ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus
  • MDPI Publishing
  • 2000-2004  (3,386)
  • 1
    Publication Date: 2004-11-23
    Description: Snow, through its trace constituents, can have a major impact on lower tropospheric chemistry, as evidenced by ozone depletion events (ODEs) in oceanic polar areas. These ODEs are caused by the chemistry of bromine compounds that originate from sea salt bromide. Bromide may be supplied to the snow surface by upward migration from sea ice, by frost flowers being wind-blown to the snow surface, or by wind-transported aerosol generated by sea spray. We investigate here the relative importance of these processes by analyzing ions in snow near Alert and Ny-Ålesund (Canadian and European high Arctic) in winter and spring. Vertical ionic profiles in the snowpack on sea ice are measured to test upward migration of sea salt ions and to seek evidence for ion fractionation processes. Time series of the ionic composition of surface snow layers are investigated to quantify wind-transported ions. Upward migration of unfractionated sea salt to heights of at least 17cm was observed in winter snow, leading to Cl- concentration of several hundred µM. Upward migration thus has the potential to supply ions to surface snow layers. Time series show that wind can deposit aerosols to the top few cm of the snow, leading also to Cl- concentrations of several hundred µM, so that both diffusion from sea ice and wind transport can significantly contribute ions to snow. At Ny-Ålesund, sea salt transported by wind was unfractionated, implying that it comes from sea spray rather than frost flowers. Estimations based on our results suggest that the marine snowpack contains about 10 times more Na+ than the frost flowers, so that both the marine snowpack and frost flowers need to be considered as sea salt sources. Our data suggest that ozone depletion chemistry can significantly enhance the Br- content of snow. We speculate that this can also take place in coastal regions and contribute to propagate ODEs inland. Finally, we stress the need to measure snow physical parameters such as permeability and specific surface area to understand quantitatively changes in snow chemistry.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-11-18
    Description: The results of two methods retrieving actinic flux and ozone photolysis frequencies (JO1D), from measurements of irradiance with a Brewer MKIII spectroradiometer are investigated in this paper. The first method uses actinic flux retrieved from irradiance measurements by the use of known formulas while the second is an empirical method converting irradiance to JO1D through polynomials extracted from a study of synchronous actinic flux and irradiance measurements. When examining the actinic fluxes derived from the first method to those measured by an actinic flux spectrometer data agree within ±10% for solar zenith angles lower than 75° for the UV-B and the UV-A wavelength band. Also, the actinic to global irradiance ratio derived, deviates within ±6% for solar zenith angles lower than 70° compared with cloudless sky calculations of the TUV model. For both cases the deviations are in the order of the magnitude of the measurement or model uncertainties. Values of JO1D calculated by the second method show a mean ratio of 0.99±0.10 (1σ) and 0.98±0.06 for all data and for cloudless skies respectively when compared with values of JO1D derived by a Bentham actinic flux spectroradiometer. Finally, the agreement of the two methods is within ±5% comparing two years' data of JO1D retrieved from irradiance measurements at Thessaloniki, Greece. The use of such methods on extensive data sets of global irradiance can provide JO1D values with acceptable uncertainty, a parameter of particular importance for chemical process studies.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-11-22
    Description: A new 3-D mercury model has been developed within the Danish Arctic Monitoring and Assessment Programme (AMAP). The model is based on the Danish Eulerian Hemispheric Model, which in the original version has been used to study the transport of SO2, SO42- and Pb into the Arctic. It was developed for sulphur in 1990 and in 1999 also lead was included. For the current study a chemical scheme for mercury has been included and the model is now applied to the mercury transport problem. Some experiments with the formulation of the mercury chemistry during the Polar Sunrise are carried out in order to investigate the observed depletion. Some of the main conclusions of the work described in this paper are that atmospheric transport of mercury is a very important pathway into the Arctic and that mercury depletion in the Arctic troposphere during the Polar Sunrise contributes considerably to the deposition of mercury in the Arctic.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-11-22
    Description: Photolysis of water-soluble components inside cloud droplets by ultraviolet/visible radiation may play an important role in atmospheric chemistry. Two earlier studies have suggested that the actinic flux and hence the photolysis frequency within spherical droplets is enhanced relative to that in the surrounding air, but have given different values for this enhancement. Here, we reconcile these discrepancies by noting slight errors in both studies that, when corrected, lead to consistent results. Madronich (1987) examined the geometric (large droplet) limit and concluded that refraction leads to an enhancement factor, averaged over all incident directions, of 1.56. However, the physically relevant quantity is the enhancement of the average actinic flux (rather than the average enhancement factor) which we show here to be 1.26 in the geometric limit. Ruggaber et al. (1997) used Mie theory to derive energy density enhancements slightly larger than 2 for typical droplet sizes, and applied these directly to the calculation of photolysis rates. However, the physically relevant quantity is the actinic flux (rather than the energy density) which is obtained by dividing the energy density by the refractive index of water, 1.33. Thus, the Mie-predicted enhancement for typical cloud droplet sizes is in the range 1.5, only coincidentally in agreement with the value originally given by Madronich. We also investigated the influence of resonances in the actinic flux enhancement. These narrow spikes which are resolved only by very high resolution calculations are orders of magnitude higher than the intermediate values but contribute only little to the actinic flux enhancement when averaged over droplet size distributions. Finally, a table is provided which may be used to obtain the actinic flux enhancement for the photolysis of any dissolved species.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-11-22
    Description: Trends in derived from a 45 year integration of a chemistry-climate model (CCM) run have been compared with ground-based measurements at Lauder (45° S) and Arrival Heights (78° S). Observed trends in at both sites exceed the modelled trends in N2O, the primary source gas for stratospheric NO2. This suggests that the processes driving the trend are not solely dictated by changes in but are coupled to global atmospheric change, either chemically or dynamically or both. If CCMs are to accurately estimate future changes in ozone, it is important that they comprehensively include all processes affecting NOx (NO+NO2) because NOx concentrations are an important factor affecting ozone concentrations. Comparison of measured and modelled NO2 trends is a sensitive test of the degree to which these processes are incorporated in the CCM used here. At Lauder the 1980-2000 CCM NO2 trends (4.2% per decade at sunrise, 3.8% per decade at sunset) are lower than the observed trends (6.5% per decade at sunrise, 6.0% per decade at sunset) but not significantly different at the 2σ level. Large variability in both the model and measurement data from Arrival Heights makes trend analysis of the data difficult. CCM predictions (2001-2019) of NO2 at Lauder and Arrival Heights show significant reductions in the rate of increase of NO2 compared with the previous 20 years (1980-2000). The model results indicate that the partitioning of oxides of nitrogen changes with time and is influenced by both chemical forcing and circulation changes.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-11-03
    Description: Smoke-haze episodes caused by vegetation and peat fires affect parts of Indonesia every year with significant impacts on human health and climate. Particularly fires in degenerated peat areas release huge amounts of trace gases, e.g. CO2, CO and CH4, and particles into the atmosphere, exceeding by far the emissions per unit area from fires in surface vegetation. However, only limited information is available about the current distribution of pristine and degenerated peat areas in Indonesia, their depth, drainage condition and modification by fire. Particularly during the strong El Niño event in 1997/1998 a huge uncertainty exists about the contribution of Indonesian peat fire emissions to the measured increase of atmospheric CO2, as the published estimates of the peat area burned differ considerably. In this paper we study the contribution of peat fire emissions in Indonesia during the El Niño event 1997/1998. A regional three-dimensional atmosphere-chemistry model is applied over Indonesia using two emission estimates. These vegetation and peat fire emission inventories for Indonesia are set up in 0.5° resolution in weekly intervals and differ only in the size of the fire affected peat areas. We evaluate simulated rainfall and particle concentrations by comparison with observations to draw conclusions on the total carbon emissions released from the vegetation and peat fires in Indonesia in 1997/1998.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-11-10
    Description: Water vapour has been measured from the International Scientific Station Jungfraujoch (ISSJ, 47° N, 7° E, 3580m above sea level) during the winters of 1999/2000 and 2000/2001 by microwave radiometry and Raman lidar. The abundance of atmospheric water vapour between the planetary boundary layer and the upper stratosphere varies over more than three orders of magnitude. The currently used measurement techniques are only suited to determine the abundance of water vapour in different atmospheric regimes. None can resolve the vertical distribution profile from ground level to the top of the stratosphere by itself. We present such a water vapour profile where simultaneous measurements from a Raman lidar and a microwave radiometer were combined to cover both the troposphere and the stratosphere, respectively. We also present a study of the stratospheric and tropospheric water vapour variability for the two consecutive winters.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-10-05
    Description: Explicit mechanisms describing the complex degradation pathways of atmospheric volatile organic compounds (VOCs) are important, since they allow the study of the contribution of individual VOCS to secondary pollutant formation. They are computationally expensive to solve however, since they contain large numbers of species and a wide range of time-scales causing stiffness in the resulting equation systems. This paper and the following companion paper describe the application of systematic and automated methods for reducing such complex mechanisms, whilst maintaining the accuracy of the model with respect to important species and features. The methods are demonstrated via application to version 2 of the Leeds Master Chemical Mechanism. The methods of Jacobian analysis and overall rate sensitivity analysis proved to be efficient and capable of removing the majority of redundant reactions and species in the scheme across a wide range of conditions relevant to the polluted troposphere. The application of principal component analysis of the rate sensitivity matrix was computationally expensive due to its use of the decomposition of very large matrices, and did not produce significant reduction over and above the other sensitivity methods. The use of the quasi-steady state approximation (QSSA) proved to be an extremely successful method of removing the fast time-scales within the system, as demonstrated by a local perturbation analysis at each stage of reduction. QSSA species were automatically selected via the calculation of instantaneous QSSA errors based on user-selected tolerances. The application of the QSSA led to the removal of a large number of alkoxy radicals and excited Criegee bi-radicals via reaction lumping. The resulting reduced mechanism was shown to reproduce the concentration profiles of the important species selected from the full mechanism over a wide range of conditions, including those outside of which the reduced mechanism was generated. As a result of a reduction in the number of species in the scheme of a factor of 2, and a reduction in stiffness, the computational time required for simulations was reduced by a factor of 4 when compared to the full scheme.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-11-15
    Description: Chemical ozone loss in the Arctic stratosphere was investigated for the twelve years between 1991 and 2003 employing the ozone-tracer correlation method. For this method, the change in the relation between ozone and a long-lived tracer is considered for all twelve years over the lifetime of the polar vortex to calculate chemical ozone loss. Both the accumulated local ozone loss in the lower stratosphere and the column ozone loss were derived consistently, mainly on the basis of HALOE satellite observations. HALOE measurements do not cover the polar region homogeneously over the course of the winter. Thus, to derive an early winter reference function for each of the twelve years, all available measurements were additionally used; for two winters climatological considerations were necessary. Moreover, a detailed quantification of uncertainties was performed. This study further demonstrates the interaction between meteorology and ozone loss. The connection between temperature conditions and chlorine activation, and in turn, the connection between chlorine activation and ozone loss, becomes obvious in the HALOE HCl measurements. Additionally, the degree of homogeneity of ozone loss within the vortex was shown to depend on the meteorological conditions. Results derived here are in general agreement with the results obtained by other methods for deducing polar ozone loss. Differences occur mainly owing to different time periods considered in deriving accumulated ozone loss. However, very strong ozone losses as deduced from SAOZ for January in winters 1993-1994 and 1995-1996 cannot be identified using available HALOE observations in the early winter. In general, strong accumulated ozone loss was found to occur in conjunction with a strong cold vortex containing a large volume of possible PSC existence (VPSC), whereas moderate ozone loss was found if the vortex was less strong and moderately warm. Hardly any ozone loss was calculated for very warm winters with small amounts of VPSC during the entire winter. This study supports the linear relationship between VPSC and the accumulated ozone loss reported by Rex et al. (2004) if VPSC was averaged over the entire winter period. Here, further meteorological factors controlling ozone loss were additionally identified if VPSC was averaged over the same time interval as that for which the accumulated ozone loss was deduced. A significant difference in ozone loss (of ≈36DU) was found due to the different duration of solar illumination of the polar vortex of at maximum 4 hours per day in the observed years. Further, the increased burden of aerosols in the atmosphere after the Pinatubo volcanic eruption in 1991 significantly increased the extent of chemical ozone loss.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-10-05
    Description: During the calendar years 1998-2002, 147 clear 8nm diameter particle formation events have been identified at the SMEAR I station in Värriö, northern Finland. The events have been classified in detail according to the particle formation rate, growth rate, event starting time, different trace gas concentrations and pre-existing particle concentrations as well as various meteorological conditions. The frequency of particle formation and growth events was highest during the spring months between March and May, suggesting that increasing biological activity might produce the precursor gases for particle formation. The apparent 8nm particle formation rates were around 0.1 /cm3s, and they were uncorrelated with growth rates that varied between 0.5 and 10nm/h. The air masses with clearly elevated sulphur dioxide concentrations (above 1.6ppb) came, as expected, from the direction of the Nikel and Monschegorsk smelters. Only 15 formation events can be explained by the pollution plume from these sources.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2004-09-14
    Description: Forest fire emissions have a strong impact on the concentrations of trace gases and aerosols in the atmosphere. In order to quantify the influence of boreal forest fire emissions on the atmospheric composition, the fire seasons of 1997 and 1998 are compared in this paper. Fire activity in 1998 was very strong, especially over Canada and Eastern Siberia, whereas it was much weaker in 1997. According to burned area estimates the burning in 1998 was more than six times as intense as in 1997. Based on hot spot locations derived from ATSR (Along Track Scanning Radiometer) data and official burned area data, fire emissions were estimated and their transport was simulated with a Lagrangian tracer transport model. Siberian and Canadian forest fire tracers were distinguished to investigate the transport of both separately. The fire emissions were transported even over intercontinental distances. Due to the El Niño induced meteorological situation, transport from Siberia to Canada was enhanced in 1998. Siberian fire emissions were transported towards Canada and contributed concentrations more than twice as high as those due to Canada's own CO emissions by fires. In 1998 both tracers arrive at higher latitudes over Europe, which is due to a higher North Atlantic Oscillation (NAO) index in 1998. The simulated emission plumes are compared to CMDL (Climate Monitoring and Diagnostics Laboratory) CO2 and CO data, Total Ozone Mapping Spectrometer (TOMS) aerosol index (AI) data and Global Ozone Monitoring Experiment (GOME) tropospheric NO2 and HCHO columns. All the data show clearly enhanced signals during the burning season of 1998 compared to 1997. The results of the model simulation are in good agreement with ground-based as well as satellite-based measurements.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2004-09-14
    Description: Here we present a concise and efficient algorithm to mimic the growth and sedimentation of Nitric Acid Trihydate (NAT) particles in the polar vortex in a state-of-the-art 3D chemistry transport model. The particle growth and sedimentation are calculated using the microphysical formulation of Carslaw et al. (2002). Once formed, NAT particles are transported in the model as tracers in the form of size-segregated quantities or size bins. Two different approaches were adopted for this purpose: one assuming a fixed particle number density ("FixedDens") and the other assuming a discrete set of particle diameter values ("FixedRad"). Simulations were performed for three separate 10-day periods during the 1999-2000 Arctic winter and compared to the results of an existing Lagrangian model study, which uses similar microphysics in a computationally more expensive method for the simulation of NAT particle growth. The resulting particle sizes for both our approaches compare favourably at 430K with those obtained from this previous model study, and also in-situ observations related to the size of large NAT particles. The particle growth is faster for "FixedDens" resulting in a difference in (de)nitrification by a factor of ~2 for all three simulation periods. Comparisons were made with a standard equilibrium approach and the differences in the redistribution of HNO3 were found to be substantial. For both approaches the performance of the algorithm is rather insensitive to both the number of size bins and the shape of the size distribution, and show a weak dependence on the prescribed total particle number density during the coldest period. This results in an increase of 7% for the "FixedRad" approach and 17% for the "FixedDens" approach when increasing the total particle number density by a factor of 2.5.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2004-09-13
    Description: We show that mineral dust optical depth and altitude can be retrieved from the Aqua - Advanced Infrared Radiation Sounder (AIRS) measurements. Sensitivity studies performed with a high spectral resolution radiative transfer code show that dust effect on brightness temperatures may reach about 10 Kelvins for some channels. Using a Look-Up-Table approach, we retrieve not only the 10 µm optical depth but also the altitude of Saharan dust layer, above the Atlantic Ocean, from April to September 2003. A key point of our method is its ability to retrieve dust altitude from satellite observations. The time and space distribution of the optical depth is in good agreement with the Moderate resolution Imaging Spectroradiometer (MODIS) products. Comparing MODIS and AIRS aerosol optical depths, we find that the ratio between infrared and visible optical depths decreases during transport from 0.35 to 0.22, revealing a loss in coarse particles caused by gravitational settling. The evolution of dust altitude from spring to summer is in agreement with current knowledge on transport seasonality.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2004-09-13
    Description: Future increases in the concentration of greenhouse gases and water vapour may cool the stratosphere further and increase the amount of polar stratospheric clouds (PSCs). Future Arctic PSC areas have been extrapolated from the highly significant trends 1958-2001. Using a tight correlation between PSC area and the total vortex ozone depletion and taking the decreasing amounts of ozone depleting substances into account we make empirical estimates of future ozone. The result is that Arctic ozone losses increase until 2010-2015 and decrease only slightly afterwards. However, for such a long extrapolation into the future caution is necessary. Tentatively taking the modelled decrease in the ozone trend in the future into account results in almost constant ozone depletions until 2020 and slight decreases afterwards. This approach is a complementary method of prediction to that based on the complex coupled chemistry-climate models (CCMs).
