ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media S.A.  (66)
  • 2025-2025
  • 2020-2023  (66)
  • 1
    Publication Date: 2022-03-29
    Description: Earthquake Early Warning Systems (EEWSs) represent a technical-scientific challenge aimed at improving the chance of the population exposed to the earthquake shaking of surviving or being less affected. The ability of an EEWS to affect the risk and, in particular, vulnerability and exposure, may determine serious legal responsibilities for people involved in the system, as scientists and experts. The main question concerns, in fact, the relationship between EEWSs and the predictability and avoidability of earthquake effects-i.e., the ground shaking affecting citizens and infrastructures - and the possibility for people to adopt self-protective behavior and/or for industrial infrastructures to be secured. In Italy, natural disasters, such as the 2009 L’Aquila earthquake, teach us that the relationship between science and law is really difficult. So, before EEW’s become operational in Italy, it is necessary to: 1) examine the legislative and technical solutions adopted by some of the international legal systems in countries where this service is offered to citizens; 2) reconstruct the international and European regulatory framework that promotes the introduction of EW systems as life-saving tools for the protection of the right to life and understand whether and how these regulatory texts can impose an obligation on the Italian legal system to develop EEWS; 3) understand what responsibilities could be ascribed to the scientists and technicians responsible for managing EEWS in Italy, analyzing the different impact of vulnerability and exposure on the predictability and avoidability of the harmful event; 4) reflect on the lessons that our legal system will have to learn from other Countries when implementing EEW systems. In order to find appropriate solutions, it is essential to reflect on the opportunity to provide shared and well-structured protocols and creating detailed disclaimers clearly defining the limits of the service. A central role must be recognized to education, because people should not only expect to receive a correct alarm but must be able to understand the uncertainties involved in rapid estimates, be prepared to face the risk, and react in the right way.
    Description: This work has been carried out within the Project ART-IT (Allerta Rapida Terremoti in Italia), funded by the Italian Ministry of University and Research (Progetto Premiale 2015, DM. 850/2017).
    Description: Published
    Description: 685153
    Description: 1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami
    Description: JCR Journal
    Keywords: earthquake, early warning, criminal liability, negligence, risk ; Early warning, criminal law, human rights
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-07
    Description: Decades of geochemical monitoring at active crater lakes worldwide have confirmed that variations in major elements and physico-chemical parameters are useful to detect changes in volcanic activity. However, it is still arduous to identify precursors of single phreatic eruptions. During the unrest phase of 2009–2016, at least 679 phreatic eruptions occurred at the hyperacid and hypersaline crater lake Laguna Caliente of Poás volcano (Costa Rica). In this study, we investigate the temporal variations of Rare Earth Elements (REE) dissolved in Laguna Caliente in order to 1) scrutinize if they can be used as a new geochemical tool to monitor changes of phreatic activity at hyperacid crater lakes and 2) identify the geochemical processes responsible for the variations of REE concentrations in the lake. The total concentration of REE varies from 950 to 2,773 μg kg−1. (La/Pr)N-local rock ratios range from 0.93 to 1.35, and Light REE over Heavy REE (LREE/HREE)N-local rock ratios vary from 0.71 to 0.95. These same parameters vary in relation to significant changes in phreatic activity; in particular, the (La/Pr)N-local rock ratio increases as phreatic activity increases, while that of (LREE/HREE)N-local rock decreases when phreatic activity increases. REE concentrations and their ratios were compared with the variations of major elements and physico-chemical parameters of the lake. Calcium versus (La/Pr)N-local rock and versus (LREE/HREE)N-local rock ratios show different trends compared to the other major elements (Na, K, Mg, Al, Fe, SO4, and Cl). Moreover, a higher loss of Ca (up to 2,835 ppm) in lake water was found with respect to the loss of Al, K, and Na. This loss of Ca is argued to be due to gypsum precipitation, a process corroborated by the mass balance calculation simulating the precipitation of gypsum and the contemporaneous removal of REE from the lake water. The observed relations between REE, changes in phreatic activity, and the parameters commonly used for the monitoring of hyperacid volcanic lakes encourage investigating more on the temporal and cause-effect relationship between REE dynamics and changes in phreatic activity at crater lake-bearing volcanoes.
