosina guttifera; Hyalinonetrion gracilis; Labrospira sp.; Lagena cf. simistriata; Lagenammina cf. atlantica; Lagenammina difflugiformis; Lagenammina sp.; Lagena sp.; Lagena strumosa; Lamarckina ventricosa; Lenticulina sp.; Loxostomina amygdalaeformis; Loxostomina cf. africanus; Loxostomina cf. singularae; Loxostomina limbata; M5/2; M5/2_91MC; Meteor (1986); Miliolinella cf. hybrida; Miliolinella sp.; Miliolinella subrotunda; Millettiana millettii; Morulaeplecta sp.; MUC; MultiCorer; Neoeponides bradyi; Neorotalia sp.; Neouvigerina ampullacea; Neouvigerina interrupta; Neouvigerina porrecta; Nodellum sp.; Nonionoides grateloupii; Paleoceanography at Tübingen University; Palliolatella bradii; Paracassidulina neocarinata; Paratrochammina mad.; Paratrochammina sp.; Patellinella sp.; Paumotua terebra; Peneroplis planatus; Pentagonia sp.; Plotnikovina cf. aequa; Pseudogaudryina sp.; Pseudomassilina australis; Pulsiphonina sp.; Pygmaeoseistron sp.; Pyrgo rotalaria; Pyrgo sp.; Quinqueloculina eburnea; Quinqueloculina patagonica; Quinqueloculina sp.; Reussella neopolitana; Rheopax sp.; Robertinoides bradyi; Rosalina orientalis; Rosalina suezensis; Saccammina sp.; Sagrinella lobata; Sahulia kerimbaensis; Sigmoiliuita sp.; Sigmoilopsis minuta; Siphonaperta horrida; Siphonaperta hybrida; Siphonaperta pittensis; Siphonina tubulosa; Siphotextularia heterostoma; Siphouvigerina fimbriata; Sorites variabilis; Spirillina vivipara; Spiroloculina aff. communis; Spiroloculina antillarum; Spiroloculina cf. pellucida; Spiroloculina hybrida; Spiroloculina sp.; Spirophthalmidium cf. elegans; Spirotextularia floridana; Svratkina sp.; Textularia cushmani; Total counts; Tretomphalus bulloides; Triloculina affinis; Triloculina tricarinata; Trochammina globigeriniformis; Trochammina sp.; Tubular agglutinants; Valvulineria laevigata; Vasicostella inflatiperforata; Wiesnerella sp.
    Type: Dataset
    Format: text/tab-separated-values, 1062 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...