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2004-08-03
    Description: A polar stratospheric ice cloud (PSC type II) was observed by airborne lidar above Greenland on 14 January 2000. It was the unique observation of an ice cloud over Greenland during the SOLVE/THESEO 2000 campaign. Mesoscale simulations with the hydrostatic HRM model are presented which, in contrast to global analyses, are capable to produce a vertically propagating gravity wave that induces the low temperatures at the level of the PSC afforded for the ice formation. The simulated minimum temperature is ~8 K below the driving analyses and ~4.5 K below the frost point, exactly coinciding with the location of the observed ice cloud. Despite the high elevations of the Greenland orography the simulated gravity wave is not a mountain wave. Analyses of the horizontal wind divergence, of the background wind profiles, of backward gravity wave ray-tracing trajectories, of HRM experiments with reduced Greenland topography and of several diagnostics near the tropopause level provide evidence that the wave is emitted from an intense, rapidly evolving, anticyclonically curved jet stream. The precise physical process responsible for the wave emission could not be identified definitely, but geostrophic adjustment and shear instability are likely candidates. In order to evaluate the potential frequency of such non-orographic polar stratospheric cloud events, the non-linear balance equation diagnostic is performed for the winter 1999/2000. It indicates that ice-PSCs are only occasionally generated by gravity waves emanating from spontaneous adjustment.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2004-07-02
    Description: A field measurement campaign was carried out over a Dutch heathland to investigate the effect of gas-to-particle conversion and ammonium aerosol evaporation on surface/atmosphere fluxes of ammonia and related species. Continuous micrometeorological measurements of the surface exchange of NH3, SO2, HNO3 and HCl were made and are analyzed here with regard to average fluxes, deposition velocities (Vd), canopy resistances (Rc) and canopy compensation point for NH3. Gradients of SO2, HNO3 and HCl were measured with a novel wet-denuder system with online anion chromatography. Measurements of HNO3 and HCl indicate an Rc of 100 to 200 s m-1 during warm daytime periods, probably at least partly due to non-zero acid partial pressures above NH4NO3 and NH4Cl on the leaf surfaces. Although it is likely that this observation is exacerbated by the effect of the evaporation of airborne NH4+ on the gradient measurements, the findings nevertheless add to the growing evidence that HNO3 and HCl are not always deposited at the maximum rate. Ammonia (NH3) fluxes show mainly deposition, with some periods of significant daytime emission. The net exchange could be reproduced both with an Rc model (deposition fluxes only) using resistance parameterizations from former measurements, as well as with the canopy compensation point model, using parameterizations derived from the measurements. The apoplastic ratio of ammonium and hydrogen concentration (Γs=[NH4+]/[H+]) of 1200 estimated from the measurements is large for semi-natural vegetation, but smaller than indicated by previous measurements at this site.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2004-06-22
    Description: A Fresnel transform technique has been developed at Adelaide to analyse radar meteor echoes detected in the transverse mode. The genesis for this technique was the study of the structure of the scattering ionization immediately behind the head of the trail, in order to deduce the degree of fragmentation of the ablating meteoroid. The technique has been remarkably successful in not only giving insight into the fragmentation of meteoroids, but also revealing other significant features of the trails including diffusion, lateral motion of the trail during formation due to wind drift, and phase of the scattered signal in the vicinity of the head of the trail. A serendipitous outcome of the analysis is the measurement of the speed and deceleration of the meteoroid producing the trail to a precision far exceeding that available from any other method applied to transverse scatter data. Examples of the outcomes of the technique applied to meteor echoes obtained with a 54MHz narrow beam radar are presented.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2004-06-23
    Description: It is commonly believed that cumulus convection preferentially generates gravity waves with tropospheric vertical wavelengths approximately twice the depth of the convective heating. Individual cumulonimbus, however, act as short term transient heat sources (duration 10 to 30min). Gravity waves generated by such sources have broad frequency spectra and a wide range of vertical scales. The high-frequency components tend to have vertical wavelengths much greater than twice the depth of the heating. Such waves have large vertical group velocities, and are only observed for a short duration and at short horizontal distances from the convective source. At longer times and longer distances from the source the dominant wave components have short vertical wavelengths and much slower group velocities, and thus are more likely to be observed even though their contribution to the momentum flux in the upper stratosphere and mesosphere may be less than that of the high frequency waves. These properties of convectively generated waves are illustrated by a linear numerical model for the wave response to a specified transient heat source. The wave characteristics are documented through Fourier and Wavelet analysis, and implications for observing systems are discussed.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2004-04-27
    Description: As part of the OSOA (Origin and formation of Secondary Organic Aerosols) project, two intensive field campaigns were conducted in Melpitz, Germany and Hyytiälä, Finland. This paper gives an overview of the measurements made during the Hyytiälä campaign, which was held between 1 and 16 August 2001. Various instrumental techniques were used to achieve physical and chemical characterisation of aerosols and to investigate possible precursor gases. During the OSOA campaign in Hyytiälä, particle formation was observed on three consecutive days at the beginning of the campaign (1 to 3 August 2001) and on three days later on. The investigation of the meteorological situation divided the campaign into two parts. During the first three days of August, relatively cold and clean air masses from northwest passed over the station (condensation sink – CS:
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2004-03-17
    Description: A modelling study of the formation of volatile particles in a combustor exhaust has been carried out in the frame of the PartEmis European project. A kinetic model has been used in order to investigate nucleation efficiency of the H2O-H2SO4 binary mixture in the sampling system. A value for the fraction of the fuel sulphur S(IV) converted into S(VI) has been indirectly deduced from comparisons between model results and measurements. In the present study, ranges between roughly 2.5% and 6%, depending on the combustor settings and on the value assumed for the parameter describing sulphuric acid wall losses. Soot particles hygroscopicity has also been investigated as their activation is a key parameter for contrail formation. Growth factors of monodisperse particles exposed to high relative humidity (95%) have been calculated and compared with experimental results. The modelling study confirms that the growth factor increases as the soot particle size decreases.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2004-03-03
    Description: We use a genetic algorithm to construct optimal observing networks of atmospheric concentration for inverse determination of net sources. Optimal networks are those that produce a minimum in average posterior uncertainty plus a term representing the divergence among source estimates for different transport models. The addition of this last term modifies the choice of observing sites, leading to larger networks than would be chosen under the traditional estimated variance metric. Model-model differences behave like sub-grid heterogeneity and optimal networks try to average over some of this. The optimization does not, however, necessarily reject apparently difficult sites to model. Although the results are so conditioned on the experimental set-up that the specific networks chosen are unlikely to be the best choices in the real world, the counter-intuitive behaviour of the optimization suggests the model error contribution should be taken into account when designing observing networks. Finally we compare the flux and total uncertainty estimates from the optimal network with those from the 3 control case. The  3 control case performs well under the chosen uncertainty metric and the flux estimates are close to those from the optimal case. Thus the 3 findings would have been similar if minimizing the total uncertainty guided their network choice.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2004-03-25
    Description: Currently two polar orbiting satellite instruments measure CO2 concentrations in the Earth's atmosphere, while other missions are planned for the coming years. In the future such instruments might become powerful tools for monitoring changes in the atmospheric CO2 abundance and to improve our quantitative understanding of the leading processes controlling this. At the moment, however, we are still in an exploratory phase where first experiences are collected and promising new space-based measurement concepts are investigated. This study assesses the potential of some of these concepts to improve CO2 source and sink estimates obtained from inverse modelling. For this purpose the performance of existing and planned satellite instruments is quantified by synthetic simulations of their ability to reduce the uncertainty of the current source and sink estimates in comparison with the existing ground-based network of sampling sites. Our high resolution inversion of sources and sinks (at 8°x10°) allows us to investigate the variation of instrument performance in space and time and at various temporal and spatial scales. The results of our synthetic tests clearly indicate that the satellite performance increases with increasing sensitivity of the instrument to CO2 near the Earth's surface, favoring the near infra-red technique. Thermal infrared instruments, on the contrary, reach a better global coverage, because the performance in the near infrared is reduced over the oceans owing to a low surface albedo. Near infra-red sounders can compensate for this by measuring in sun-glint, which will allow accurate measurements over the oceans, at the cost, however, of a lower measurement density. Overall, the sun-glint pointing near infrared instrument is the most promising concept of those tested. We show that the ability of satellite instruments to resolve fluxes at smaller temporal and spatial scales is also related to surface sensitivity. All the satellite instruments performed relatively well over the continents resulting mainly from the larger prior flux uncertainties over land than over the oceans. In addition, the surface networks are rather sparse over land increasing the additional benefit of satellite measurements there. Globally, challenging satellite instrument precisions are needed to compete with the current surface network (about 1ppm for weekly and 8°x10° averaged SCIAMACHY columns). Regionally, however, these requirements relax considerably, increasing to 5ppm for SCIAMACHY over tropical continents. This points not only to an interesting research area using SCIAMACHY data, but also to the fact that satellite requirements should not be quantified by only a single number. The applicability of our synthetic results to real satellite instruments is limited by rather crude representations of instrument and data retrieval related uncertainties. This should receive high priority in future work.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2004-02-27
    Description: Formation of binary cluster ions from polar vapours is considered. The effect of vapour polarity on the size and composition of the critical clusters is investigated theoretically and a corrected version of classical Kelvin-Thomson theory of binary ion-induced nucleation is derived. The model predictions of the derived theory are compared to the results given by classical binary homogeneous nucleation theory and ion-induced nucleation theory. The calculations are performed in wide range of the ambient conditions for a system composed of sulfuric acid and water vapour. It is shown that dipole-charge interaction significantly decreases the size of the critical clusters, especially under the atmospheric conditions when the size of critical clusters is predicted to be small.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2004-02-27
    Description: The chemistry of peroxynitric acid (HO2NO2) and methyl peroxynitrate (CH3O2NO2)is predicted to be particularly important in the upper troposphere where temperatures are frequently low enough that these compounds do not rapidly decompose. At temperatures below 240K, we calculate that about 20% of NOy in the mid- and high-latitude upper troposphere is HO2NO2. Under these conditions, the reaction of OH with HO2NO2 is estimated to account for as much as one third of the permanent loss of hydrogen radicals. During the Tropospheric Ozone Production about the Spring Equinox (TOPSE) campaign, we used thermal dissociation laser-induced fluorescence (TD-LIF) to measure the sum of peroxynitrates (PNs HO2NO2+CH3O2NO2+PAN+PPN+...) aboard the NCAR C-130 research aircraft. We infer the sum of HO2NO2 and CH3O2NO2 as the difference between PN measurements and gas chromatographic measurements of the two major peroxy acyl nitrates, peroxy acetyl nitrate (PAN) and peroxy propionyl nitrate (PPN). Comparison with NOy and other nitrogen oxide measurements confirms the importance of HO2NO2 and CH3O2NO2 to the reactive nitrogen budget and shows that current thinking about the chemistry of these species is approximately correct. During the spring high latitude conditions sampled during the TOPSE experiment, the model predictions of the contribution of (HO2NO2+CH3O2NO2) to NOy are highly temperature dependent: on average 30% of NOy at 230K, 15% of NOy at 240K, and 5% of NOy above 250K. The temperature dependence of the inferred concentrations corroborates the contribution of overtone photolysis to the photochemistry of peroxynitric acid. A model that includes IR photolysis (J=1x10-5s-1) agreed with the observed sum of HO2NO2+CH3O2NO2 to better than 35% below 240K where the concentration of these species is largest.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2004-02-25
    Description: The potential enhancement of tropospheric column ozone values over the Tropical Atlantic Ocean on a seasonal basis by lightning is investigated using satellite derived ozone data, TRMM lightning data, ozonesonde data and NCEP reanalysis during 1998-2001. Our results show that the number of lightning flashes in Africa and South America reach a maximum during September, October and November (SON). The spatial patterns of winds in combination with lightning from West Africa, Central Africa and South America is likely responsible for enriching middle/upper troposphere ozone over the Tropical South Atlantic during SON. Moreover, lightning flashes are high in the hemisphere opposite to biomass burning during December, January, and February (DJF) and June, July and August (JJA). This pattern leads to an enrichment of ozone in the middle/upper troposphere in the Southern Hemisphere Tropics during DJF and the Northern Hemisphere Tropics during JJA. During JJA the largest numbers of lightning flashes are observed in West Africa, enriching tropospheric column ozone to the north of 5S in the absence of biomass burning. During DJF, lightning is concentrated in South America and Central Africa enriching tropospheric column ozone south of the Equator in the absence of biomass burning.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2004-03-24
    Description: The main purpose of this study is to develop a methodology for a multidisciplinary nuclear risk and vulnerability assessment, and to test this methodology through estimation of a nuclear risk to population in the Northern European countries in case of a severe accident at the nuclear risk sites. For assessment of the probabilistic risk and vulnerability, a combination of social-geophysical factors and probabilities are considered. The main focus of this paper is the description of methodology for evaluation of the atmospheric transport of radioactive releases from the risk site regions based on the long-term trajectory modeling. The suggested methodology is given from the probabilistic point of view. The main questions stated are: What are probabilities and times for radionuclide atmospheric transport to different neighbouring countries and territories in case of the hypothetical accidental release at the nuclear risk site? Which geographical territories or countries are at the highest risk from the hypothetical accidental releases? To answer these questions we suggest applying the following research tools for probabilistic atmospheric studies. First tool is atmospheric modelling to calculate multiyear forward trajectories originated over the sites. Second tool is statistical analyses to explore temporal and spatial structure of calculated trajectories and evaluate different probabilistic impact indicators: atmospheric transport pathways, airflow, fast transport, typical transport time, maximum possible impact zone, maximum reaching distance, etc. These indicators are applicable for further GIS-analysis and integration to estimate regional risk and vulnerability in case of accidental releases at the risk sites and for planning the emergency response and preparedness systems.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2004-03-23
    Description: Determining the velocity of meteoroids as they enter the Earth's atmosphere is very important since the value is fundamental in calculating the orbit of the meteoroid and hence eventually its origin. We describe early attempts at this determination and highlight problems that exist today.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2004-04-13
    Description: In a recent published paper, Generoso et al. (2003) describe a method for improving the spatial and temporal distribution of pyrogenic aerosol emission inventories. In the course of their analysis, the authors note several significant discrepancies in the seasonality of burning as observed by the Visible and Infrared Scanner (VIRS) and four other biomass burning data sets derived from satellite observations. In this commentary we explain the source of these discrepancies and clarify the origin of the VIRS observations that were used by Generoso et al.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2004-04-08
    Description: An assessment of the accuracy of OH concentrations measured in a smog chamber by a calibrated laser-induced fluorescence (LIF) instrument has been made, in the course of 9 experiments performed to study the photo-oxidation of benzene, toluene, 1,3,5-trimethylbenzene, para-xylene, ortho-cresol and ethene at the European Photoreactor facility (EUPHORE). The LIF system was calibrated via the water photolysis / ozone actinometry approach. OH concentrations were inferred from the instantaneous rate of removal of each hydrocarbon species (measured by FTIR or HPLC) via the appropriate rate coefficient for their reaction with OH, and compared with those obtained from the LIF system. Good agreement between the two approaches was found for all species with the exception of 1,3,5-trimethylbenzene, for which OH concentrations inferred from hydrocarbon removal were a factor of 3 lower than those measured by the LIF system. From the remaining 8 experiments, an overall value of 1.15±0.13 (±1σ) was obtained for [OH]LIF / [OH]Hydrocarbon Decay, compared with the estimated uncertainty in the accuracy of the water photolysis / ozone actinometry OH calibration technique of 26% (1σ).