    Description: Published
    Description: 716970
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: Rare Earth Elements ; Poas Volcano ; phreatic eruptions ; geochemical monitoring ; hyperacid volcanic lakes ; Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-07
    Description: Coastal and ocean island volcanoes are renowned for having unstable flanks. This can lead to flank deformation on a variety of temporal and spatial scales ranging from slow creep to catastrophic sector collapse. A large section of these unstable flanks is often below sea level, where information on the volcano-tectonic structure and ground deformation is limited. Consequently, kinematic models that attempt to explain measured ground deformation onshore associated with flank instability are poorly constrained in the offshore area. Here, we attempt to determine the locations and the morpho-tectonic structures of the boundaries of the submerged unstable southeastern flank of Mount Etna (Italy). The integration of new marine data (bathymetry, microbathymetry, offshore seismicity, reflection seismic lines) and published marine data (bathymetry, seafloor geodesy, reflection seismic lines) allows identifying the lineament north of Catania Canyon as the southern lateral boundary with a high level of confidence. The northern and the distal (seaward) boundaries are less clear because no microbathymetric or seafloor geodetic data are available. Hypotheses for their locations are presented. Geophysical imaging suggests that the offshore Timpe Fault System is a shallow second-order structure that likely results from extensional deformation within the moving flank. Evidence for active uplift and compression upslope of the amphitheater-shaped depression from seismic data along with subsidence of the onshore Giarre Wedge block observed in ground deformation data leads us to propose that this block is a rotational slump, which moves on top of the large-scale instability. The new shoreline-crossing structural assessment may now inform and improve kinematic models.
    Description: Published
    Description: 810790
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: seafloor ; fault ; flank dynamics ; hydroacoustic ; geodesy ; seismic profiles ; 04.07. Tectonophysics ; 04.08. Volcanology ; 04.06. Seismology ; 04.02. Exploration geophysics ; 05.02. Data dissemination
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-02
    Description: The entanglement between active tectonics and karst systems is well-known in the literature. Karst systems are sound recorders of continental deformation in terms of brittle structures and seismic features and have been successfully used as markers for reconstructing tectonic stresses and assessing preferential directions of increased permeability in oil and gas fields. Karst systems could also be exploited to evaluate the past activity of faults bounding karst hydrostructures, thus providing useful data for the assessment of the seismic hazard of a specific area. In this work, we look into the complex relationship among karst development, recent tectonics and groundwater flow, which appear to be strongly interconnected with each other, to assess the activity of faults bounding karst hydrostructures. We focused our attention on an active karst area located in the Mesozoic and Cenozoic carbonate reliefs of the Italian central Apennines. In this context, the morphological and morphometric features of the karst landforms (dolines, dry valleys, and cave entrances), identified with geomorphological surveys, and their mutual relationship with fractures and fault segments, identified employing geostructural analysis, document stasis and deepening events in karst evolution. Such events are related to changes in the groundwater table and the consequent variation of the paleokarst base level associated with the Quaternary fault activity. A comprehensive evaluation of the evolution of karst systems at local and regional scales, considering the hydrogeological influence on base levels, allows us to use karst landforms as a proxy to unravel fault activity and evolution in Italy and in other similar karst environments.
    Description: Published
    Description: 891319
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-04-21
    Description: We use a novel technique named global-phase seismic interferometry (GloPSI) to image the lithospheric structure, and in particular the Moho, below two parallel north-south transects belonging to the GANSSER network (2013–2014). The profiles cross the Himalayan orogenic wedge in Bhutan, a tectonically important area within the largest continent-continent collision zone on Earth that is still undergoing crustal thickening and represents a challenging imaging target for the GloPSI approach. GloPSI makes use of direct waves from distant earthquakes and receiver-side reverberations with near vertical incidence. Reflections are isolated from earthquake recordings by solving a correlation integral and are turned into a reflectivity image of the lithosphere below the arrays. Our results compare favorably with first-order features observed from a previous receiver function (RF) study. We show that a combined interpretation of GloPSI and RF results allows for a more in-depth understanding of the lithospheric structure across the orogenic wedge in Bhutan.
