ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 118 (2015): 122-135, doi:10.1016/j.dsr2.2015.02.008.
    Description: A coupled biophysical model is used to examine the impact of changes in sea ice and snow cover and nutrient availability on the formation of massive under-ice phytoplankton blooms (MUPBs) in the Chukchi Sea of the Arctic Ocean over the period 1988–2013. The model is able to reproduce the basic features of the ICESCAPE (Impacts of Climate on EcoSystems and Chemistry of the Arctic Pacific Environment) observed MUPB during July 2011. The simulated MUPBs occur every year during 1988–2013, mainly in between mid-June and mid-July. While the simulated under-ice blooms of moderate magnitude are widespread in the Chukchi Sea, MUPBs are less so. On average, the area fraction of MUPBs in the ice-covered areas of the Chukchi Sea during June and July is about 8%, which has been increasing at a rate of 2% yr–1 over 1988–2013. The simulated increase in the area fraction as well as primary productivity and chlorophyll a biomass is linked to an increase in light availability, in response to a decrease in sea ice and snow cover, and an increase in nutrient availability in the upper 100 m of the ocean, in conjunction with an intensification of ocean circulation. Simulated MUPBs are temporally sporadic and spatially patchy because of strong spatiotemporal variations of light and nutrient availability. However, as observed during ICESCAPE, there is a high likelihood that MUPBs may form at the shelf break, where the model simulates enhanced nutrient concentration that is seldom depleted between mid-June and mid-July because of generally robust shelf-break upwelling and other dynamic ocean processes. The occurrence of MUPBs at the shelf break is more frequent in the past decade than in the earlier period because of elevated light availability there. It may be even more frequent in the future if the sea ice and snow cover continues to decline such that light is more available at the shelf break to further boost the formation of MUPBs there.
    Description: This work is supported by the NASA Cryosphere Program and Climate and Biological Response Program and the NSF Office of Polar Programs (Grant Nos. NNX12AB31G; NNX11AO91G; ARC-0901987).
    Keywords: Arctic Ocean ; Chukchi Sea ; Phytoplankton ; Blooms ; Sea ice ; Snow depth ; Light availability ; Nutrient availability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cold Regions Science and Technology 109 (2015): 9-17, doi:10.1016/j.coldregions.2014.08.004.
    Description: Traditional measures for detecting oil spills in the open-ocean are both difficult to apply and less effective in ice-covered seas. In view of the increasing levels of commercial activity in the Arctic, there is a growing gap between the potential need to respond to an oil spill in Arctic ice-covered waters and the capability to do so. In particular, there is no robust operational capability to remotely locate oil spilt under or encapsulated within sea ice. To date, most research approaches the problem from on or above the sea ice, and thus they suffer from the need to ‘see’ through the ice and overlying snow. Here we present results from a large-scale tank experiment which demonstrate the detection of oil beneath sea ice, and the quantification of the oil layer thickness is achievable through the combined use of an upward-looking camera and sonar deployed in the water column below a covering of sea ice. This approach using acoustic and visible measurements from below is simple and effective, and potentially transformative with respect to the operational response to oil spills in the Arctic marine environment. These results open up a new direction of research into oil detection in ice-covered seas, as well as describing a new and important role for underwater vehicles as platforms for oil-detecting sensors under Arctic sea ice.
    Description: This work was funded through a competitive grant for the detection of oil under ice obtained from Prince William Sound Oil Spill Recovery Institute (OSRI) (11-10-09). Additional funding/resources was obtained through the EU FP7 funded ACCESS programme (Grant Agreement n°. 265863).
    Keywords: Arctic ; Oil spill ; Sea ice ; Oil detection ; Sonar ; Camera
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rodriguez, E., Bourassa, M., Chelton, D., Farrar, J. T., Long, D., Perkovic-Martin, D., & Samelson, R. The winds and currents mission concept. Frontiers in Marine Science, 6, (2019): 438, doi:10.3389/fmars.2019.00438.
    Description: The Winds and Currents Mission (WaCM) is a proposed approach to meet the need identified by the NRC Decadal Survey for the simultaneous measurements of ocean vector winds and currents. WaCM features a Ka-band pencil-beam Doppler scatterometer able to map ocean winds and currents globally. We review the principles behind the WaCM measurement and the requirements driving the mission. We then present an overview of the WaCM observatory and tie its capabilities to other OceanObs reviews and measurement approaches.
    Description: ER was funded under NASA grant NNN13D462T. DC was funded under NASA grant NNX10AO98G. JF was funded under NASA grants NNX14AM71G and NNX16AH76G. DL was funded under NASA grant NNX14AM67G. DP-M was funded under NASA grant NNH13ZDA001N. RS was funded under NASA grant NNX14AM66G.
    Keywords: Surface currents ; Surface winds ; Doppler ; Scatterometer ; Air-sea interaction ; Sea ice ; Relative vorticity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Smith, G. C., Allard, R., Babin, M., Bertino, L., Chevallier, M., Corlett, G., Crout, J., Davidson, F., Delille, B., Gille, S. T., Hebert, D., Hyder, P., Intrieri, J., Lagunas, J., Larnicol, G., Kaminski, T., Kater, B., Kauker, F., Marec, C., Mazloff, M., Metzger, E. J., Mordy, C., O'Carroll, A., Olsen, S. M., Phelps, M., Posey, P., Prandi, P., Rehm, E., Reid, P., Rigor, I., Sandven, S., Shupe, M., Swart, S., Smedstad, O. M., Solomon, A., Storto, A., Thibaut, P., Toole, J., Wood, K., Xie, J., Yang, Q., & WWRP PPP Steering Grp. Polar ocean observations: A critical gap in the observing system and its effect on environmental predictions from hours to a season. Frontiers in Marine Science, 6, (2019): 429, doi:10.3389/fmars.2019.00429.