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2004-02-25
    Description: A set of 813 lidar profiles of tropospheric aerosol and cirrus clouds extinction and depolarization observed in Rome, Italy, between February 2001 and February 2002 is analyzed and discussed. The yearly record reveals a meaningful contribution of both cirrus clouds (38%) and Saharan dust (12%) to the total optical thickness (OT) of 0.26, at 532nm. Seasonal analysis shows the planetary boundary layer (PBL) aerosols to be confined below 2km in winter and 3.8km in summer, with relevant OT shifting from 0.08 to 0.16, respectively. Cirrus clouds maximise in spring and autumn, in both cases with average OT similar to the PBL aerosols one. With the exception of winter months, Saharan dust is found to represent an important third layer mostly residing between PBL aerosols and cirrus clouds, with yearly average OT0.03. Saharan dust and cirrus clouds were detected in 20% and in 45% of the observational days, respectively. Validation of the lidar OT retrievals against collocated sunphotometer observations show very good agreement. These results represent one of the few yearly records of tropospheric aerosol vertical profiles available in the literature.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2004-02-04
    Description: The effect of aqueous versus crystalline sulfate-nitrate-ammonium tropospheric particles on global aerosol direct radiative forcing is assessed. A global three-dimensional chemical transport model predicts sulfate, nitrate, and ammonium aerosol mass. An aerosol thermodynamics model is called twice, once for the upper side (US) and once for lower side (LS) of the hysteresis loop of particle phase. On the LS, the sulfate mass budget is 40% solid ammonium sulfate, 12% letovicite, 11% ammonium bisulfate, and 37% aqueous. The LS nitrate mass budget is 26% solid ammonium nitrate, 7% aqueous, and 67% gas-phase nitric acid release due to increased volatility upon crystallization. The LS ammonium budget is 45% solid ammonium sulfate, 10% letovicite, 6% ammonium bisulfate, 4% ammonium nitrate, 7% ammonia release due to increased volatility, and 28% aqueous. LS aerosol water mass partitions as 22% effloresced to the gas-phase and 78% remaining as aerosol mass. The predicted US/LS global fields of aerosol mass are employed in a Mie scattering model to generate global US/LS aerosol optical properties, including scattering efficiency, single scattering albedo, and asymmetry parameter. Global annual average LS optical depth and mass scattering efficiency are, respectively, 0.023 and 10.7 m2 (g SO4-2)-1, which compare to US values of 0.030 and 13.9 m2 (g SO4-2)-1. Radiative transport is computed, first for a base case having no aerosol and then for the two global fields corresponding to the US and LS of the hysteresis loop. Regional, global, seasonal, and annual averages of top-of-the-atmosphere aerosol radiative forcing on the LS and US (FL and FU, respectively, in W m-2) are calculated. Including both anthropogenic and natural emissions, we obtain global annual averages of FL=-0.750, FU=-0.930, and DFU,L=24% for full sky calculations without clouds and FL=-0.485, FU=-0.605, and DFU,L=25% when clouds are included. Regionally, DFU,L=48% over the USA, 55% over Europe, and 34% over East Asia. Seasonally, DFU,L varies from 18% in DJF to 75% in SON over the USA. The global annual average contribution from anthropogenic aerosol is FL=-0.314 and FU=-0.404, which yield normalized direct radiative forcings (G) of GL=-205 W (g SO4-2)-1 and GU=-264 W (g SO4-2)-1.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2004-02-17
    Description: The interaction of aerosol particles composed of the protein bovine serum albumin (BSA) and the inorganic salts sodium chloride and ammonium nitrate with water vapor has been investigated by hygroscopicity tandem differential mobility analyzer (H-TDMA) experiments complemented by transmission electron microscopy (TEM) and Köhler theory calculations (100-300nm particle size range, 298K, 960hPa). BSA was chosen as a well-defined model substance for proteins and other macromolecular compounds, which constitute a large fraction of the water-soluble organic component of air particulate matter. Pure BSA particles exhibited deliquescence and efflorescence transitions at 35% relative humidity () and a hygroscopic diameter increase by up to 10% at 95% in good agreement with model calculations based on a simple parameterisation of the osmotic coefficient. Pure NaCl particles were converted from near-cubic to near-spherical shape upon interaction with water vapor at relative humidities below the deliquescence threshold (partial surface dissolution and recrystallisation), and the diameters of pure NH4NO3 particles decreased by up to 10% due to chemical decomposition and evaporation. Mixed NaCl-BSA and NH4NO3-BSA particles interacting with water vapor exhibited mobility equivalent diameter reductions of up to 20%, depending on particle generation, conditioning, size, and chemical composition (BSA dry mass fraction 10-90%). These observations can be explained by formation of porous agglomerates (envelope void fractions up to 50%) due to ion-protein interactions and electric charge effects on the one hand, and by compaction of the agglomerate structure due to capillary condensation effects on the other. The size of NH4NO3-BSA particles was apparently also influenced by volatilisation of NH4NO3, but not as much as for pure salt particles, i.e. the protein inhibited the decomposition of NH4NO3 or the evaporation of the decomposition products NH3 and HNO3. The efflorescence threshold of NaCl-BSA particles decreased with increasing BSA dry mass fraction, i.e. the protein inhibited the formation of salt crystals and enhanced the stability of supersaturated solution droplets. The H-TDMA and TEM results indicate that the protein was enriched at the surface of the mixed particles and formed an envelope, which inhibits the access of water vapor to the particle core and leads to kinetic limitations of hygroscopic growth, phase transitions, and microstructural rearrangement processes. The Köhler theory calculations performed with different types of models demonstrate that the hygroscopic growth of particles composed of inorganic salts and proteins can be efficiently described with a simple volume additivity approach, provided that the correct dry solute mass equivalent diameter and composition are known. A parameterisation for the osmotic coefficient of macromolecular substances has been derived from an osmotic pressure virial equation. For its application only the density and molar mass of the substance have to be known or estimated, and it is fully compatible with traditional volume additivity models for salt mixtures.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2004-02-13
    Description: In situ measurements of the partitioning of aerosol particles within cirrus clouds were used to investigate aerosol-cloud interactions in ice clouds. The number density of interstitial aerosol particles (non-activated particles in between the cirrus crystals) was compared to the number density of cirrus crystal residuals. The data was obtained during the two INCA (Interhemispheric Differences in Cirrus Properties from Anthropogenic Emissions) campaigns, performed in the Southern Hemisphere (SH) and Northern Hemisphere (NH) midlatitudes. Different aerosol-cirrus interactions can be linked to the different stages of the cirrus lifecycle. Cloud formation is linked to positive correlations between the number density of interstitial aerosol (Nint) and crystal residuals (Ncvi), whereas the correlations are smaller or even negative in a dissolving cloud. Unlike warm clouds, where the number density of cloud droplets is positively related to the aerosol number density, we observed a rather complex relationship when expressing Ncvi as a function of Nint for forming clouds. The data sets are similar in that they both show local maxima in the Nint range 100 to 200cm, where the SH- maximum is shifted towards the higher value. For lower number densities Nint and Ncvi are positively related. The slopes emerging from the data suggest that a tenfold increase in the aerosol number density corresponds to a 3 to 4 times increase in the crystal number density. As Nint increases beyond the ca. 100 to 200cm, the mean crystal number density decreases at about the same rate for both data sets. For much higher aerosol number densities, only present in the NH data set, the mean Ncvi remains low. The situation for dissolving clouds allows us to offer two possible, but at this point only speculative, alternative interactions between aerosols and cirrus: evaporating clouds might be associated with a source of aerosol particles, or air pollution (high aerosol number density) might retard ice particle evaporation rates.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2004-01-23
    Description: We have compared satellite and balloon observations of methane (CH4) and hydrogen fluoride (HF) during the Arctic winter 1999/2000 with results from the MA-ECHAM4 middle atmospheric general circulation model (GCM). For this purpose, the meteorology in the model was nudged towards ECMWF analyses. This nudging technique is shown to work well for this middle atmospheric model, and offers good opportunities for the simulation of chemistry and transport processes. However, caution must be used inside the polar vortex, particularly late in the winter. The current study focuses on transport of HF and CH4, initialized with satellite measurements from the HALOE instrument aboard the UARS satellite. We have compared the model results with HALOE data and balloon measurements throughout the winter, and analyzed the uncertainties associated with tracer initialization, boundary conditions and the passive tracer assumption. This comparison shows that the model represents some aspects of the Arctic vortex well, including relatively small-scale features. However, while profiles outside the vortex match observations well, the model underestimates HF and overestimates CH4 concentrations inside the vortex, particularly in the middle stratosphere. This problem is also evident in a comparison of vortex descent rates based upon vortex average tracer profiles from MA-ECHAM4, and various observations. This could be due to an underestimate of diabatic subsidence in the model, or due to too much mixing between vortex and non-vortex air.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2004-01-23
    Description: The possibility to calculate linear-source receptor relationships for the transport of atmospheric trace substances with a Lagrangian particle dispersion model (LPDM) running in backward mode is shown and presented with many tests and examples. This mode requires only minor modifications of the forward LPDM. The derivation includes the action of sources and of any first-order processes (transformation with prescribed rates, dry and wet deposition, radioactive decay, etc.). The backward mode is computationally advantageous if the number of receptors is less than the number of sources considered. The combination of an LPDM with the backward (adjoint) methodology is especially attractive for the application to point measurements, which can be handled without artificial numerical diffusion. Practical hints are provided for source-receptor calculations with different settings, both in forward and backward mode. The equivalence of forward and backward calculations is shown in simple tests for release and sampling of particles, pure wet deposition, pure convective redistribution and realistic transport over a short distance. Furthermore, an application example explaining measurements of Cs-137 in Stockholm as transport from areas contaminated heavily in the Chernobyl disaster is included.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2004-01-26
    Description: A new modelling study of the role of transition metal ions on cloud chemistry has been performed. Developments of the Model of Multiphase Cloud Chemistry (M2C2; Leriche et al., 2001) are described, including the transition metal ions reactivity emission/deposition processes and variable photolysis in the aqueous phase. The model is then applied to three summertime scenarios under urban, remote and marine conditions, described by Ervens et al. (2003). Chemical regimes in clouds are analyzed to understand the role of transition metal ions on cloud chemistry and especially, on HxOy chemistry, which consequently influences the sulphur and the VOCs chemistry in droplets. The ratio of Fe(II)/Fe(III) exhibits a diurnal variation with values in agreement with the available measurements of Fe speciation. In the urban case, sensitivity tests with and without TMI chemistry, show an enhancement of OH concentration in the aqueous phase when TMI chemistry is considered.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2004-01-22
    Description: Ambient continental-rural fine aerosol (K-puszta, Hungary, PM1.5) was sampled on quartz fibre filters in winter and summer 2001. Water-soluble matter (WSM) was extracted in MilliQ-water, and, in a second step, solid phase extraction was used to isolate the less hydrophilic fraction (ISOM) of the water-soluble organic matter (WSOM) from remaining inorganic salts and "most" hydrophilic organic matter (MHOM). This approach allowed ISOM, which constitutes the major fraction of WSOM, to be isolated from ambient aerosols and investigated in pure form. Hygroscopic properties of both WSM and ISOM extracts as well as of aquatic reference fulvic and humic acids were investigated using a Hygroscopicity Tandem Differential Mobility Analyser (H-TDMA). ISOM deliquesced between 30% and 60% relative humidity (RH), and hygroscopic growth factors at 90% RH ranged from 1.08 to 1.17. The hygroscopicity of ISOM is comparable to secondary organic aerosols obtained in smog chamber experiments, but lower than the hygroscopicity of highly soluble organic acids. The hygroscopic behaviour of investigated fulvic and humic acids had similarities to ISOM, but hygroscopic growth factors were slightly smaller and deliquescence was observed at higher RH (75-85% and 85-95% RH for fulvic acid and humic acid, respectively). These differences probably originate from larger average molecular mass and lower solubility of fulvic and humic acids. Inorganic composition data, measured ISOM hygroscopicity, and a presumed value for the hygroscopicity of the small remaining MHOM fraction were used to predict hygroscopic growth of WSM extracts. Good agreement between model prediction and measured water uptake was observed with differences (by volume) ranging from +1% to -18%. While deliquescence properties of WSM extracts were mainly determined by the inorganic salts (42-53 wt % of WSM), the WSOM accounted for a significant fraction of particulate water. At 90% RH, according to model predictions and measurements, about 80-62% of particulate water in the samples are associated with inorganic salts and about 20-38% with WSOM. The relative contributions of both distinguished WSOM fractions, ISOM and MHOM, remains uncertain since MHOM was not available in isolated form, but the results suggest that the less abundant MHOM is also important due to its presumably larger hygroscopicity.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2002-10-27
    Description: An analysis of a pollution episode in an urban atmosphere, using a complex model system is presented. The nested atmosphere-chemistry model system simulates the atmospheric conditions during a one week measurement campaign, called FLUMOB, in July 1994 in Berlin-Brandenburg, Germany. The analysis shows that naturally emitted hydrocarbons played the dominant role in the ozone formation in the investigated area. The composition of non-methane volatile organic compounds was made up to 70--80% by biogenically emitted hydrocarbons. During the analysed case, ozone formation was sensitive to hydrocarbon concentrations so that the ozone production was limited by the availability of hydrocarbons and thus especially by the amount which was biogenically emitted. Furthermore, it is shown that the FLUMOB episode was influenced by elevated concentrations of ozone in the free troposphere. In contrast to previous analyses, the importance of ozone produced outside of Europe is emphasized. In spite of the stagnant high pressure situation which occurred during the FLUMOB episode Germany was significantly influenced by long-range transport of ozone. This transport also influenced near surface ozone concentrations.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2002-10-28
    Description: The availability of near-real time ozone observations from satellite instruments has recently initiated the development of ozone data assimilation systems. In this paper we present the results of an ozone assimilation and forecasting system, in use since Autumn 2000. The forecasts are produced by an ozone transport and chemistry model, driven by the operational medium range forecasts of ECMWF. The forecasts are initialised with realistic ozone distributions, obtained by the assimilation of near-real time total column observations of the GOME spectrometer on ERS-2. The forecast error diagnostics demonstrate that the system produces meaningful total ozone forecasts for up to 6 days in the extratropics. In the tropics meaningful forecasts of the small anomalies are restricted to shorter periods of about two days with the present model setup. It is demonstrated that important events, such as the breakup of the South Pole ozone hole and mini-hole events above Europe can be successfully predicted 4--5 days in advance.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2002-10-29
    Description: A `virtual' disjunct eddy covariance (vDEC) device was tested with field measurements of biogenic VOC fluxes at a subalpine forest site in the Rocky Mountains of the USA. A PTR-MS instrument was used as the VOC sensor. Daily peak emission fluxes of 2-methyl-3-buten-2-ol (MBO), methanol, acetone and acetaldehyde were around 1.5, 1, 0.8 and 0.4 mg m-2 h-1, respectively. High pass filtering due to long sampling lines was investigated in laboratory experiments, and suggested that VOC losses in PTFA lines are generally governed by diffusion laws. Memory effects and surface reactions did not seem to play a dominant role. Model estimates of MBO fluxes compared well with measured fluxes. The results also suggest that latent heat and sensible heat fluxes are reasonably well correlated with VOC fluxes and could be used to predict variations in VOC emissions. The release of MBO, methanol, acetone and acetaldehyde resulted in significant change of tropospheric oxidant levels and a 10--40% increase in ozone levels, as inferred from a photochemical box model. We conclude that vDEC with a PTR-MS instrument is a versatile tool for simultaneous field analysis of multiple VOC fluxes.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2002-09-05
    Description: The impact of multiphase reactions involving nitrogen dioxide (NO2) and aromatic compounds was simulated in this study. A mechanism (CAPRAM 2.4, MODAC Mechanism) was applied for the aqueous phase reactions, whereas RACM was applied for the gas phase chemistry. Liquid droplets were considered as monodispersed with a mean radius of 0.1 µm and a liquid content (LC) of 50 µg m-3. The multiphase mechanism has been further extended to the chemistry of aromatics, i.e. reactions involving benzene, toluene, xylene, phenol and cresol have been added. In addition, reaction of NO2 with dissociated hydroxyl substituted aromatic compounds has also been implemented. These reactions proceed through charge exchange leading to nitrite ions and therefore to nitrous acid formation. The strength of this source was explored under urban polluted conditions. It was shown that it may increase gas phase HONO levels under some conditions and that the extent of this effect is strongly pH dependent. Especially under moderate acidic conditions (i.e. pH above 4) this source may represent more than 75% of the total HONO/NO2 - production rate, but this contribution drops down close to zero in acidic droplets (as those often encountered in urban environments).