    Description: Published
    Description: 658146
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-04-28
    Description: Submarine hydrothermal systems along active volcanic ridges and arcs are highly dynamic, responding to both oceanographic (e.g., currents, tides) and deep-seated geological forcing (e.g., magma eruption, seismicity, hydrothermalism, and crustal deformation, etc.). In particular, volcanic and hydrothermal activity may also pose profoundly negative societal impacts (tsunamis, the release of climate-relevant gases and toxic metal(loid)s). These risks are particularly significant in shallow (〈1000m) coastal environments, as demonstrated by the January 2022 submarine paroxysmal eruption by the Hunga Tonga-Hunga Ha’apai Volcano that destroyed part of the island, and the October 2011 submarine eruption of El Hierro (Canary Islands) that caused vigorous upwelling, floating lava bombs, and natural seawater acidification. Volcanic hazards may be posed by the Kolumbo submarine volcano, which is part of the subduction-related Hellenic Volcanic Arc at the intersection between the Eurasian and African tectonic plates. There, the Kolumbo submarine volcano, 7 km NE of Santorini and part of Santorini’s volcanic complex, hosts an active hydrothermal vent field (HVF) on its crater floor (~500m b.s.l.), which degasses boiling CO2–dominated fluids at high temperatures (~265°C) with a clear mantle signature. Kolumbo’s HVF hosts actively forming seafloor massive sulfide deposits with high contents of potentially toxic, volatile metal(loid)s (As, Sb, Pb, Ag, Hg, and Tl). The proximity to highly populated/tourist areas at Santorini poses significant risks. However, we have limited knowledge of the potential impacts of this type of magmatic and hydrothermal activity, including those from magmatic gases and seismicity. To better evaluate such risks the activity of the submarine system must be continuously monitored with multidisciplinary and high resolution instrumentation as part of an in-situ observatory supported by discrete sampling and measurements. This paper is a design study that describes a new long-term seafloor observatory that will be installed within the Kolumbo volcano, including cutting-edge and innovative marine-technology that integrates hyperspectral imaging, temperature sensors, a radiation spectrometer, fluid/gas samplers, and pressure gauges. These instruments will be integrated into a hazard monitoring platform aimed at identifying the precursors of potentially disastrous explosive volcanic eruptions, earthquakes, landslides of the hydrothermally weakened volcanic edifice and the release of potentially toxic elements into the water column.
    Description: Published
    Description: 796376
    Description: 1V. Storia eruttiva
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Description: 4A. Oceanografia e clima
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-03-21
    Description: During the lithospheric buildup to an earthquake, complex physical changes occur within the earthquake hypocenter. Data pertaining to the changes in the ionosphere may be obtained by satellites, and the analysis of data anomalies can help identify earthquake precursors. In this paper, we present a deep-learning model, SeqNetQuake, that uses data from the first China Seismo-Electromagnetic Satellite (CSES) to identify ionospheric perturbations prior to earthquakes. SeqNetQuake achieves the best performance [F-measure (F1) = 0.6792 and Matthews correlation coefficient (MCC) = 0.427] when directly trained on the CSES dataset with a spatial window centered on the earthquake epicenter with the Dobrovolsky radius and an input sequence length of 20 consecutive observations during night time. We further explore a transferring learning approach, which initially trains the model with the larger Electro-Magnetic Emissions Transmitted from the Earthquake Regions (DEMETER) dataset, and then tunes the model with the CSES dataset. The transfer-learning performance is substantially higher than that of direct learning, yielding a 12% improvement in the F1 score and a 29% improvement in the MCC value. Moreover, we compare the proposed model SeqNetQuake with other five benchmarking classifiers on an independent test set, which shows that SeqNetQuake demonstrates a 64.2% improvement in MCC and approximately a 24.5% improvement in the F1 score over the second-best convolutional neural network model. SeqNetSquake achieves significant improvement in identifying pre-earthquake ionospheric perturbation and improves the performance of earthquake prediction using the CSES data.
    Description: Published
    Description: 779255
    Description: 7T. Variazioni delle caratteristiche crostali e "precursori"
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-03-21
    Description: The oceans are a fundamental source for climate balance, sustainability of resources and life on Earth, therefore society has a strong and pressing interest in maintaining and, where possible, restoring the health of the marine ecosystems. Effective, integrated ocean observation is key to suggesting actions to reduce anthropogenic impact from coastal to deep-sea environments and address the main challenges of the 21st century, which are summarized in the UN Sustainable Development Goals and Blue Growth strategies. The European Multidisciplinary Seafloor and water column Observatory (EMSO), is a European Research Infrastructure Consortium (ERIC), with the aim of providing long-term observations via fixed-point ocean observatories in key environmental locations across European seas from the Arctic to the Black Sea. These may be supported by ship-based observations and autonomous systems such as gliders. In this paper, we present the EMSO Generic Instrument Module (EGIM), a deployment ready multi-sensor instrumentation module, designed to measure physical, biogeochemical, biological and ecosystem variables consistently, in a range of marine environments, over long periods of time. Here, we describe the system, features, configuration, operation and data management. We demonstrate, through a series of coastal and oceanic pilot experiments that the EGIM is a valuable standard ocean observation module, which can significantly improve the capacity of existing ocean observatories and provides the basis for new observatories. The diverse examples of use included the monitoring of fish activity response upon oceanographic variability, hydrothermal vent fluids and particle dispersion, passive acoustic monitoring of marine mammals and time series of environmental variation in the water column. With the EGIM available to all the EMSO Regional Facilities, EMSO will be reaching a milestone in standardization and interoperability, marking a key capability advancement in addressing issues of sustainability in resource and habitat management of the oceans.
