ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Geophysical Union  (321)
  • American Physical Society
  • Copernicus
  • 2020-2023  (332)
Collection
Years
Year
  • 1
    Publication Date: 2022-04-19
    Description: The late Pleistocene Yedoma Ice Complex is an ice-rich and organic-bearing type of permafrost deposit widely distributed across Beringia and is assumed to be especially prone to deep degradation with warming temperature, which is a potential tipping point of the climate system. To better understand Yedoma formation, its local characteristics, and its regional sedimentological composition, we compiled the grain-size distributions (GSDs) of 771 samples from 23 Yedoma locations across the Arctic; samples from sites located close together were pooled to form 17 study sites. In addition, we studied 160 samples from three non-Yedoma ice-wedge polygon and floodplain sites for the comparison of Yedoma samples with Holocene depositional environments. The multimodal GSDs indicate that a variety of sediment production, transport, and depositional processes were involved in Yedoma formation. To disentangle these processes, a robust endmember modeling analysis (rEMMA) was performed. Nine robust grain-size endmembers (rEMs) characterize Yedoma deposits across Beringia. The study sites of Yedoma deposits were finally classified using cluster analysis. The resulting four clusters consisted of two to five sites that are distributed randomly across northeastern Siberia and Alaska, suggesting that the differences are associated with rather local conditions. In contrast to prior studies suggesting a largely aeolian contribution to Yedoma sedimentation, the wide range of rEMs indicates that aeolian sedimentation processes cannot explain the entire variability found in GSDs of Yedoma deposits. Instead, Yedoma sedimentation is controlled by local conditions such as source rocks and weathering processes, nearby paleotopography, and diverse sediment transport processes. Our findings support the hypothesis of a polygenetic Yedoma origin involving alluvial, fluvial, and niveo-aeolian transport; accumulation in ponding waters; and in situ frost weathering as well as postdepositional processes of solifluction, cryoturbation, and pedogenesis. The characteristic rEM composition of the Yedoma clusters will help to improve how grain-size-dependent parameters in permafrost models and soil carbon budgets are considered. Our results show the characteristic properties of ice-rich Yedoma deposits in the terrestrial Arctic. Characterizing and quantifying site-specific past depositional processes is crucial for elucidating and understanding the trajectories of this unique kind of ice-rich permafrost in a warmer future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 125(6), (2020): e2019JB019239, doi:10.1029/2019JB019239.
    Description: P‐to‐S‐converted waves observed in controlled‐source multicomponent ocean bottom seismometer (OBS) records were used to derive the Vp/Vs structure of Cascadia Basin sediments. We used P‐to‐S waves converted at the basement to derive an empirical function describing the average Vp/Vs of Cascadia sediments as a function of sediment thickness. We derived one‐dimensional interval Vp/Vs functions from semblance velocity analysis of S‐converted intrasediment and basement reflections, which we used to define an empirical Vp/Vs versus burial depth compaction trend. We find that seaward from the Cascadia deformation front, Vp/Vs structure offshore northern Oregon and Washington shows little variability along strike, while the structure of incoming sediments offshore central Oregon is more heterogeneous and includes intermediate‐to‐deep sediment layers of anomalously elevated Vp/Vs. These zones with elevated Vp/Vs are likely due to elevated pore fluid pressures, although layers of high sand content intercalated within a more clayey sedimentary sequence, and/or a higher content of coarser‐grained clay minerals relative to finer‐grained smectite could be contributing factors. We find that the proto‐décollement offshore central Oregon develops within the incoming sediments at a low‐permeability boundary that traps fluids in a stratigraphic level where fluid overpressure exceeds 50% of the differential pressure between the hydrostatic pressure and the lithostatic pressure. Incoming sediments with the highest estimated fluid overpressures occur offshore central Oregon where deformation of the accretionary prism is seaward vergent. Conversely, landward vergence offshore northern Oregon and Washington correlates with more moderate pore pressures and laterally homogeneous Vp/Vs functions of Cascadia Basin sediments.