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2002-10-29
    Description: The efficiency of gas transport to the free and upper troposphere in convective clouds is investigated in an axisymmetric dynamic cloud model with detailed microphysics. In particular, we examine the sensitivity of gas transport to the treatment of gas uptake by different ice hydrometeors. Two parameters are used to describe this uptake. The gas retention coefficient defines the fraction of dissolved gas that is retained in an ice particle upon freezing, which includes also the riming process. We also define a gas burial efficiency defining the amount of gas entrapped in ice crystals growing by vapour diffusion. Model calculations are performed for continental and maritime clouds using a complete range of gas solubilities, retention coefficients and burial efficiencies. The results show that the magnitude of the gas retention coefficient is much more important for gas transport in maritime clouds than in continental clouds. The cause of this difference lies in the different microphysical processes dominating the formation and evolution of hydrometeors in the two cloud types. For highly soluble gases, the amount of gas transported to the free troposphere in maritime clouds falls approximately linearly by a factor of 12 as the retention coefficient is varied between 0 and 1. Gas transport is relatively insensitive to the magnitude of the gas burial efficiency. However, the burial efficiency strongly controls the concentration of trace gases inside anvil ice crystals, which subsequently form cirrus clouds.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2002-08-30
    Description: The nucleation of NAD and NAT from HNO3/H2O and HNO3/H2SO4/H2O solution droplets is investigated both theoretically and experimentally with respect to the formation of polar stratospheric clouds (PSCs). Our analysis shows that homogeneous NAD and NAT nucleation from liquid aerosols is insufficient to explain the number densities of large nitric acid containing particles recently observed in the Arctic stratosphere. This conclusion is based on new droplet freezing experiments employing optical microscopy combined with Raman spectroscopy. The homogeneous nucleation rate coefficients of NAD and NAT in liquid aerosols under polar stratospheric conditions derived from the experiments are 〈 2 x 10-5 cm-3 s-1 and 〈 8 x 10-2 cm-3 s-1, respectively. These nucleation rate coefficients are smaller by orders of magnitude than the value of ~103 cm-3 s-1 used in a recent denitrification modelling study that is based on a linear extrapolation of laboratory nucleation data to stratospheric conditions (Tabazadeh et al., Science, 291, 2591--2594, 2001). We show that this linear extrapolation is in disagreement with thermodynamics and with experimental data and, therefore, must not be used in microphysical models of PSCs. Our analysis of the experimental data yields maximum hourly production rates of nitric acid hydrate particles per cm3 of air of about 3 x 10-10 cm-3 (air) h-1 under polar stratospheric conditions. Assuming PSC particle production to proceed at this rate for two months we arrive at particle number densities of 〈 5 x 10-7 cm-3, much smaller than the value of ~10-4 cm-3 reported in recent field observations. In addition, the nitric acid hydrate production rate inferred from our data is much smaller than that required to reproduce the observed denitrification in the modelling study mentioned above. This clearly shows that homogeneous nucleation of NAD and NAT from liquid supercooled ternary solution aerosols cannot explain the observed polar denitrification.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2002-09-10
    Description: The UV-visible absorption spectrum of gaseous IONO2 has been measured over the wavelength range 245--415 nm using the technique of laser photolysis with time-resolved UV-visible absorption spectroscopy. IONO2 was produced in situ in the gas phase by laser flash photolysis of NO2/CF3I/N2 mixtures. Post flash spectra were deconvolved to remove contributions to the observed absorption from other reactant and product species. The resulting spectrum attributed to IONO2 consists of several overlapping broad absorption bands. Assuming a quantum yield of unity for IONO2 photolysis, model calculations show that during sunlit hours at noon, 53° N, the first order solar photolysis rate coefficient (J value) for IONO2 is 4.0 x 10-2 s-1.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2002-09-20
    Description: The partitioning of nitrogen oxides between ice and air is of importance to the ozone budget in the upper troposphere. In the present study, adsorption of nitrogen oxides on ice was investigated at atmospheric pressure using a chromatographic technique with radioactively labelled nitrogen oxides at low concentrations. The measured retentions solely depended on molecular adsorption and were not influenced by dimerisation, formation of encapsulated hydrates on the ice surface, dissociation of the acids, nor by migration into a quasi-liquid layer or grain boundaries. Based on the chromatographic retention and the model of thermo-chromatography, the standard adsorption enthalpy of -20 kJ mol-1 for NO, -22kJ mol-1 for NO2, -30kJ mol-1 for peroxyacetyl nitrate, -32kJ mol-1 for HON} and -44 kJ mol-1 for HNO3 was calculated. To perform those calculations within the model of thermo-chromatography, the standard adsorption entropy was calculated based on statistical thermodynamics. In this work, two different choices of standard states were applied, and consequently different values of the standard adsorption entropy, of either between -39 kJ mol-1 and -45kJ mol-1, or -164 kJ mol-1 and -169 kJ mol-1 for each nitrogen oxide were derived. The standard adsorption enthalpy was identical for both standard adsorption entropies and thus shown to be independent of the choice of standard state. A brief outlook on environmental implications of our findings indicates that adsorption on ice might be an important removal process of HNO3. In addition, it might be of some importance for HONO and peroxyacetyl nitrate and irrelevant for NO and NO2.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2002-12-17
    Description: A tracer model, DREAM (the Danish Rimpuff and Eulerian Accidental release Model), has been developed for modelling transport, dispersion and deposition (wet and dry) of radioactive material from accidental releases, as the Chernobyl accident. The model is a combination of a Lagrangian model, that includes the near source dispersion, and an Eulerian model describing the long-range transport. The performance of the transport model has previously been tested within the European Tracer Experiment, ETEX, which included transport and dispersion of an inert, non-depositing tracer from a controlled release. The focus of this paper is the model performance with respect to the total deposition of  137Cs, 134Cs and 131I from the Chernobyl accident, using different relatively simple and comprehensive parameterizations for dry- and wet deposition. The performance, compared to measurements, of using different combinations of two different wet deposition parameterizations and three different parameterizations of dry deposition has been evaluated, using different statistical tests. The best model performance, compared to measurements, is obtained when parameterizing the total deposition combined of a simple method for dry deposition and a subgrid-scale averaging scheme for wet deposition based on relative humidities. The same major conclusion is obtained for all the three different radioactive isotopes and using two different deposition measurement databases. Large differences are seen in the results obtained by using the two different parameterizations of wet deposition based on precipitation rates and relative humidities, respectively. The parameterization based on subgrid-scale averaging is, in all cases, performing better than the parameterization based on precipitation rates. This indicates that the in-cloud scavenging process is more important than the below cloud scavenging process for the submicron particles and that the precipitation rates are relatively uncertain in the meteorological model compared to the relative humidity. Relatively small differences are, however, seen in the statistical tests between the three different parameterizations of dry deposition.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2002-11-28
    Description: The relationship between nucleation events and spectral solar irradiance was analysed using two years of data collected at the Station for Measuring Forest Ecosystem-Atmosphere Relations (SMEAR II) in Hyytiälä, Finland. We analysed the data in two different ways. In the first step we calculated ten nanometer average values from the irradiance measurements between 280 and 580 nm and explored if any special wavelengths groups showed higher values on event days compared to a spectral reference curve for all the days for 2 years or to reference curves for every month. The results indicated that short wavelength irradiance between 300 and 340 nm is higher on event days in winter (February and March) compared to the monthly reference graph but quantitative much smaller than in spring or summer. By building the ratio between the average values of different event classes and the yearly reference graph we obtained peaks between 1.17 and 1.6 in the short wavelength range (300--340 nm). In the next step we included number concentrations of particles between 3 and 10 nm and calculated correlation coefficients between the different wavelengths groups and the particles. The results were quite similar to those obtained previously; the highest correlation coefficients were reached for the spectral irradiance groups 3--5 (300--330 nm) with average values for the single event classes around 0.6 and a nearly linear decrease towards higher wavelengths groups by 30%. Both analyses indicate quite clearly that short wavelength irradiance between 300 and 330 or 340 nm is the most important solar spectral radiation for the formation of newly formed aerosols. In the end we introduce a photochemical mechanism as one possible pathway how short wavelength irradiance can influence the formation of SOA by calculating the production rate of excited oxygen. This mechanism shows in which way short wavelength irradiance can influence the formation of new particles even though the absolute values are one to two magnitudes smaller compared to irradiance between 400 and 500 nm.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2002-07-10
    Description: Turbulent fluxes of carbonyl sulfide (COS) and carbon disulfide (CS2) were measured over a spruce forest in Central Germany using the relaxed eddy accumulation (REA) technique. A REA sampler was developed and validated using simultaneous measurements of CO2 fluxes by REA and by eddy correlation. REA measurements were conducted during six campaigns covering spring, summer, and fall between 1997 and 1999. Both uptake and emission of COS and CS2 by the forest were observed, with deposition occurring mainly during the sunlit period and emission mainly during the dark period. On the average, however, the forest acts as a sink for both gases. The average fluxes for COS and CS2 are  -93 ± 11.7 pmol m-2 s-1 and  -18 ± 7.6 pmol m-2 s-1, respectively. The fluxes of both gases appear to be correlated to photosynthetically active radiation and to the CO2 and H2O fluxes, supporting the idea that the air-vegetation exchange of both gases is controlled by stomata. An uptake ratio COS/CO2 of 10 ± 1.7 pmol μmol-1 has been derived from the regression line for the correlation between the COS and CO2 fluxes. This uptake ratio, if representative for the global terrestrial net primary production, would correspond to a sink of 2.3 ± 0.5 Tg COS yr-1.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2002-06-06
    Description: Uptake of HOBr on sea salt aerosol, sea salt brine or ice is believed to be a key process providing a source of photolabile bromine (Br2) and sustaining ozone depletion cycles in the Arctic troposphere. In the present study, uptake of HOBr on sodium bromide (NaBr) aerosol particles was investigated at an extremely low HOBr concentration of 300 cm-3 using the short-lived radioactive isotopes 83-86Br. Under these conditions, at maximum one HOBr molecule was taken up per particle. The rate of uptake was clearly limited by the mass accommodation coefficient, which was calculated to be 0.6 ± 0.2. This value is a factor of 10 larger than estimates used in earlier models. The atmospheric implications are discussed using the box model "MOCCA'', showing that the increase of the accommodation coefficient of HOBr by a factor of 10 only slightly affects net ozone loss, but significantly increases chlorine release.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2002-06-12
    Description: Aerosol variability is examined as function of particle size for data collected over the Northern Indian Ocean in February 1999 as part of the INDOEX experiment. It was found that for particles believed to be of terrestrial or oceanic origin, the variability correlated with the average number concentration. For particles that are thought to be formed and grow in the atmosphere through coagulation and condensation an anticorrelation was observed, the minimum in variability coinciding with the maximum in the number concentration. Three altitude ranges were examined (0--1, 4--8 and 8--13 km) and the minimum in variability was found to occur at lower particle sizes in the free troposphere (0.065 mm) than in the boundary layer (0.165 mm). The observed variability has been compared to that generated by a numerical model in order to determine the relative importance of the physical processes. Modelled variability of 0.02 mm particles caused by nucleation was not observed in the measurements. A previously derived empirical relationship for aerosol residence time was compared with the measured variability as a function of bin size. The aerosol variability / residence time relationship was characterised by a coefficient (b) at all altitudes and for both correlating and anticorrelating regimes. By combining the derived coefficient with the model predicted lifetime for 0.020 mm particles we estimated residence times and ages as a function of particle size and altitude. General agreement was found with previous estimates of aerosol residence time. In the upper atmosphere aerosols of 0.065 mm in size have residence times of approximately 1 month and can be transported on a hemispheric scale. The same size aerosol has a lifetime one order of magnitude less in the boundary layer and therefore will not be transported far from the source regions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2002-07-31
    Description: New particle formation during the oxidation of a- and b-pinene (C10H16) by ozone, OH and NO3 was studied by measuring the particle size distributions with a scanning mobility particle sizer (TSI 3936). The results indicate a drastically higher nucleation potential of the ozonolysis than in the reaction with either OH or NO3. On the contrary, the contribution of the individual oxidation reactions to form new aerosol volume was found to depend on the location of the carbon double bond to be oxidised: for the endocyclic a-pinene reactions the ozonolysis contributed mostly to the aerosol volume yield, whereas for the exocyclic  b-pinene reactions the oxidation by O3, OH and NO3 yielded a similar aerosol volume. In a second part of this study the influence of water vapour on the nucleation in all three possible oxidation routes was examined. The observations revealed only an effect of water vapour during the ozonolysis reactions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2003-12-05
    Description: Single wavelength polarization lidar observations collected at Mt. Cimone (44.2º N, 10.7º E, 1870 m a.s.l.) during the June 2000 MINATROC campaign are analyzed to derive tropospheric profiles of aerosol extinction, depolarization, surface area and volume. Lidar retrievals for the 2170-2245 m level are compared to the same variables as computed from in situ measurements of particles size distributions, performed at the mountain top Station (2165 m a.s.l.) by a differential mobility analyzer (DMA) and an optical particle counter (OPC). A sensitivity analysis of this closure experiment shows that mean relative differences between the backscatter coefficients obtained by the two techniques undergo a sharp decrease when hygroscopic growth to ambient humidity is considered for the DMA dataset, otherwise representative of dry aerosols. Minimization of differences between lidar and size distribution-derived backscatter coefficients allowed to find values of the "best" refractive index, specific to each measurement. These results show the refractive index to increase for air masses proceeding from Africa and Western Europe. Lidar depolarization was observed to minimize mainly in airmasses proceeding from Western Europe, thus indicating a spherical, i.e. liquid nature for such aerosols. Conversely, African, Mediterranean and East Europe aerosol showed a larger depolarizing fraction, mainly due to coexisting refractory and soluble fractions. The analysis shows average relative differences between lidar and in-situ observations of 5% for backscatter, 36% for extinction 41% for surface area and 37% for volume. These values are well within the expected combined uncertainties of the lidar and in situ retrievals. Average differences further decrease during the Saharan dust transport event, when a lidar signal inversion model considering non-spherical scatterers is employed. The quality of the closure obtained between particle counter and lidar-derived aerosol surface area and volume observations constitutes a validation of the technique adopted to retrieve such aerosol properties on the basis of single-wavelength lidar observations.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2003-11-21
    Description: Measurements of aerosol optical properties (aerosol optical depth, scattering and backscattering coefficients) have been conducted at two ground-based sites in Northern Greece, Ouranoupolis (40° 23' N, 23° 57' E, 170 m a.s.l.) and Thessaloniki (40° 38' N, 22° 57' E, 80 m a.s.l.), between 1999 and 2002. The frequency distributions of the observed parameters have revealed the presence of individual modes of high and low values, indicating the influence from different sources. At both sites, the mean aerosol optical depth at 500 nm was 0.23. Values increase considerably during summer when they remain persistently between 0.3 and 0.5, going up to 0.7-0.8 during specific cases. The mean value of 65±40 Mm-1 of the particle scattering coefficient at 550 nm reflects the impact of continental pollution in the regional boundary layer. Trajectory analysis has shown that higher values of aerosol optical depth and the scattering coefficient are found in the east sector (former Soviet Union countries, eastern Balkan countries), whereas cleaner conditions are found for the NW direction. The influence of Sahara dust events is clearly reflected in the Ångström exponents. About 45-60% of the observed diurnal variation of the optical properties was attributed to the growth of aerosols with humidity, while the rest of the variability is in phase with the evolution of the sea-breeze cell. The contribution of local pollution is estimated to contribute 35±10% to the average aerosol optical depth at the Thessaloniki site during summer. Finally, the aerosol scale height (aerosol optical depth divided by scattering coefficient) was found to be related to the height of the boundary layer with values between 0.5-1 km during winter and up to 2.5-3 km during summer.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2003-11-03