    Description: project EMSODEV (Grant agreement No 676555)
    Description: Published
    Description: 801033
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Description: JCR Journal
    Keywords: fixed-point observatories, multi-parametric monitoring, seafloor, water column, EMSO, EGIM, EOV ; seafloor observatories
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-03-22
    Description: On May 14, 2019, a strong Mw = 7.6 shallow earthquake occurred in Papua New Guinea. This paper explores for the first time the analysis of total electron content (TEC) products measured for 6 months by GPS antenna onboard Swarm satellites, to detect possible seismo-ionospheric anomalies around the time and location of the above-mentioned earthquake. The night-time vertical total electron content (VTEC) time series measured using Swarm satellites Alpha and Charlie, inside the earthquake Dobrovolsky’s area show striking anomalies 31 and 35 days before the event. We successfully verified the possible presence of concomitant anomalous values of in situ electron density detected by the new Chinese satellite dedicated to search for electromagnetic earthquake precursors [China Seismo-Electromagnetic Satellite (CSES)-01]. On the other hand, the analysis of VTEC night time measured by Swarm Bravo shows gradual and abnormal increase of the VTEC parameter from about 23 days before the earthquake, which descends 3 days before the earthquake and reaches its lowest level around the earthquake day. We also analyzed the time series and tracks of other six in situ parameters measured by Swarm satellites, electron density from CSES, and also GPS-TEC measurements. As it is expected from the theory, the electron density anomalous variations acknowledge the Swarm VTEC anomalies, confirming that those anomalies are real and not an artifact of the analysis. The comparative analysis with measurements of other Swarm and CSES sensors emphasizes striking anomalies about 2.5 weeks before the event, with a clear pattern of the whole anomalies typical of a critical system as the earthquake process is for Earth. A confutation analysis outside the Dobrovolsky area and without significant seismicity shows no anomalies. Therefore based on our study, the VTEC products of Swarm satellites could be an appropriate precursor aside from the other measured plasma and magnetic parameters using Alpha, Bravo, and Charlie Swarm and CSES satellites that can be simultaneously analyzed to reduce the overall uncertainty.
    Description: Published
    Description: 820189
    Description: 7T. Variazioni delle caratteristiche crostali e "precursori"
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-02-17
    Description: Forecasting earthquakes is a challenging scientific task, due to the intrinsic complexity of the problem, as well as to the limited size and different accuracy of available observations. During the last decades increasing efforts have been devoted by geophysical research in an attempt to answer the following fundamental questions: 1) Which are the physical processes that take place in the Earth crust that are relevant for an earthquake to nucleate? 2) How can we observe, describe and model them statistically and physically? Although a clear univocal picture is still missing, a large amount of data and long-term observations accumulated over the time, as well as new methodological approaches, which eventually allow for development and verification of theoretical models. Observations and physical models suggest that several processes in the Earth’s lithosphere are predictable, but after substantial averaging and up to a limit. Accordingly, earthquake forecasting requires a holistic approach, and should be posed as an integrated, multi-scale process, narrowing down the magnitude range, territory, and time of expectation, all within the limits imposed by physics and data uncertainties. The understanding of governing laws, from long-term tectonic loading and slow nucleation to rapid rupture propagation, may contribute to estimate the stress state and temporal evolution of geophysical observables around seismically active areas.