    Description: This research was funded by National Science Foundation (NSF) Grant OCE‐1657237 to J. P. C, OCE‐1657839 to A. F. A. and S. H., and OCE‐1657737 to S. M. C. Data used in this study were acquired with funding from NSF Grants OCE‐1029305 and OCE‐1249353. Data used in this research were provided by instruments from the Ocean Bottom Seismic Instrument Center (http://obsic.whoi.edu, formerly OBSIP), which is funded by the NSF. OBSIC/OBSIP data are archived at the IRIS Data Management Center (http://www.iris.edu) under network code X6 (https://doi.org/10.7914/SN/X6_2012). Data processing was conducted with Emerson‐Paradigm Software package Echos licensed to Woods Hole Oceanographic Institution under Paradigm Academic Software Program and MATLAB package SeismicLab of the University of Alberta, Canada (http://seismic-lab.physics.ualberta.ca), under GNU General Public License (MATLAB® is a registered trademark of MathWorks).
    Description: 2020-11-28
    Keywords: Vp/Vs ; sediments ; ocean bottom seismometer ; Juan de Fuca plate ; Cascadia
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(8), (2020): e2020JC016068, doi:10.1029/2020JC016068.
    Description: Labrador Sea Water (LSW) is a major component of the deep limb of the Atlantic Meridional Overturning Circulation, yet LSW transport pathways and their variability lack a complete description. A portion of the LSW exported from the subpolar gyre is advected eastward along the North Atlantic Current and must contend with the Mid‐Atlantic Ridge before reaching the eastern basins of the North Atlantic. Here, we analyze observations from a mooring array and satellite altimetry, together with outputs from a hindcast ocean model simulation, to estimate the mean transport of LSW across the Charlie‐Gibbs Fracture Zone (CGFZ), a primary gateway for the eastward transport of the water mass. The LSW transport estimated from the 25‐year altimetry record is 5.3 ± 2.9 Sv, where the error represents the combination of observational variability and the uncertainty in the projection of the surface velocities to the LSW layer. Current velocities modulate the interannual to higher‐frequency variability of the LSW transport at the CGFZ, while the LSW thickness becomes important on longer time scales. The modeled mean LSW transport for 1993–2012 is higher than the estimate from altimetry, at 8.2 ± 4.1 Sv. The modeled LSW thickness decreases substantially at the CGFZ between 1996 and 2009, consistent with an observed decline in LSW volume in the Labrador Sea after 1994. We suggest that satellite altimetry and continuous hydrographic measurements in the central Labrador Sea, supplemented by profiles from Argo floats, could be sufficient to quantify the LSW transport at the CGFZ.
    Description: A. G. N. appreciates conversations with Kathy Donohue, Tom Rossby and Lisa Beal, which helped to interpret the results. J. B. P. acknowledges support from NSF through Grant OCE‐1947829. The authors thank all colleagues and ship crew involved in the R/V Meteor cruise M‐82/2 and Maria S. Merian cruise MSM‐21/2. The mooring data presented in this paper were funded by NSF through Grant OCE‐0926656.
    Description: 2021-01-03
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 47(3), (2020): e2019GL086703, doi:10.1029/2019GL086703.
    Description: Salt marsh assessments focus on vertical metrics such as accretion or lateral metrics such as open‐water conversion, without exploration of how the dimensions are related. We exploited a novel geospatial data set to explore how elevation is related to the unvegetated‐vegetated marsh ratio (UVVR), a lateral metric, across individual marsh “units” within four estuarine‐marsh systems. We find that elevation scales consistently with the UVVR across systems, with lower elevation units demonstrating more open‐water conversion and higher UVVRs. A normalized elevation‐UVVR relationship converges across systems near the system‐mean elevation and a UVVR of 0.1, a critical threshold identified by prior studies. This indicates that open‐water conversion becomes a dominant lateral instability process at a relatively conservative elevation threshold. We then integrate the UVVR and elevation to yield lifespan estimates, which demonstrate that higher elevation marshes are more resilient to internal deterioration, with an order‐of‐magnitude longer lifespan than predicted for lower elevation marshes.