    Description: A multi-year field measurement analysis of the characteristics and direct radiative effect of aerosols at the Southern Great Plains (SGP) central facility of the Atmospheric Radiation Measurement (ARM) Program is presented. Inter-annual mean and standard deviation of submicrometer scattering fraction (at 550 nm) and Ångström exponent å (450 nm, 700 nm) at the mid-latitude continental site are indicative of the scattering dominance of fine mode aerosol particles, being 0.84±0.03 and 2.25±0.09, respectively. We attribute the diurnal variation of submicron aerosol concentration to coagulation, photochemistry and the evolution of the boundary layer. Precipitation does not seem to play a role in the observed afternoon maximum in aerosol concentration. Submicron aerosol mass at the site peaks in the summer (12.1±6.7mg m-3), with the summer value being twice that in the winter. Of the chemically analyzed ionic components (which exclude carbonaceous aerosols), SO4= and NH4+ constitute the dominant species at the SGP seasonally, contributing 23-30% and 9-12% of the submicron aerosol mass, respectively. Although a minor species, there is a notable rise in NO3- mass fraction in winter. We contrast the optical properties of dust and smoke haze. The single scattering albedo w0 shows the most remarkable distinction between the two aerosol constituents. We also present aircraft measurements of vertical profiles of aerosol optical properties at the site. Annually, the lowest 1.2 km contributes 70% to the column total light scattering coefficient. Column-averaged and surface annual mean values of hemispheric backscatter fraction (at 550 nm), w0 (at 550 nm) and å (450 nm, 700 nm) agree to within 5% in 2001. Aerosols produce a net cooling (most pronounced in the spring) at the ARM site
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2003-10-31
    Description: A global 3-dimensional chemistry/transport model able to describe O3, NOx, Volatile Organic Compounds (VOC), sulphur and NH3 chemistry has been extended to simulate the temporal and spatial distribution of primary and secondary carbonaceous aerosols in the troposphere focusing on Secondary Organic Aerosol (SOA) formation. A number of global simulations have been performed to determine a possible range of annual global SOA production and investigate uncertainties associated with the model results. The studied uncertainties in the SOA budget have been evaluated to be in decreasing importance: the potentially irreversible sticking of the semi-volatile compounds on aerosols, the enthalpy of vaporization of these compounds, the partitioning of SOA on non-carbonaceous aerosols, the conversion of aerosols from hydrophobic to hydrophilic, the emissions of primary carbonaceous aerosols, the chemical fate of the first generation products and finally the activity coefficient of the condensable species. The large uncertainties associated with the emissions of VOC and the adopted simplification of chemistry have not been investigated in this study. Although not all sources of uncertainties have been investigated, according to our calculations, the above factors within the experimental range of variations could result to an overall uncertainty of about a factor of 20 in the global SOA budget. The global annual SOA production from biogenic VOC might range from 2.5 to 44.5 Tg of organic matter per year, whereas that from anthropogenic VOC ranges from 0.05 to 2.62 Tg of organic matter per year. These estimates can be considered as a lower limit, since partitioning on coarse particles like nitrate, dust or sea-salt, together with the partitioning and the dissociation of the semi-volatile products in aerosol water has been neglected. Comparison of model results to observations, where available, shows a better agreement for the upper budget estimates than for the lower ones.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2003-10-31
    Description: The MINOS (Mediterranean INtensive Oxidant Study) campaign was an international, multi-platform field campaign to measure long-range transport of air-pollution and aerosols from South East Asia and Europe towards the Mediterranean basin during August 2001. High pollution events were observed during this campaign. For the Mediterranean region enhanced tropospheric nitrogen dioxide (NO2) and formaldehyde (HCHO), which are precursors of tropospheric ozone (O3), were detected by the satellite based GOME (Global Ozone Monitoring Experiment) instrument and compared with airborne in situ measurements as well as with the output from the global 3D photochemistry-transport model MATCH-MPIC (Model of Atmospheric Transport and CHemistry - Max Planck Institute for Chemistry). The increase of pollution in that region leads to severe air quality degradation with regional and global implications.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2003-10-31
    Description: We have used a 3D chemistry transport model to evaluate the transport of HF and CH4 in the stratosphere during the Arctic winter of 1999/2000. Several model experiments were carried out with the use of a zoom algorithm to investigate the effect of different horizontal resolutions. Balloon-borne and satellite-borne observations of HF and CH4 were used to test the model. In addition, air mass descent rates within the polar vortex were calculated and compared to observations. Outside the vortex the model results agree well with the observations, but inside the vortex the model underestimates the observed vertical gradient in HF and CH4, even when the highest available resolution (1º x 1º) is applied. The calculated diabatic descent rates agree with observations above potential temperature levels of 450 K. These model results suggest that too strong mixing through the vortex edge could be a plausible cause for the model discrepancies, associated with the calculated mass fluxes, although other reasons are also discussed. Based on our model experiments we conclude that a global 6º x 9º resolution is too coarse to represent the polar vortex, whereas the higher resolutions, 3º x 2º and 1º x 1º, yield similar results, even with a 6º x 9º resolution in the tropical region.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2003-10-31
    Description: A detailed study of the levels, the temporal and diurnal variability of the main compounds involved in the biogenic sulfur cycle was carried out in Crete (Eastern Mediterranean) during the Mediterranean Intensive Oxidant Study (MINOS) field experiment in July-August 2001. Intensive measurements of gaseous dimethylsulfide (DMS), dimethylsulfoxide (DMSO), sulfur dioxide (SO2), sulfuric (H2SO4) and methanesulfonic acids (MSA) and particulate sulfate (SO42-) and methanesulfonate (MS-) have been performed during the campaign. Dimethylsulfide (DMS) levels ranged from 2.9 to 136 pmol·mol-1 (mean value of 21.7 pmol·mol-1) and showed a clear diurnal variation with daytime maximum. During nighttime DMS levels fall close or below the detection limit of 2 pmol·mol-1. Concurrent measurements of OH and NO3 radicals during the campaign indicate that NO3 levels can explain most of the observed diurnal variation of DMS. Dimethylsulfoxide (DMSO) ranged between 0.02 and 10.1 pmol·mol-1 (mean value of 1.7 pmol·mol-1) and presents a diurnal variation similar to that of DMS. SO2 levels ranged from 220 to 2970 pmol·mol-1 (mean value of 1030 pmol·mol-1), while nss-SO42- and MS- ranged from 330 to 7100 pmol·mol-1, (mean value of 1440 pmol·mol-1) and 1.1 to 37.5 pmol·mol-1 (mean value of 11.5 pmol·mol-1) respectively. Of particular interest are the measurements of gaseous MSA and H2SO4. MSA ranged from below the detection limit (3x104) to 3.7x107 molecules cm-3, whereas H2SO4 ranged between 1x105 and 9.0x107 molecules cm-3. The measured H2SO4 maxima are among the highest reported in literature and can be attributed to high insolation, absence of precipitation and increased SO2 levels in the area. From the concurrent SO2, OH, and H2SO4 measurements a sticking coefficient of 0.52±0.28 was calculated for H2SO4. From the concurrent MSA, OH, and DMS measurements the yield of gaseous MSA from the OH-initiated oxidation of DMS was calculated to range between 0.1-0.4%. This low MSA yield implies that gaseous MSA levels can not account for the observed MS- levels. Heterogeneous reactions of DMSO on aerosols should be considered to explain the observed levels of MS-.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2003-11-28
    Description: A parameterization scheme for calculating gaseous dry deposition velocities in air-quality models is revised based on recent study results on non-stomatal uptake of O3 and SO2 over 5 different vegetation types. Non-stomatal resistance, which includes in-canopy aerodynamic, soil and cuticle resistances, for SO2 and O3 is parameterized as a function of friction velocity, relative humidity, leaf area index, and canopy wetness. Non-stomatal resistance for other chemical species is scaled to those of SO2 and O3 based on their chemical and physical characteristics. Stomatal resistance is calculated using a two-big-leaf stomatal resistance sub-model for all gaseous species of interest. The improvements in the present model compared to its earlier version include a newly developed non-stomatal resistance formulation, a realistic treatment of cuticle and ground resistance in winter, and the handling of seasonally-dependent input parameters. Model evaluation shows that the revised parameterization can provide more realistic deposition velocities for both O3 and SO2, especially for wet canopies. Example model output shows that the parameterization provides reasonable estimates of dry deposition velocities for different gaseous species, land types and diurnal and seasonal variations. Maximum deposition velocities from model output are close to reported measurement values for different land types. The current parameterization can be easily adopted into different air-quality models that require inclusion of dry deposition processes.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2003-11-25
    Description: Using the empirically-corrected tropospheric ozone residual (TOR) technique, which utilizes coincident observations of total ozone from the Total Ozone Mapping Spectrometer (TOMS) and stratospheric ozone profiles from the Solar Backscattered Ultraviolet (SBUV) instruments, the seasonal and regional distribution of tropospheric ozone across the North Atlantic from 1979-2000 is examined. Its relationship to the North Atlantic Oscillation (NAO) is also analyzed as a possible transport mechanism across the North Atlantic. Monthly climatologies of tropospheric ozone for five different regions across the North Atlantic exhibit strong seasonality. The correlation between these monthly climatologies of the TOR and ozonesonde profiles at nearby sites in both eastern North America and western Europe are highly significant (R values of +0.98 and +0.96 respectively) and help to validate the use of satellite retrievals of tropospheric ozone. Distinct springtime interannual variability over North Atlantic Region 5 (eastern North Atlantic-western Europe) is particularly evident and exhibits similar variability to the positive phase of the NAO (R=+0.61, r=
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2003-10-27
    Description: Factors controlling the microphysical link between distributions of relative humidity above ice saturation in the upper troposphere and lowermost stratosphere and cirrus clouds are examined with the help of microphysical trajectory simulations. Our findings are related to results from aircraft measurements and global model studies. We suggest that the relative humidities at which ice crystals form in the atmosphere can be inferred from in situ measurements of water vapor and temperature close to, but outside of, cirrus clouds. The comparison with concomitant measurements performed inside cirrus clouds provides a clue to freezing mechanisms active in cirrus. The analysis of field data taken at northern and southern midlatitudes in fall 2000 reveals distinct differences in cirrus cloud freezing thresholds. Homogeneous freezing is found to be the most likely mechanism by which cirrus form at southern hemisphere midlatitudes. The results provide evidence for the existence of heterogeneous freezing in cirrus in parts of the polluted northern hemisphere, but do not suggest that cirrus clouds in this region form exclusively on heterogeneous ice nuclei, thereby emphasizing the crucial importance of homogeneous freezing. The key features of distributions of upper tropospheric relative humidity simulated by a global climate model are shown to be in general agreement with both, microphysical simulations and field observations, delineating a feasible method to include and validate ice supersaturation in other large-scale atmospheric models, in particular chemistry-transport and weather forecast models.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2003-10-27
    Description: Based on in-situ observations performed during the Interhemispheric differences in cirrus properties from anthropogenic emissions (INCA) experiment, we introduce and discuss the cloud presence fraction (CPF) defined as the ratio between the number of data points determined to represent cloud at a given ambient relative humidity over ice (RHI) divided by the total number of data points at that value of RHI. The CPFs are measured with four different cloud probes. Within similar ranges of detected particle sizes and concentrations, it is shown that different cloud probes yield results that are in good agreement with each other. The CPFs taken at Southern Hemisphere (SH) and Northern Hemisphere (NH) midlatitudes differ from each other. Above ice saturation, clouds occurred more frequently during the NH campaign. Local minima in the CPF as a function of RHI are interpreted as a systematic underestimation of cloud presence when cloud particles become invisible to cloud probes. Based on this interpretation, we find that clouds during the SH campaign formed preferentially at RHIs between 140 and 155%, whereas clouds in the NH campaign formed at RHIs somewhat below 130%. The data show that interstitial aerosol and ice particles coexist down to RHIs of 70-90%, demonstrating that the ability to distinguish between different particle types in cirrus conditions depends on the sensors used to probe the aerosol/cirrus system. Observed distributions of cloud water content differ only slightly between the NH and SH campaigns and seem to be only weakly, if at all, affected by the freezing aerosols.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2003-11-12
    Description: Actinic fluxes at large solar zenith angles (SZAs) are important for atmospheric chemistry, especially under twilight conditions in polar winter and spring. The results of a sensitivity experiment employing the fully coupled 3D chemistry-climate model ECHAM4.L39(DLR)/CHEM have been analysed to quantify the impact of SZAs larger than 87.5º on dynamical and chemical processes in the lower stratosphere, in particular their influence on the ozone layer. Although the actinic fluxes at SZAs larger than 87.5º are small, ozone concentrations are significantly affected because daytime photolytic ozone destruction is switched on earlier, especially at the end of polar night the conversion of Cl2 and Cl2O2 into ClO in the lower stratosphere. Comparing climatological mean ozone column values of a simulation considering SZAs up to 93º with those of the sensitivity run with SZAs confined to 87.5º total ozone is reduced by about 20% in the polar Southern Hemisphere, i.e., the ozone hole is "deeper'' if twilight conditions are considered in the model because there is about 4 weeks more time for ozone destruction. This causes an additional cooling of the polar lower stratosphere (50 hPa) up to -4 K with obvious consequences for chemical processes. In the Northern Hemisphere the impact of large SZAs cannot be determined on the basis of climatological mean values due to the pronounced dynamic variability of the stratosphere in winter and spring. This study clearly shows the necessity of considering large SZAs for the calculation of photolysis rates in atmospheric models.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2003-11-05
    Description: Based on about 20 years of NOAA/CMDL's atmospheric CO2 concentration data and a global atmospheric tracer transport model, we estimate interannual variations and spatial patterns of surface CO2 fluxes in the period 01/1982-12/2000, by using a time-dependent Bayesian inversion technique. To increase the reliability of the estimated temporal features, particular care is exerted towards the selection of data records that are homogeneous in time. Fluxes are estimated on a grid-scale resolution (~8º latitude x 10º longitude), constrained by a-priori spatial correlations, and then integrated over different sets of regions. The transport model is driven by interannually varying re-analyzed meteorological fields. We make consistent use of unsmoothed measurements. In agreement with previous studies, land fluxes are estimated to be the main driver of interannual variations in the global CO2 fluxes, with the pace predominantly being set by the El Niño/La Niña contrast. An exception is a 2-3 year period of increased sink of atmospheric carbon after Mt.  Pinatubo's volcanic eruption in 1991. The largest differences in fluxes between El Niño and La Niña are found in the tropical land regions, the main share being due to the Amazon basin. The flux variations for the Post-Pinatubo period, the 1997/1998 El Niño, and the 1999 La Niña events are exploited to investigate relations between CO2 fluxes and climate forcing. A rough comparison points to anomalies in precipitation as a prominent climate factor for short-term variability of tropical land fluxes, both through their role on NPP and through promoting fire in case of droughts. Some large flux anomalies seem to be directly related to large biomass burning events recorded by satellite observation. Global ocean carbon uptake shows a trend similar to the one expected if ocean uptake scales proportional to the anthropogenic atmospheric CO2 perturbation. In contrast to temporal variations, the longterm spatial flux distribution can be inferred with lesser robustness only. The tentative pattern estimated by the present inversion exhibits a northern hemisphere land sink on the order of 0.4 PgC/yr (for 01/1996-12/1999, non-fossil fuel carbon only) that is mainly confined to North America. Southern hemisphere land regions are carbon neutral, while the tropical land regions are taking up carbon (e.g., at a rate of 0.8 PgC/yr during 01/1996-12/1999). Ocean fluxes show larger uptake in the Northern mid to high latitudes than in the Southern mid latitude regions, in contrast to the estimates by Takahashi et al. (1999) based on in-situ measurements. On a regional basis, results that differ the most from previous estimates are large carbon uptake of 1 to 1.5 PgC/yr by the Southern temperate Pacific ocean region, weak outgassing from the Southern ocean, and a carbon source from eastern Europe.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2003-10-24
    Description: This paper studies the interannual variability of pollution pathways from northern hemisphere (NH) continents into the Arctic. Using a 15-year model simulation of the dispersion of passive tracers representative of anthropogenic emissions from NH continents, we show that the North Atlantic Oscillation (NAO) exerts a strong control on the pollution transport into the Arctic, particularly in winter and spring. For tracer lifetimes of 5 (30) days, surface concentrations in the Arctic winter are enhanced by about 70% (30%) during high phases of the NAO (in the following referred to as NAO+) compared to its low phases (NAO-). This is mainly due to great differences in the pathways of European pollution during NAO+ and NAO- phases, respectively, but reinforced by North American pollution, which is also enhanced in the Arctic during NAO+ phases. In contrast, Asian pollution in the Arctic does not significantly depend on the NAO phase. The model results are confirmed using remotely-sensed NO2 vertical atmospheric columns obtained from seven years of satellite measurements, which show enhanced northward NO2 transport and reduced NO2 outflow into the North Atlantic from Central Europe during NAO+ phases. Surface measurements of carbon monoxide (CO) and black carbon at high-latitude stations further corroborate the overall picture of enhanced Arctic pollution levels during NAO+ phases