    Description: There is a growing need for operational oceanographic predictions in both the Arctic and Antarctic polar regions. In the former, this is driven by a declining ice cover accompanied by an increase in maritime traffic and exploitation of marine resources. Oceanographic predictions in the Antarctic are also important, both to support Antarctic operations and also to help elucidate processes governing sea ice and ice shelf stability. However, a significant gap exists in the ocean observing system in polar regions, compared to most areas of the global ocean, hindering the reliability of ocean and sea ice forecasts. This gap can also be seen from the spread in ocean and sea ice reanalyses for polar regions which provide an estimate of their uncertainty. The reduced reliability of polar predictions may affect the quality of various applications including search and rescue, coupling with numerical weather and seasonal predictions, historical reconstructions (reanalysis), aquaculture and environmental management including environmental emergency response. Here, we outline the status of existing near-real time ocean observational efforts in polar regions, discuss gaps, and explore perspectives for the future. Specific recommendations include a renewed call for open access to data, especially real-time data, as a critical capability for improved sea ice and weather forecasting and other environmental prediction needs. Dedicated efforts are also needed to make use of additional observations made as part of the Year of Polar Prediction (YOPP; 2017–2019) to inform optimal observing system design. To provide a polar extension to the Argo network, it is recommended that a network of ice-borne sea ice and upper-ocean observing buoys be deployed and supported operationally in ice-covered areas together with autonomous profiling floats and gliders (potentially with ice detection capability) in seasonally ice covered seas. Finally, additional efforts to better measure and parameterize surface exchanges in polar regions are much needed to improve coupled environmental prediction.
    Description: The development of the new generation of floats (PRO-ICE) to be operated under ice was funded by the French project NAOS. Twelve PRO-ICE were funded by NAOS and nine by the Canadian Foundation for Innovation (FCI-30124). The GreenEdge project is funded by the following French and Canadian programs and agencies: ANR (Contract #111112), CNES (project #131425), IPEV (project #1164), CSA, Fondation Total, ArcticNet, LEFE and the French Arctic Initiative (GreenEdge project). The INTAROS project has received funding from the European Union’s Horizon 2020 Research and Innovation Program under grant agreement No. 727890. The setup of the ArcMBA system and the experiment described in section “Quantitative Network Design” were funded by the European Space Agency through its support to science element (contract #4000117710/16/I-NB). SSw was supported by a Wallenberg Academy Fellowship (WAF 2015.0186). The work at CLS (GL, PPr, and PT) has been funded by internal investment, in relation with on-going CNES and ESA funded studies making use of radar data over Polar regions. EMODNET (BK) is funded by the European Commission. NRL Funding (for RA, JC, DH, EM, PPo, OS) provided by NRL Research Option “Determining the Impact of Sea Ice Thickness on the Arctic’s Naturally Changing Environment (DISTANCE), ONR 6.2 Data Assimilation and under program element 0602435N (JC, RA, DH). JT’s Arctic research activities are supported by the U.S. National Science Foundation and ONR. SG was funded by NSF grants/awards PLR-1425989 and OCE 1658001. IR is funded by contributors to the US IABP (including CG, DOE, NASA, NIC, NOAA, NSF, ONR). CAFS is supported by the NOAA ESRL Physical Sciences Division (AS and JI). LB and JX are funded by CMEMS. The WWRP PPP Steering Group is funded by a WMO trust fund with support from AWI for the ICO. The publication fee is provided by ECCC.
    Keywords: Polar observations ; Operational oceanography ; Ocean data assimilation ; Ocean modeling ; Forecasting ; Sea ice ; Air-sea-ice fluxes ; YOPP
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ocean Modelling 105 (2016): 1-12, doi:10.1016/j.ocemod.2016.02.009
    Description: The sea state of the Beaufort and Chukchi seas is controlled by the wind forcing and the amount of ice-free water available to generate surface waves. Clear trends in the annual duration of the open water season and in the extent of the seasonal sea ice minimum suggest that the sea state should be increasing, independent of changes in the wind forcing. Wave model hindcasts from four selected years spanning recent conditions are consistent with this expectation. In particular, larger waves are more common in years with less summer sea ice and/or a longer open water season, and peak wave periods are generally longer. The increase in wave energy may affect both the coastal zones and the remaining summer ice pack, as well as delay the autumn ice-edge advance. However, trends in the amount of wave energy impinging on the ice-edge are inconclusive, and the associated processes, especially in the autumn period of new ice formation, have yet to be well-described by in situ observations. There is an implicit trend and evidence for increasing wave energy along the coast of northern Alaska, and this coastal signal is corroborated by satellite altimeter estimates of wave energy.
    Description: This work was supported by the Office of Naval Research, Code 322, “Arctic and Global Prediction”, directed by Drs. Martin Jeffries and Scott Harper. (Grant numbers and Principal Investigators are: Ackley, N000141310435; Babanin, N000141310278; Doble, N000141310290; Fairall, N0001413IP20046; Gemmrich, N000141310280; Girard-Ardhuin and Ardhuin, N000141612376; Graber, N000141310288; Guest, N0001413WX20830; Holt, N0001413IP20050; Lehner, N000141310303; Maksym, N000141310446; Perrie, N00014-15-1-2611; Rogers, N0001413WX20825; Shen, N000141310294; Squire, N000141310279; Stammerjohn, N000141310434; Thomson, N000141310284; Wadhams, N000141310289.)
    Keywords: Sea ice ; Arctic Ocean ; Ocean surface waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...