    Description: This study was supported by the USGS through the Coastal Marine Hazards/Resources Program, the National Park Service through the Natural Resource Preservation Program, and the U.S. Fish and Wildlife Service through the Science Support Partnership. Erika Lentz, Elizabeth Pendleton, Meagan Gonneea, Joel Carr, and two anonymous reviewers provided constructive advice on the study. S.F. was partly supported by US National Science Foundation award 1637630 (PIE LTER), 1832221 (VCR LTER). The geospatial data used in this study are published in the Coastal Wetlands Synthesis Products catalog on ScienceBase (https://www.sciencebase.gov/catalog/item/5b73325ee4b0f5d5787c5ff3).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research- Biogeosciences 125(4), (2020): e2019JG005158, doi:10.1029/2019JG005158.
    Description: Long‐term soil warming can decrease soil organic matter (SOM), resulting in self‐reinforcing feedback to the global climate system. We investigated additional consequences of SOM reduction for soil water holding capacity (WHC) and soil thermal and hydrological buffering. At a long‐term soil warming experiment in a temperate forest in the northeastern United States, we suspended the warming treatment for 104 days during the summer of 2017. The formerly heated plot remained warmer (+0.39 °C) and drier (−0.024 cm3 H2O cm−3 soil) than the control plot throughout the suspension. We measured decreased SOM content (−0.184 g SOM g−1 for O horizon soil, −0.010 g SOM g−1 for A horizon soil) and WHC (−0.82 g H2O g−1 for O horizon soil, −0.18 g H2O g−1 for A horizon soil) in the formerly heated plot relative to the control plot. Reduced SOM content accounted for 62% of the WHC reduction in the O horizon and 22% in the A horizon. We investigated differences in SOM composition as a possible explanation for the remaining reductions with Fourier transform infrared (FTIR) spectra. We found FTIR spectra that correlated more strongly with WHC than SOM, but those particular spectra did not differ between the heated and control plots, suggesting that SOM composition affects WHC but does not explain treatment differences in this study. We conclude that SOM reductions due to soil warming can reduce WHC and hydrological and thermal buffering, further warming soil and decreasing SOM. This feedback may operate in parallel, and perhaps synergistically, with carbon cycle feedbacks to climate change.
    Description: We would like to acknowledge Jeffery Blanchard, Priya Chowdhury, Kristen DeAngelis, Luiz Dominguez‐Horta, Kevin Geyer, Rachelle Lacroix, Xaiojun Liu, William Rodriguez, and Alexander Truchonand and for assistance with field sampling. We would like to acknowledge Michael Bernard for assistance with field sampling and lab work. We would like to acknowledge Aaron Ellison for statistical consultation. This research was financially supported by the U.S. National Science Foundation's Long Term Ecological Research Program (NSF‐DEB‐0620443 and NSF‐DEB‐1237491), the Long Term Research in Environmental Biology Program (NSF DEB‐1456528) , and the U.S. Department of Energy (DOE‐DE‐SC0005421 and DOE‐DE‐SC0010740). Data used in this study are available from the Harvard Forest Data Archive (Datasets HF018‐03, HF018‐04, and HF018‐13), accessible at https://harvardforest.fas.harvard.edu/harvard‐forest‐data‐archive.
    Description: 2020-10-04
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(8), (2020): e2020JC016445, doi:10.1029/2020JC016445.
    Description: The Mid‐Atlantic Bight (MAB) Cold Pool is a bottom‐trapped, cold (temperature below 10°C) and fresh (practical salinity below 34) water mass that is isolated from the surface by the seasonal thermocline and is located over the midshelf and outer shelf of the MAB. The interannual variability of the Cold Pool with regard to its persistence time, volume, temperature, and seasonal along‐shelf propagation is investigated based on a long‐term (1958–2007) high‐resolution regional model of the northwest Atlantic Ocean. A Cold Pool Index is defined and computed in order to quantify the strength of the Cold Pool on the interannual timescale. Anomalous strong, weak, and normal years are categorized and compared based on the Cold Pool Index. A detailed quantitative study of the volume‐averaged heat budget of the Cold Pool region (CPR) has been examined on the interannual timescale. Results suggest that the initial temperature and abnormal warming/cooling due to advection are the primary drivers in the interannual variability of the near‐bottom CPR temperature anomaly during stratified seasons. The long persistence of temperature anomalies from winter to summer in the CPR also suggests a potential for seasonal predictability.