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2003-06-11
    Description: Polar stratospheric clouds (PSCs) play a key role in polar ozone depletion. In the Arctic, PSCs can occur on the mesoscale due to orographically induced gravity waves. Here we present a detailed study of a mountain wave PSC event on 25-27 January 2000 over Scandinavia. The mountain wave PSCs were intensively observed by in-situ and remote-sensing techniques during the second phase of the SOLVE/THESEO-2000 Arctic campaign. We use these excellent data of PSC observations on 3 successive days to analyze the PSCs and to perform a detailed comparison with modeled clouds. We simulated the 3-dimensional PSC structure on all 3 days with a mesoscale numerical weather prediction (NWP) model and a microphysical box model (using best available nucleation rates for ice and nitric acid trihydrate particles). We show that the combined mesoscale/microphysical model is capable of reproducing the PSC measurements within the uncertainty of data interpretation with respect to spatial dimensions, temporal development and microphysical properties, without manipulating temperatures or using other tuning parameters. In contrast, microphysical modeling based upon coarser scale global NWP data, e.g. current ECMWF analysis data, cannot reproduce observations, in particular the occurrence of ice and nitric acid trihydrate clouds. Combined mesoscale/microphysical modeling may be used for detailed a posteriori PSC analysis and for future Arctic campaign flight and mission planning. The fact that remote sensing alone cannot further constrain model results due to uncertainities in the interpretation of measurements, underlines the need for synchronous in-situ PSC observations in campaigns.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2003-04-03
    Description: Current stratospheric chemical model simulations underestimate substantially the large ozone loss rates that are derived for the Arctic from ozone sondes for January of some years. Until now, no explanation for this discrepancy has been found. Here, we examine the influence of intrusions of mid-latitude air into the polar vortex on these ozone loss estimates. This study focuses on the winter 1991/92, because during this winter the discrepancy between simulated and experimentally derived ozone loss rates is reported to be the largest. Also during the considered period the vortex was disturbed by a strong warming event with large-scale intrusions of mid-latitude air into the polar vortex, which is quite unusual for this time of the year. The study is based on simulations performed with the Chemical Lagrangian Model of the Stratosphere (CLaMS). Two methods for determination the ozone loss are investigated, the so-called vortex average approach and the Match method. The simulations for January 1992 show that the intrusions induce a reduction of vortex average ozone mixing ratio corresponding to a systematic offset of the ozone loss rate of about 12 ppb per day. This should be corrected for in the vortex average method. The simulations further suggest, that these intrusions do not cause a significant bias for the Match method due to effective quality control measures in the Match technique.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2003-03-27
    Description: Measurements of atmospheric and snow mixing ratios of nitrates and nitrites and their fluxes above the snow surface were made during two intensive campaigns during spring time 2001 at Ny-Ålesund, Svalbard as part of the EU project  "`The NItrogen Cycle and Effects on the oxidation of atmospheric trace species at high latitudes" (NICE). At this coastal site close to the unseasonably unfrozen fjord, of the measured nitrogen species, only HNO3 showed a significant flux on to the snow surface; a mean deposition of -8.7 nmol h-1 m-2 was observed in late April / early May 2001. These fluxes may be due to the reaction of HNO3 with sea salt, and especially NaCl, or may be simply uptake of HNO3 by ice, which is alkaline because of the sea salt in our marine environment. During snowfall periods dry deposition of HNO3 may contribute up to 10% of the N budget in the snow; however, the main source for N is wet deposition in falling snow. The surface snow at Ny-Ålesund showed very complex stratigraphy; the NO3- mixing ratio in snow varied between 65 and 520 ng g-1, the total NO3- content of the snowpack was on the order of 2700 ng cm-2. In comparison the atmospheric boundary layer column showed a NO3- content of only 8 ng cm-2. The limited exchange, however, between the snow and the atmosphere was attributed to low mobility of NO3- in the observed snow. Contrary to other Arctic sites (i.e. Alert, Nunavut or Summit, Greenland) deposition of sea salt and crustal aerosols in this marine environment made the surface snow alkaline; snow NO3- was associated with heavier cations and was not readily available for physical exchange or photochemical reactions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2003-09-22
    Description: We investigate theoretical, laboratory, and atmospheric evidence for a recently proposed hypothesis: homogeneous ice nucleation initiates at the surface, not in the volume, of supercooled water drops. Using existing thermodynamic arguments, laboratory experiments, and atmospheric data, we conclude that ice embryo formation at the surface cannot be confirmed or disregarded. Ice nucleation rates measured as a function of drop size in an air ambient could help distinguish between volume and surface nucleation rates.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2003-09-17
    Description: Over the last 3 decades, satellite data have been used to monitor long-term global changes in stratospheric ozone. The TOMS series (1978-present) and GOME (1995-present) are two very important instruments in this context. In this paper, TOMS total ozone and three approaches to derive total ozone from GOME measurements are validated with ground-based Dobson network data. Beyond the operational products of both instruments, e.g. TOMS version 7 and GOME Data Processor version 2.7, total ozone is calculated by integrating FURM ozone profiles and by applying the TOMS algorithm to the GOME spectra. All algorithms show in general good agreement with ground-based measurements. The operational GOME total ozone shows seasonal variations, most likely introduced by difficulties in the derivation of airmass factors, which convert measured slant columns into vertical columns. The TOMS algorithm estimates on average 2% higher total ozone in the southern hemisphere than in the northern for both instruments as compared to the ground-based data, indicating that the source of the observed hemispheric differences is in the TOMS algorithm. Both instruments show aging effects in 2000, leading to enhanced variability in the ozone column differences with respect to Dobson data. In addition, the integrated GOME ozone profiles and the TOMS algorithm applied to GOME data show larger mean deviations in 2000.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2003-09-16
    Description: Hygroscopic properties of atmospheric particles were studied in the marine tropospheric boundary layer over the Atlantic and Indian Oceans during two consecutive field studies: the Aerosols99 cruise (Atlantic Ocean) from 15 January to 20 February 1999, and the INDOEX cruise (Indian Ocean Experiment) from 23 February to 30 March 1999. The hygroscopic properties were compared to optical and chemical properties, such as absorption, chemical inorganic composition, and mass concentration of organic and elemental carbon, to identify the influence of these parameters on hygroscopicity. During the two field studies, four types of aerosol-sampling instruments were used on board the NOAA (National Oceanic and Atmospheric Administration) Research Vessel Ronald H. Brown: Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA), seven-stage cascade impactor, two-stage cascade impactor, and Particle Soot Absorption Photometer (PSAP). The HTDMA was used to determine the hygroscopic properties of atmospheric particles at initial dry sizes (Dp) of 50, 150, and 250 nm and at relative humidities (RH) of 30, 55, 75, and 90%. Simultaneously, a seven-stage cascade impactor of which 3 stages were in the sub-mm size range was used to determine the molar composition of the major inorganic ions such as ammonium and sulfate ions. A two-stage cascade impactor (1 in the sub-mm size range, 1 in the sup-mm size range) was used to determine the mass concentration of organic and elemental carbon. The PSAP was used (at a wavelength of 565 nm) to measure the light absorption coefficient of the aerosol. During the two field studies, air masses of several different origins passed the ship's cruise path. The occurrence of different air masses was classified into special time periods signifying the origin of the observed aerosol. All time periods showed a group of particles with high hygroscopic growth. The measured average hygroscopic growth factors defined by the ratio of dry and wet particle diameter at 90% RH ranged from 1.6 to 2.0, depending on the dry particle size and on the type of air mass. Particles with low hygroscopic growth occurred only when continentally influenced air masses arrived at the ship's position. Distinctions in hygroscopic growth of particles of different air masses were more significant for small relative humidities (30% or 55% RH). High concentrations of elemental carbon corresponded with high light absorption coefficients and with the occurrence of less-hygroscopic and nearly hydrophobic particle fractions in the hygroscopic growth distributions. A key finding is that clean marine air masses that had no land contact for five to six days could clearly be distinguished from polluted air masses that had passed over a continent several days before reaching the ship.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2003-08-01
    Description: This study investigates anomalous ozone distributions over cloudy areas in Nimbus-7 (N7) and Earth-Probe (EP) TOMS version-7 data and analyzes the causes for ozone anomaly formation. A 5°-longitude by 5°-latitude region is defined to contain a Positive Ozone Anomaly (POA) or Negative Ozone Anomaly (NOA) if the correlation coefficient between total ozone and reflectivity is 〉 0.5 or 〈 -0.5. The average fractions of ozone anomalies among all cloud fields are 31.8 ± 7.7% and 35.8 ± 7.7% in the N7 and EP TOMS data, respectively. Some ozone anomalies are caused by ozone retrieval errors, and others are caused by actual geophysical phenomena. Large cloud-height errors are found in the TOMS version-7 algorithm in comparison to the Temperature Humidity Infrared Radiometer (THIR) cloud data. On average, cloud-top pressures are overestimated by ~200 hPa (THIR cloud-top pressure 〈 200 hPa) for high-altitude clouds and underestimated by ~150 hPa for low-altitude clouds (THIR cloud-top pressure 〉 750 hPa). Most tropical NOAs result from negative errors induced by large cloud-height errors, and most tropical POAs are caused by positive errors due to intra-cloud ozone absorption enhancement. However, positive and negative errors offset each other, reducing the ozone anomaly occurrence in TOMS data. Large ozone/reflectivity slopes for mid-latitude POAs show seasonal variation consistent with total ozone fluctuation, indicating that they result mainly from synoptic and planetary wave disturbances. POAs with an occurrence fraction of 30--60% occur in regions of marine stratocumulus off the west coast of South Africa and off the west coast of South America. Both fractions and ozone/reflectivity slopes of these POAs show seasonal variations consistent with that in the tropospheric ozone. About half the ozone/reflectivity slope can be explained by ozone retrieval errors over clear and cloudy areas. The remaining slope may result from there being more ozone production because of rich ozone precursors and higher photolysis rates over high-frequency, low-altitude clouds than in clear areas. Ozone anomalies due to ozone retrieval errors have important implications in TOMS applications such as tropospheric ozone derivation and analysis of ozone seasonal variation.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2003-07-29
    Description: Subvisible cirrus clouds (SVCs) may contribute to dehydration close to the tropical tropopause. The higher and colder SVCs and the larger their ice crystals, the more likely they represent the last efficient point of contact of the gas phase with the ice phase and, hence, the last dehydrating step, before the air enters the stratosphere. The first simultaneous in situ and remote sensing measurements of SVCs were taken during the APE-THESEO campaign in the western Indian ocean in February/March 1999. The observed clouds, termed Ultrathin Tropical Tropopause Clouds (UTTCs), belong to the geometrically and optically thinnest large-scale clouds in the Earth's atmosphere. Individual UTTCs may exist for many hours as an only 200--300 m thick cloud layer just a few hundred meters below the tropical cold point tropopause, covering up to 105 km2. With temperatures as low as 181 K these clouds are prime representatives for defining the water mixing ratio of air entering the lower stratosphere.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2003-07-21
    Description: Methyl chloroform (1,1,1-trichloroethane, CH3CCl3) was found to decompose heterogeneously on seven types of standard clay minerals (23 materials) in dry air at 313 K in the laboratory. All reactions proceeded through the elimination of HCl; CH3CCl3 was converted quantitatively to CH2=CCl2. The activities of the clay minerals were compared via their pseudo-first-order reaction rate constants (k1). A positive correlation was observed between the k1 value and the specific surface area (S) of clay minerals, where the S value was determined by means of the general Brunauer-Emmett-Teller (BET) equation. The k1 value was anti-correlated with the value of n, which was a parameter of the general BET equation and related to the average pore size of the clay minerals, and correlated with the water content that can be removed easily from the clay minerals. The reaction required no special pretreatment of clay minerals, such as heating at high temperatures; hence, the reaction can be expected to occur in the environment. Photoillumination by wavelengths present in the troposphere did not accelerate the decomposition of CH3CCl3, but it induced heterogeneous photodecomposition of CH2=CCl2. The temperature dependence of k1, the adsorption equilibrium coefficient of CH3CCl3 and CH2=CCl2, and the surface reaction rate constant of CH3CCl3 were determined for an illite sample. The k1 value increased with increasing temperature. The amount of CH3CCl3 adsorbed on the illite during the reaction was proportional to the partial pressure of CH3CCl3. The reaction was sensitive to relative humidity and the k1 value decreased with increasing relative humidity. However, the reaction was found to proceed at a relative humidity of 22% at 313 K, although the k1 value was about one-twentieth of the value in non-humidified air. The conditions required for the reaction may be present in major desert regions of the world. A simple estimation indicates that the possible heterogeneous decomposition of CH3CCl3 on the ground surface in arid regions is worth taking into consideration when inferring the tropospheric lifetime of CH3CCl3 and global OH concentration from the global budget concentration of CH3CCl3.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2003-10-07
    Description: This work describes a process-oriented, microphysical-chemical model to simulate the formation and evolution of aerosols and ice crystals under the conditions prevailing in the upper troposphere and lower stratosphere. The model can be run as a box model or along atmospheric trajectories, and considers mixing, gas phase chemistry of aerosol precursors, binary homogeneous aerosol nucleation, homogeneous and heterogeneous ice nucleation, coagulation, condensation and dissolution, gas retention during particle freezing, gas trapping in growing ice crystals, and reverse processes. Chemical equations are solved iteratively using a second order implicit integration method. Gas-particle interactions and coagulation are treated over various size structures, with fully mass conserving and non-iterative numerical solution schemes. Particle types include quinternary aqueous solutions composed of H2SO4, HNO3, HCl, and HBr with and without insoluble components, insoluble aerosol particles, and spherical or columnar ice crystals deriving from each aerosol type separately. Three case studies are discussed in detail to demonstrate the potential of the model to simulate real atmospheric processes and to highlight current research topics concerning aerosol and cirrus formation near the tropopause. Emphasis is placed on how the formation of cirrus clouds and the scavenging of nitric acid in cirrus depends on small-scale temperature fluctuations and the presence of efficient ice nuclei in the tropopause region, corroborating and partly extending the findings of previous studies.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2003-07-16
    Description: Measurements of methane have been made from various observational platforms in the atmosphere. In this article, we have compared four high precision balloon-borne measurements from Hyderabad (17.5°N), India in the period of 1987 and 1998 with a part of HALOE/UARS global observations available since 1991. All the balloon measurements correspond to boreal spring (March and April) but belong to different years. A comparison shows fairly good agreement with each other. The gradient in CH4 profiles in the troposphere is controlled by the variation in vertical transport. The strongest effect of dynamical influence on methane vertical profiles is shown to be resulting from the dynamical quasi-biennial oscillation in the stratosphere, and that has been consistently derived from both the measurement techniques and chemistry-transport model simulations. It is observed that the QBO signal in CH4 anomaly exhibits interhemispheric asymmetry caused by the tropics to midlatitude circulation in the stratosphere. A mechanism is suggested to explain how and to what extent the methane vertical profiles over Hyderabad and higher latitudes could be modulated by the prevailing QBO winds in the tropics. We have also discussed how the same mechanism would affect ozone distribution in the stratosphere quite differently.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2003-08-27
    Description: During the Mediterranean Intensive Oxidant Study MINOS in August 2001, 87 air samples were collected at the ground-based station Finokalia (35°19'N, 25°40'E) on the north coast of Crete and subsequently analysed by GC-MS. The analysis includes various hydrocarbons, organo-halogens, HCFCs and CFCs. These compounds have a wide variety of sources and sinks and a large range of atmospheric lifetimes. We evaluated the characteristics of the sampling site in terms of proximity to individual sources by plotting the measured variability of these species against lifetime. The resulting linear relationship suggests that the sampling site is representative of intermediate conditions between a remote site and one that is in the vicinity of a wide variety of sources. Our analysis of air mass origin and chemical ratios also shows that several distinct anthropogenic sources influenced the atmospheric composition over Crete. Propane observations are compared to a global model to assess the fossil fuel related emission inventory. Although the model reproduces the general pattern of the propane variations, the model mixing ratios are systematically too low by a factor of 1.5 to 3, probably due to an underestimation of the propane emissions from east European countries in the underlying global database EDGAR. Another important finding was that methyl chloroform, a compound banned under the Montreal protocol, showed significant enhancements from background, which were well correlated with CFC-113. This suggests continued use and emission of methyl chloroform by one or more European countries. We also discuss the observed variations of methyl bromide and suggest that the significant peak observed on 12 August 2001 reflects heavy agricultural use as a soil fumigant in Italy.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2003-07-16
    Description: A technique is demonstrated for estimating atmospheric mixing time-scales from in-situ data, using a Lagrangian model initialised from an Eulerian chemical transport model (CTM). This method is applied to airborne tropospheric CO observations taken during seven flights of the Mediterranean Intensive Oxidant Study (MINOS) campaign, of August 2001. The time-scales derived, correspond to mixing applied at the spatial scale of the CTM grid. They are relevant to the family of hybrid Lagrangian-Eulerian models, which impose Eulerian grid mixing to an underlying Lagrangian model. The method uses the fact that in Lagrangian tracer transport modelling, the mixing spatial and temporal scales are decoupled: the spatial scale is determined by the resolution of the initial tracer field, and the time scale by the trajectory length. The chaotic nature of lower-atmospheric advection results in the continuous generation of smaller spatial scales, a process terminated in the real atmosphere by mixing. Thus, a mix-down lifetime can be estimated by varying trajectory length so that the model reproduces the observed amount of small-scale tracer structure. Selecting a trajectory length is equivalent to choosing a mixing timescale. For the cases studied, the results are very insensitive to CO photochemical change calculated along the trajectories. That is, it was found that if CO was treated as a passive tracer, this did not affect the mix-down timescales derived, since the slow CO photochemistry does not have much influence at small spatial scales. The results presented correspond to full photochemical calculations. The method is most appropriate for relatively homogeneous regions, i.e. it is not too important to account for changes in aircraft altitude or the positioning of stratospheric intrusions, so that small scale structure is easily distinguished. The chosen flights showed a range of mix-down time upper limits: a very short timescale of 1 day for 8 August, due possibly to recent convection or model error, 3 days for 3 August, probably due to recent convective and boundary layer mixing, and 6-9 days for 16, 17, 22a, 22c and 24 August. These numbers refer to a mixing spatial scale of 2.8°, defined here by the resolution of the Eulerian grid from which tracer fields were interpolated to initialise the Lagrangian model. For the flight of 3 August, the observed concentrations result from a complex set of transport histories, and the models are used to interpret the observed structure, while illustrating where more caution is required with this method of estimating mix-down lifetimes.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2003-07-16
    Description: In-situ observations of aerosol particles contained in cirrus crystals are presented and compared to interstitial aerosol size distributions (non-activated particles in between the cirrus crystals). The observations were conducted in cirrus clouds in the Southern and Northern Hemisphere mid-latitudes during the INCA project. The first campaign in March and April 2000 was performed from Punta Arenas, Chile (54°S) in pristine air. The second campaign in September and October 2000 was performed from Prestwick, Scotland (53°N) in the vicinity of the North Atlantic flight corridor. Size distribution measurements of crystal residuals (particles remaining after evaporation of the crystals) show that small aerosol particles (Dp〈 0.1 mm) dominate the number density of residuals. The crystal residual size distributions were significantly different in the two campaigns. On average the residual size distributions were shifted towards larger sizes in the Southern Hemisphere. For a given integral residual number density, the calculated particle volume was on average three times larger in the Southern Hemisphere. This may be of significance to the vertical redistribution of aerosol mass by clouds in the tropopause region. In both campaigns the mean residual size increased slightly with increasing crystal number density. The form of the residual size distribution did not depend on temperature as one might have expected considering different modes of nucleation. The observations of ambient aerosol particles were consistent with the expected higher pollution level in the Northern Hemisphere. The fraction of residual particles only contributes to approximately a percent or less of the total number of particles, which is the sum of the residual and interstitial particles. Excellent agreement between the CVI and FSSP-300 probes was found supporting the assumption that each crystal is associated with only one residual particle.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2003-08-12
    Description: The results of a field campaign carried out from early spring through to the late summer of 2000, in Bristol, England, are presented. Continuous measurements of over 40 hydrocarbons have been made at an urban background site, located at Bristol University, for approximately nine months using a Gas Chromatography - Flame Ionisation Detection (GC-FID) system and for a selection of halocarbons for approximately one month using a Gas Chromatography - Electron Capture Detection (GC-ECD) system. In this paper we present the time-series of the nine halocarbons and selected hydrocarbons. Daytime and night-time hydroxyl radical concentrations have been estimated based on the diurnal variations of a selection of the measured hydrocarbons. The average summer daytime concentration of OH was found to be 2.5x106 molecules cm-3 and the night-time concentration to be in the range 104 to 105 molecules cm-3. In addition, the role played by certain VOCs in the formation of ozone is assessed using the POCP (Photochemical Ozone Creation Potential) concept.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2003-08-13
    Description: In the year 2000, six flights (three southbound and three northbound) of the CARIBIC project were conducted between Germany and two destinations in the southern hemisphere (Windhoek, Namibia and Cape Town, South Africa). In the present report, results on particle number concentrations are discussed in three size ranges (〉4 nm, 〉12 nm, and 〉18 nm particle diameter) during the unique transequatorial Africa flights. The flights covered a total of about 80 h in May, July, and December. Thus, no claim can be made for long-term representativeness of the aerosol data. Nevertheless, they are the first upper systematic tropospheric transequatorial aerosol profiles over Africa. The average aerosol results show a broad maximum, roughly symmetrical to the equator, which compares well in latitudinal extent to a maximum of CO concentrations measured on the same flights. This export of continental surface aerosol to the upper troposphere will be dispersed on a global scale both with the easterly flow near the equator and with the westerlies in the adjacent subtropical regions. There was strong evidence of recent new particle formation before aerosol arrival at flight level, in particular during the time periods between 9:00 and 13:00 local time over Africa. Direct and indirect climate effects of the respective particulate matter remain to be investigated by future flights with the ongoing extension of the CARIBIC payload towards size-resolved measurements above 100 nm particle diameter. At the same time global chemical transport models and aerosol dynamics models need to be extended to be able to reproduce the CARIBIC findings over Africa.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2003-07-08
    Description: We investigated the size distribution, scattering and absorption properties of Amazonian aerosols and the optical thickness of the aerosol layer under the pristine background conditions typical of the wet season, as well as during the biomass-burning-influenced dry season. The measurements were made during two campaigns in 1999 as part of the European contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-EUSTACH). In moving from the wet to the dry season, median particle numbers were observed to increase from values comparable to those of the remote marine boundary layer (~400 cm-3) to values more commonly associated with urban smog (~4000 cm-3), due to a massive injection of submicron smoke particles. Aerosol optical depths at 500 nm increased from 0.05 to 0.8 on average, reaching a value of 2 during the dry season. Scattering and absorption coefficients, measured at 550 nm, showed a concomitant increase from average values of 6.8 and 0.4 Mm-1 to values of 91 and 10 Mm-1, respectively, corresponding to an estimated decrease in single-scattering albedo from ca. 0.97 to 0.91. The roughly tenfold increase in many of the measured parameters attests to the dramatic effect that extensive seasonal biomass burning (deforestation, pasture cleaning) is having on the composition and properties of aerosols over Amazonia. The potential exists for these changes to impact on regional and global climate through changes to the extinction of solar radiation as well as the alteration of cloud properties.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2003-07-07
    Description: The relationship between local meteorological conditions and the surface ozone variability was studied by means of statistical modeling, using ozone and meteorological parameters measured at Lovozero (250 m a.s.l., 68.5°N, 35.0°E, Kola Peninsula) for the period of 1999-2000. The regression model of daily mean ozone concentrations on such meteorological parameters as temperature, relative humidity and wind speed explains up to 70% of day-to-day ozone variability in terms of meteorological condition changes, if the seasonal cycle is also considered. A regression model was created for separated time scales of the variables. Short-term, synoptical and seasonal components are separated by means of Kolmogorov-Zurbenko filtering. The synoptical scale variations were chosen as the most informative from the point of their mutual relation with meteorological parameters. Almost 40% of surface ozone variations in time periods of 11-60 days can be explained by the regression model on separated scales that is 30% more efficient than ozone residuals usage. Quantitative and qualitative estimations of the relations between surface ozone and meteorological predictors let us preliminarily conclude that at the Lovozero site surface ozone variability is governed mainly by dynamical processes of various time scale rather than photochemistry, especially during the cold season.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2003-07-14
    Description: Fingerlike structures reaching from lower into extra-tropical latitudes significantly contribute to the tropical-extratropical exchange of air masses. This is also an exchange of upper tropospheric and stratospheric air. Those so called streamers can, on a horizontal plane, be detected in N2O or O3 since they are characterised by high N2O or low O3 values compared to undisturbed mid-latitude values. A climatology of streamer events has been established, employing the chemical-transport model KASIMA, which is driven by ECMWF re-analyses (ERA) and operational analyses. For the first time, the seasonal and geographical distribution of streamer frequencies has been determined on the basis of 9 years of meteorological analyses. For the current investigation, a meridional gradient criterion has been newly formulated and applied to the N2O distributions calculated with KASIMA. A climatology has been derived by counting all streamer events between 21 and 25 km for the years 1990 to 1998. The results have been compared with a streamer climatology which has been established in the same way employing data of a multi-year simulation with the coupled chemistry-climate model ECHAM4.L39(DLR)/CHEM (E39/C). Both climatologies are qualitatively in agreement, in particular in the northern hemisphere, where much higher streamer frequencies are found in winter than in summer. In the southern hemisphere, the KASIMA analyses indicate strongest streamer activity in September. E39/C streamer frequencies clearly displays an offset from June to October, pointing to model deficiencies with respect to tropospheric dynamics. KASIMA and E39/C results agree well from November to May. Some of the findings give strong indications that the streamer events found in the altitude region between 21 and 25 km are mainly forced from the troposphere and are not directly related to the dynamics of the stratosphere, in particular not to the dynamics of the polar vortex. Sensitivity simulations with E39/C, which represent recent and possible future atmospheric conditions, have been employed to answer the question how climate change would alter streamer frequencies. This shows that the seasonal cycle does not change but that significant changes occur in months of minimum and maximum streamer frequencies. This could have an impact on the mid-latitude distribution of chemical tracers and compounds.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2003-07-14
    Description: Major solar eruptions (coronal mass ejections) are accompanied by massive ejections of protons. When these charged particles head for the Earth through the interplanetary magnetic field with high flux and energy, a solar proton event (SPE) is recorded. Strong SPEs, in which energetic protons penetrate the atmosphere in large numbers are rare, but do have chemical effects (Crutzen, 1975; Jackman et al., 1990, 2001).  They also have nucleonic effects by which they can almost instantaneously increase the atmospheric production of radio-nuclides, including 14C (radiocarbon), but this has never been demonstrated. We show, using satellite observations and modeling, that the 2nd most intensive set of SPEs on record, that of August-December 1989, must have caused detectable increases in atmospheric 14CO. This is confirmed by a sequence of peaks in the Baring Head (NZ) time series of 14CO observations (Brenninkmeijer, 1993), probably providing a unique indication of production of 14C by solar protons, thus demonstrating the use of SPE 14CO as an atmospheric tracer.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2003-06-23
    Description: High-resolution simulations of the chemical composition of the Arctic stratosphere during late spring 1997 and 2000 were performed with the Chemical Lagrangian Model of the Stratosphere (CLaMS). The simulations were performed for the entire northern hemisphere on two isentropic levels 450 K (~18 km) and 585 K (~24 km). The spatial distribution and the lifetime of the vortex remnants formed after the vortex breakup in May 1997 display different behavior above and below 20 km. Above 20 km, vortex remnants propagate southward (up to 40°N) and are "frozen in'' in the summer circulation without significant mixing. Below 20 km the southward propagation of the remnants is bounded by the subtropical jet. Their lifetime is shorter by a factor of 2 than that above 20 km, owing to significant stirring below this altitude. The behavior of vortex remnants formed in March 2000 is similar but, due to an earlier vortex breakup, dominated during the first 6 weeks after the vortex breakup by westerly winds, even above 20 km. Vortex remnants formed in May 1997 are characterized by large mixing ratios of HCl indicating negligible, halogen-induced ozone loss. In contrast, mid-latitude ozone loss in late boreal spring 2000 is dominated, until mid-April, by halogen-induced ozone destruction within the vortex remnants, and subsequent transport of the ozone-depleted polar air masses (dilution) into the mid-latitudes. By varying the intensity of mixing in CLaMS, the impact of mixing on the formation of ClONO2 and ozone depletion is investigated. We find that the photochemical decomposition of HNO3 and not mixing with NOx-rich mid-latitude air is the main source of NOx within the vortex remnants in March and April 2000. Ozone depletion in the remnants is driven by ClOx photolytically formed from ClONO2. At the end of May 1997, the halogen-induced ozone deficit at 450 K poleward of 30°N amounts to ~12% with ~10% in the polar vortex and ~2% in well-isolated vortex remnants after the vortex breakup.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2003-07-09
    Description: Intercontinental transport (ICT) of trace substances normally occurs on timescales ranging from a few days to several weeks. In this paper an extraordinary episode in November 2001 is presented, where pollution transport across the North Atlantic took only about one day. The transport mechanism, termed here an intercontinental pollution express highway because of the high wind speeds, was exceptional, as it involved an explosively generated cyclone, a so-called meteorological "bomb''. To the authors' knowledge, this is the first study describing pollution transport in a bomb. The discovery of this event was based on tracer transport model calculations and satellite measurements of NO2, a species with a relatively short lifetime in the atmosphere, which could be transported that far only because of the high wind speeds produced by the bomb. A 15-year transport climatology shows that intercontinental express highways are about four times more frequent in winter than in summer, in agreement with bomb climatologies. The climatology furthermore suggests that intercontinental express highways may be important for the budget of short-lived substances in the remote troposphere. For instance, for a substance with a lifetime of 1 day, express highways may be responsible for about two thirds of the total ICT. We roughly estimate that express highways connecting North America with Europe enhance the average NOx mixing ratios over Europe, due to North American emissions, by about 2-3 pptv in winter.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2003-06-23
    Description: Formaldehyde (HCHO) is an important intermediate product in the photochemical degradation of methane and non-methane volatile organic compounds. In August 2001, airborne formaldehyde measurements based on the Hantzsch reaction technique were performed during the Mediterranean INtensive Oxidant Study, MINOS. The detection limit of the instrument was 42 pptv (1s) at a time resolution of 180 s (10-90%). The overall uncertainty of the HCHO measurements was 30% at a mixing ratio of 300 pptv. In the marine boundary layer over the eastern Mediterranean Sea average HCHO concentrations were of the order of 1500 pptv, in reasonable agreement with results from a three-dimensional global chemical transport model of the lower atmosphere including non-methane volatile organic compound (NMVOC) chemistry. Above the boundary layer HCHO mixing ratios decreased with increasing altitude to a minimum level of 250 pptv at about 7 km. At higher altitudes (above 7 km) HCHO levels showed a strong dependency on the airmass origin. In airmasses from the North Atlantic/North American area HCHO levels were of the order of 300 pptv, a factor of 6 higher than values predicted by the model. Even higher HCHO levels, increasing to values of the order of 600 pptv at 11 km altitude, were observed in easterlies transporting air affected by the Indian monsoon outflow towards the Mediterranean basin. Only a small part (~30 pptv) of the large discrepancy between the model results and the measurements of HCHO in the free troposphere could be explained by a strong underestimation of the upper tropospheric acetone concentration by up to a factor of ten by the 3D-model. Therefore, the measurement-model difference in the upper troposphere remains unresolved, while the observed dependency of HCHO on airmass origin might indicate that unknown, relatively long-lived NMVOCs - or their reaction intermediates - associated with biomass burning are at least partially responsible for the observed discrepancies.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2003-06-24