    Description: This work was funded by the National Oceanic and Atmospheric Administration through Awards NOAA‐NA‐15OAR4310133 and NOAA‐NA‐13OAR4830233 and the National Science Foundation Awards OCE‐1049088, OCE‐1419584, and OCE‐0961545.
    Description: 2021-02-03
    Keywords: Mid‐Atlantic Bight ; Cold Pool ; continental shelf ; temperature balance ; interannual variability ; near‐bottom temperature
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(8), (2020): e2020JC016197, doi:10.1029/2020JC016197.
    Description: Synoptic shipboard measurements, together with historical hydrographic data and satellite data, are used to elucidate the detailed structure of the Atlantic Water (AW) boundary current system in the southern Canada Basin and its connection to the upstream source of AW in the Chukchi Borderland. Nine high‐resolution occupations of a transect extending from the Beaufort shelf to the deep basin near 152°W, taken between 2003 and 2018, reveal that there are two branches of the AW boundary current that flow beneath and counter to the Beaufort Gyre. Each branch corresponds to a warm temperature core and transports comparable amounts of Fram Strait Branch Water between roughly 200–700 m depth, although they are characterized by a different temperature/salinity (T/S) structure. The mean volume flux of the combined branches is 0.87 ± 0.13 Sv. Using the historical hydrographic data, the two branches are tracked upstream by their temperature cores and T/S signatures. This sheds new light on how the AW negotiates the Chukchi Borderland and why two branches emerge from this region. Lastly, the propagation of warm temperature anomalies through the region is quantified and shown to be consistent with the deduced circulation scheme.
    Description: This work was funded by the following sources: National Science Foundation Grants PLR‐1504333, OPP‐1733564, and OPP‐1504394; National Oceanic and Atmospheric Administration Grant NA14OAR4320158; and National Aeronautics and Space Administration Grant NNX10AF42G.
    Description: 2021-01-27
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-01-10
    Description: The mid-Pliocene warm period (3.264–3.025 Ma) is the most recent geological period during which atmospheric CO2 levels were similar to recent historical values (∼400 ppm). Several proxy reconstructions for the mid-Pliocene show highly reduced zonal sea surface temperature (SST) gradients in the tropical Pacific Ocean, indicating an El Niño-like mean state. However, past modelling studies do not show these highly reduced gradients. Efforts to understand mid-Pliocene climate dynamics have led to the Pliocene Model Intercomparison Project (PlioMIP). Results from the first phase (PlioMIP1) showed clear El Niño variability (albeit significantly reduced) and did not show the greatly reduced time-mean zonal SST gradient suggested by some of the proxies. In this work, we study El Niño–Southern Oscillation (ENSO) variability in the PlioMIP2 ensemble, which consists of additional global coupled climate models and updated boundary conditions compared to PlioMIP1. We quantify ENSO amplitude, period, spatial structure and “flavour”, as well as the tropical Pacific annual mean state in mid-Pliocene and pre-industrial simulations. Results show a reduced ENSO amplitude in the model-ensemble mean (−24 %) with respect to the pre-industrial, with 15 out of 17 individual models showing such a reduction. Furthermore, the spectral power of this variability considerably decreases in the 3–4-year band. The spatial structure of the dominant empirical orthogonal function shows no particular change in the patterns of tropical Pacific variability in the model-ensemble mean, compared to the pre-industrial. Although the time-mean zonal SST gradient in the equatorial Pacific decreases for 14 out of 17 models (0.2 ∘C reduction in the ensemble mean), there does not seem to be a correlation with the decrease in ENSO amplitude. The models showing the most “El Niño-like” mean state changes show a similar ENSO amplitude to that in the pre-industrial reference, while models showing more “La Niña-like” mean state changes generally show a large reduction in ENSO variability. The PlioMIP2 results show a reasonable agreement with both time-mean proxies indicating a reduced zonal SST gradient and reconstructions indicating a reduced, or similar, ENSO variability.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-01-10