    Description: Long-term measurements (over 4 years) of particle number size distributions (submicrometer particles, 3-800 nm in diameter), trace gases (NO, NO2, and O3), and meteorological parameters (global radiation, wind speed and direction, atmospheric pressure, etc.) were taken in a moderately polluted site in the city of Leipzig (Germany). The resulting complex data set was analyzed with respect to seasonal, weekly, and diurnal variation of the submicrometer aerosol. Car traffic produced a peak in the number size distribution at around 20 nm particle diameter during morning rush hour on weekdays. A second peak at 10-15 nm particle diameter occurred around noon during summer, confirmed by high correlation between concentration of particles less than 20 nm and the global radiation. This new-particle formation at noon was correlated with the amount of global radiation. A high concentration of accumulation mode particles (between 100 and 800 nm), which are associated with large particle-surface area, might prevent this formation. Such high particle concentration in the ultrafine region (particles smaller than 20 nm in diameter) was not detected in the particle mass, and thus, particle mass concentration is not suitable for determining the diurnal patterns of particles. In summer, statistical time series analysis showed a cyclic pattern of ultrafine particles with a period of one day and confirmed the correlation with global radiation. Principal component analysis (PCA) revealed a strong correlation between the particle concentration for 20-800 nm particles and the NO- and NO2-concentrations, indicating the influence of combustion processes on this broad size range, in particular during winter. In addition, PCA also revealed that particle concentration depended on meteorological conditions such as wind speed and wind direction, although the dependence differed with particle size class.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2003-06-20
    Description: Aim of this work is to provide a new insight into the physical basis of the meteorological-radar theory in attenuating media. Starting form the general integral form of the weather radar equation, a modified form of the classical weather radar equation at attenuating wavelength is derived. This modified radar equation includes a new parameter, called the range-bin extinction factor, taking into account the rainfall path attenuation within each range bin. It is shown that, only in the case of low-to-moderate attenuating media, the classical radar equation at attenuating wavelength can be used. These theoretical results are corroborated by using the radiative transfer theory where multiple scattering phenomena can be quantified. From a new definition of the radar reflectivity, in terms of backscattered specific intensity, a generalised radar equation is deduced. Within the assumption of first-order backscattering, the generalised radar equation is reduced to the modified radar equation, previously obtained. This analysis supports the conclusion that the description of radar observations at attenuating wavelength should include, in principle, first-order scattering effects. Numerical simulations are performed by using statistical relationships among the radar reflectivity, rain rate and specific attenuation, derived from literature. Results confirm that the effect of the range-bin extinction factor, depending on the considered frequency and range resolution, can be significant at X band for intense rain, while at Ka band and above it can become appreciable even for moderate rain. A discussion on the impact of these theoretical and numerical results is finally included.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2003-08-13
    Description: The long 1783-1784 eruption of Laki in southern Iceland, was one of the first eruptions to have been linked to an observed climate anomaly, having been held responsible for cold temperatures over much of the Northern Hemisphere in the period 1783-1785. Results from the first climate model simulation of the impact of a similar eruption to that of 1783-1784 are presented. Using sulphate aerosol fields produced in a companion chemical transport model simulation by Stevenson et al. (2003), the radiative forcing and climate response due to the aerosol are calculated here using the Reading Intermediate General Circulation Model (IGCM). The peak Northern Hemisphere mean direct radiative forcing is -5.5 Wm-2 in August 1783. The radiative forcing dies away quickly as the emissions from the volcano decrease; however, a small forcing remains over the Mediterranean until March 1784. There is little forcing in the Southern Hemisphere. There is shown to be an uncertainty of at least 50% in the direct radiative forcing due to assumptions concerning relative humidity and the sophistication of the radiative transfer code used. The indirect effects of the Laki aerosol are potentially large but essentially unquantifiable at the present time. In the IGCM at least, the aerosol from the eruption produces a climate response that is spatially very variable. The Northern Hemisphere mean temperature anomaly averaged over the whole of the calendar year containing most of the eruption is -0.21 K, statistically significant at the 95% level and in reasonable agreement with the available observations of the temperature during 1783.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2003-06-24
    Description: In a recent published paper Knopf et a1. (2002) have suggested that the homogeneous freezing behavior of stratospheric aerosols, under polar winter conditions, can be simulated experimentally in large bulk phase-sized droplet samples (0.12-0.27 cm in diameter). Their hypothesis is based on the fact that a nucleus, which freezes the supercooled phase, forms within the bulk volume of a given sample, and therefore, if large bulk volumes don't freeze in the laboratory, then small volumes in particles most certainly remain unfrozen in the stratosphere. The important question to ask here is whether their initial hypothesis, which they have used to analyze their data, is even correct to begin with. For example, does a nucleus, which turns over the phase, forms within the bulk volume or on the surface of the supercooled phase? Some recent studies provide both experimental (Tabazadeh et al., 2002a, b) and theoretical (Djikaev et al., 2002, 2003) support for the formation of the nucleus at the surface of a supercooled droplet. If the homogeneous nucleation process initiates at the droplet surface, then the approach taken by Knopf. et al. to study this crystallization process may not be directly applicable to the stratospheric situation.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2003-06-23
    Description: The probability of occurrence of ice crystal number densities in young cirrus clouds is examined based on airborne measurements. The observations have been carried out at midlatitudes in both hemispheres at equivalent latitudes (52-55°N/S) during the same season (local autumn in 2000). The in situ measurements considered in the present study include temperatures, vertical velocities, and total ice crystal concentrations, the latter determined with high precision and accuracy using a counterflow virtual impactor. Most young cirrus clouds typically contain high number densities (1-10 cm-3) of small (diameter
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2003-06-18
    Description: There are objects with some periods of higher than normal levels of risk of accidental atmospheric releases (nuclear, chemical, biological, etc.). Such accidents or events may occur due to natural hazards, human errors, terror acts, and during transportation of waste or various operations at high risk. A methodology for risk assessment is suggested and it includes two approaches: 1) probabilistic analysis of possible atmospheric transport patterns using long-term trajectory and dispersion modelling, and 2) forecast and evaluation of possible contamination and consequences for the environment and population using operational dispersion modelling. The first approach could be applied during the preparation stage, and the second - during the operation stage. The suggested methodology is applied on an example of the most important phases (lifting, transportation, and decommissioning) of the ``Kursk" nuclear submarine operation. It is found that the temporal variability of several probabilistic indicators (fast transport probability fields, maximum reaching distance, maximum possible impact zone, and average integral concentration of 137Cs) showed that the fall of 2001 was the most appropriate time for the beginning of the operation. These indicators allowed to identify the hypothetically impacted geographical regions and territories. In cases of atmospheric transport toward the most populated areas, the forecasts of possible consequences during phases of the high and medium potential risk levels based on a unit hypothetical release (e.g. 1 Bq) are performed. The analysis showed that the possible deposition fractions of 10-11 (Bq/m2) over the Kola Peninsula, and 10-12 - 10-13 (Bq/m2) for the remote areas of the Scandinavia and Northwest Russia could be observed. The suggested methodology may be used successfully for any potentially dangerous object involving risk of atmospheric release of hazardous materials of nuclear, chemical or biological nature.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2003-02-03
    Description: An informal intercomparison of two isoprene (C5H8) measurement techniques was carried out during Fall of 1998 at a field site located approximately 3 km west of Boulder, Colorado, USA. A new chemical ionization mass spectrometric technique (CIMS) was compared to a well-established gas chromatographic technique (GC). The CIMS technique utilized benzene cation chemistry to ionize isoprene. The isoprene levels measured by the CIMS were often larger than those obtained with the GC. The results indicate that the CIMS technique suffered from an anthropogenic interference associated with air masses from the Denver, CO metropolitan area as well as an additional interference occurring in clean conditions. However, the CIMS technique is also demonstrated to be sensitive and fast. Especially after introduction of a tandem mass spectrometric technique, it is therefore a candidate for isoprene measurements in remote environments near isoprene sources.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2003-01-28
    Description: The global sulphur cycle has been simulated using a general circulation model with a focus on the source and oxidation of atmospheric dimethylsulphide (DMS). The sensitivity of atmospheric DMS to the oceanic DMS climatology, the parameterisation of the sea-air transfer and to the oxidant fields have been studied. The importance of additional oxidation pathways (by O3 in the gas- and aqueous-phases and by BrO in the gas phase) not incorporated in global models has also been evaluated. While three different climatologies of the oceanic DMS concentration produce rather similar global DMS fluxes to the atmosphere at 24-27 Tg S yr -1, there are large differences in the spatial and seasonal distribution. The relative contributions of OH and NO3 radicals to DMS oxidation depends critically on which oxidant fields are prescribed in the model. Oxidation by O3 appears to be significant at high latitudes in both hemispheres. Oxidation by BrO could be significant even for BrO concentrations at sub-pptv levels in the marine boundary layer. The impact of such refinements on the DMS chemistry onto the indirect radiative forcing by anthropogenic sulphate aerosols is also discussed.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2003-01-28
    Description: We present a condensed-mass advection based model (MADVEC) designed to simulate the condensation/evaporation of liquid polar stratospheric cloud (PSC) particles. A (Eulerian-in-radius) discretization scheme is used, making the model suitable for use in global or mesoscale chemistry and transport models (CTMs). The mass advection equations are solved using an adaption of the weighted average flux (WAF) scheme. We validate the numerical scheme using an analytical solution for multicomponent aerosols. The physics of the model are tested using a test case designed by Meilinger et al. (1995). The results from this test corroborate the composition gradients across the size distribution under rapid cooling conditions that were reported in earlier studies.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2003-01-28
    Description: The millimeter and sub-millimeter waves have been attracting a lot of attention recently in the cloud remote sensing community. This is largely because of their potential use in measuring cirrus cloud parameters with airborne or space-borne radiometers. In this study, we examine the possibility of using polarization measurements in this frequency range to get information on the microphysical properties of cirrus clouds. By using a simple radiative transfer model, we calculated the brightness temperature differences at the vertical and horizontal polarization channels for the following seven frequencies: 90, 157, 220, 340, 463, 683, and 874 GHz. The ice crystals in cirrus clouds are modeled with nearly spherical particles, circular cylinder, and circular plate, as well as with mixtures of these types. We found that the polarization difference signal shows a unique "resonance'' feature with the change of ice particle characteristic size: it has a strong response only in a certain range of ice particle size, beyond that range it approaches zero. The size range where this resonance happens depends to a large extent on particle shape and aspect ratio, but to a much less extent on particle orientation. This resonance feature appears even when ice clouds are composed of a mixture of ice crystals in different shapes, although the magnitude and the position of the resonance peak may change, depending on how the mixture is made. Oriented particles generally show larger polarization difference than randomly oriented ones, and plates have larger polarization difference than cylinders. However, the state of particle orientation has a significantly stronger effect on the polarization difference than the particle shape (cylinder or plate). This makes it difficult to distinguish particle shapes using millimeter and sub-millimeter radiometric measurements, if there is no information available on particle orientations. However, if the state of particle shape mixture can be predetermined by other approaches, polarization measurements can help to determine ice particle characteristic size and orientation. This information, in turn, will benefit our retrieval of the ice water path of cirrus clouds.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2004-12-21
    Description: Polar mesosphere summer echoes (PMSE) are very strong radar echoes primarily studied in the VHF wavelength range from altitudes close to the polar summer mesopause. Radar waves are scattered at irregularities in the radar refractive index which at mesopause altitudes is effectively determined by the electron number density. For efficient scatter, the electron number density must reveal structures at the radar half wavelength (Bragg condition for monostatic radars; ~3 m for typical VHF radars). The question how such small scale electron number density structures are created in the mesopause region has been a longstanding open scientific question for almost 30 years. This paper reviews experimental and theoretical milestones on the way to an advanced understanding of PMSE. Based on new experimental results from in situ observations with sounding rockets, ground based observations with radars and lidars, numerical simulations with microphysical models of the life cycle of mesospheric aerosol particles, and theoretical considerations regarding the diffusivity of electrons in the ice loaded complex plasma of the mesopause region, a consistent explanation for the generation of these radar echoes has been developed. The main idea is that mesospheric neutral air turbulence in combination with a significantly reduced electron diffusivity due to the presence of heavy charged ice aerosol particles (radii ~5–50 nm) leads to the creation of structures at spatial scales significantly smaller than the inner scale of the neutral gas turbulent velocity field itself. Importantly, owing to their very low diffusivity, the plasma structures acquire a very long lifetime, i.e., 10 min to hours in the presence of particles with radii between 10 and 50 nm. This leads to a temporal decoupling of active neutral air turbulence and the existence of small scale plasma structures and PMSE and thus readily explains observations proving the absence of neutral air turbulence at PMSE altitudes. With this explanation at hand, it becomes clear that PMSE are a suitable tool to permanently monitor the thermal and dynamical structure of the mesopause region allowing insights into important atmospheric key parameters like neutral temperatures, winds, gravity wave parameters, turbulence, solar cycle effects, and long term changes.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2004-12-20
    Description: Aerosol size distributions have been measured at the Swedish background station Aspvreten (58.8° N, 17.4° E). Different states of the aerosol were determined using a novel application of cluster analysis. The analysis resulted in eight different clusters capturing different stages of the aerosol lifecycle. The atmospheric aerosol size distributions were interpreted as belonging to fresh, intermediate and aged types of size distribution. With aid of back trajectory analysis we present statistics concerning the relation of source area and different meteorological parameters using a non-Lagrangian approach. Source area is argued to be important although not sufficient to describe the observed aerosol properties. Especially processing by clouds and precipitation is shown to be crucial for the evolution of the aerosol size distribution. As much as 60% of the observed size distributions present features that are likely to be related to cloud processes or wet deposition. The lifetime properties of different sized aerosols are discussed by means of measured variability of the aerosol size distribution. Processing by clouds and precipitation is shown to be especially crucial in the size range 100 nm and larger. This indicates an approximate limit for activation in clouds to 100 nm in this type of environment. The aerosol lifecycle is discussed. Size distributions indicating signs of recent new particle formation (~30% of the observed size distributions) represent the first stage in the lifecycle. Aging of the aerosol size distribution may follow two branches: either growth by condensation and coagulation or processing by non-precipitating clouds. In both cases mass is accumulated. Wet removal is the main process capable of removing aerosol mass. Wet deposition is argued to be an important mechanism in reaching a state where nucleation may occur (i.e. sufficiently low aerosol surface area) in environments similar to the one studied.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...