    Description: The mid-Pliocene (∼3 Ma) is one of the most recent warm periods with high CO2 concentrations in the atmosphere and resulting high temperatures, and it is often cited as an analog for near-term future climate change. Here, we apply a moisture budget analysis to investigate the response of the large-scale hydrological cycle at low latitudes within a 13-model ensemble from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2). The results show that increased atmospheric moisture content within the mid-Pliocene ensemble (due to the thermodynamic effect) results in wetter conditions over the deep tropics, i.e., the Pacific intertropical convergence zone (ITCZ) and the Maritime Continent, and drier conditions over the subtropics. Note that the dynamic effect plays a more important role than the thermodynamic effect in regional precipitation minus evaporation (PmE) changes (i.e., northward ITCZ shift and wetter northern Indian Ocean). The thermodynamic effect is offset to some extent by a dynamic effect involving a northward shift of the Hadley circulation that dries the deep tropics and moistens the subtropics in the Northern Hemisphere (i.e., the subtropical Pacific). From the perspective of Earth's energy budget, the enhanced southward cross-equatorial atmospheric transport (0.22 PW), induced by the hemispheric asymmetries of the atmospheric energy, favors an approximately 1∘ northward shift of the ITCZ. The shift of the ITCZ reorganizes atmospheric circulation, favoring a northward shift of the Hadley circulation. In addition, the Walker circulation consistently shifts westward within PlioMIP2 models, leading to wetter conditions over the northern Indian Ocean. The PlioMIP2 ensemble highlights that an imbalance of interhemispheric atmospheric energy during the mid-Pliocene could have led to changes in the dynamic effect, offsetting the thermodynamic effect and, hence, altering mid-Pliocene hydroclimate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-07
    Description: Vegetation biomass is a globally important climate-relevant terrestrial carbon pool. Landsat, Sentinel-2 and Sentinel-1 satellite missions provide a landscape-level opportunity to upscale tundra vegetation communities and biomass in high latitude terrestrial environments. We assessed the applicability of landscape-level remote sensing for the low Arctic Lena Delta region in Northern Yakutia, Siberia, Russia. The Lena Delta is the largest delta in the Arctic and is located North of the treeline and the 10 °C July isotherm at 72° Northern Latitude in the Laptev Sea region. During the LENA2018 expedition, we set up plots for plant projective cover and Above Ground Biomass (AGB) and sampled shrubs for shrub-ring analyses. AGB is providing the magnitude of the carbon flux, whereas stand age is irreplaceable to provide the cycle rate. AGB data and shrub age data clearly show a separation between i) low disturbance landscape types with dominant AGB moss contribution, but always low vascular plant AGB (〈0.5 kg m-2) characterised by old shrubs of several decades of stand age versus ii) a much higher vascular plant AGB contribution (〉 0.5 kg m-2) with only young shrubs in high disturbance regimes. The low disturbance regimes are represented on the Holocene and Pleistocene delta terraces in form of azonal polygonal tundra complexes and softly dissected valleys with zonal tussock tundra. In contrast, the high disturbance regimes are sites of thermo-erosion such as along thermo-erosional valleys and on floodplains. We upscaled AGB and above ground carbon pool ages using a Sentinel-2 satellite acquisition from early August 2018. We classified via classification training using Elementary Sampling Units that are the 30 m x 30 m vegetation field plots. We then used the land cover classes and grouped them according to their settings either in high disturbance or low disturbance regimes with each associated AGB value ranges and shrub age regimes. We also evaluated circum-Arctic harmonized ESA GlobPermafrost land cover and vegetation height remote sensing products covering subarctic to Arctic land cover types for the central Lena Delta. The products are freely available and published in the PANGAEA data repository under https://doi.org/10.1594/PANGAEA.897916 and https://doi.org/10.1594/PANGAEA.897045. ESA GlobPermafrost land cover and vegetation height remote sensing products and our Sentinel-2 derived AGB product for the central Lena Delta shows realistic spatial patterns of landcover classes and biomass distribution at landscape level. However, in all products, the high biomass patches of high shrubs in the tundra landscape could not spatially be resolved as they are confined to patchy and linear distribution, not representing large enough areas suitable for upscaling. We found that high disturbance regimes with linked high and rapid AGB fluxes are distributed mainly on the floodplains and as patches along thermoerosioal features, e.g. valleys. Whereas the low disturbance landscapes on Yedoma upland tundra and Holocene terraces occur with larger area coverage representing decades slower and in magnitude smaller AGB fluxes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...