    Description: Published
    Description: 793911
    Description: 7T. Variazioni delle caratteristiche crostali e "precursori"
    Description: JCR Journal
    Keywords: earthquake preparation processes, stress field variations, earthquake source physics, earthquake forecasting, test site areas ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-02-24
    Description: Changbai Mountains intraplate volcanism (NE China) developed above the 500 km deep stagnant portion of the Pacific slab in the last 20 Ma. The more recent activity includes a shieldforming stage (2.8–0.3Ma), the Tianchi cone construction stage (1.5–0.01Ma), and a calderaforming stage (0.2Ma-present). Detailed studies on the petrogenesis of the volcanic products between the first two stages and the possible role of geodynamics and local tectonics in controlling the volcanism, however, are lacking. Here, we present structural and whole-rock geochemical and zircon Hf isotopic data on Pleistocene dikes of the Changbai Mountains at the transition from the shield-forming to the Tianchi stage with the aim to constrain their age and the source(s) of their parental magma. The dikes represent the shallower feeding system of monogenetic cones and have a NW-SE strike, which is also the preferred strike of the major fault affecting the area and along which the Changbai Mountains monogenetic scoria cones align. The dikes have a potassic affinity and a trachybasaltic composition. Their zircon U–Pb age is 1.19–1.20Ma (Calabrian). The trachybasalts are enriched in Rb, Ba, Th, U, Nb, Ta, K, Pb, and LREE and slightly depleted in Sr, Zr, Hf, Ti, and HREE with a weak negative Eu/Eu* (δEu 0.96–0.97). Trace elements and isotopic compositions are compatiblewith anOIB-type source with an EMI signature. The calculated (87Sr/86Sr)i ( 0.705165–0.705324), (143Nd/ 144Nd)i ( 0.512552–0.512607, εNd(t) −0.58 to −1.65), and Hf model ages (TDM2) of 1768–1562 Ma suggest that the trachybasaltic dikes were contaminated by a Mesoproterozoic, relatively basic lower crust. The source of the Calabrian trachybasalts consists of asthenospheric melts modified by a subcontinental lithospheric mantle. These melts upwell from depth and stop at the crust-mantle interface where underplating processes favor the assimilation of ancient lower crust material. During the ascent to the surface along deep-seated crustal discontinuities, these magmas weakly differentiate.
    Description: Published
    Description: 729905
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Changbaishan ; mantle source ; 04.04. Geology ; 04.01. Earth Interior
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-02-25
    Description: Lactobacilli are the dominant members of the healthy human vaginal microbiota and represent the first defense line from pathogen infection, including vulvovaginal candidiasis. Biofilm is the predominant microbial growth form in nature, and the formation of biofilms inside the human body has important implications in health and disease. In particular, the formation of biofilm by members of the human resident microbiota is desirable, as it can improve microbial persistence and influence functionality. In the present study, we investigated the capability of 16 vaginal Lactobacillus strains (belonging to Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus vaginalis, and Lactobacillus plantarum species) to form biofilms, and we correlated their mode of growth to anti-Candida activity. L. plantarum strains were the best biofilm producers, and high variability was registered in the level of biofilm formation among L. crispatus and L. gasseri strains. Culture supernatants derived from Lactobacillus biofilm and planktonic growth were tested toward a panel of Candida clinical isolates (Candida albicans, Candida glabrata, Candida lusitaniae, Candida tropicalis, Candida krusei, and Candida parapsilosis) and their metabolome assessed by 1H-NMR. L. crispatus and L. plantarum strains exhibited the best fungistatic profile, and biofilms enhanced their anti-Candida activity; on the contrary, L. gasseri strains were more effective when grown in a planktonic mode. Biofilm/planktonic mode of growth also affects Lactobacillus metabolism, mainly influencing nitrogen and amino acid pathways, and anti-Candida activity is instead strictly related to carbohydrate metabolism. The present study underlined the strict interdependence between microbial mode of growth, metabolism, and functional properties. Biofilm formation by members of the healthy human microbiota represents a crucial issue in the field of microbial physiology and host-microbiota interactions, beyond supporting the development of new antimycotic strategies based on probiotics grown in adherence.
    Description: Published
    Description: 750368
    Description: 3IT. Calcolo scientifico
    Description: JCR Journal
    Keywords: Candida; Lactobacillus; biofilm; health benefits; metabolome; vaginal microbiota ; PCA ; cluster analysis ; 05.06. Methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-02-10
    Description: No abstract
    Description: Published
    Description: 822481
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-02-14
    Description: Marine seismic reflection data coupled with on-land structural measurements improve our knowledge about the active deformation pattern of the northern sector of the Malta Escarpment, a bathymetric and structural discontinuity in the near-offshore of Eastern Sicily. As favourably oriented to be reactivated within the Neogene Africa–Europe convergence, it is believed that the Malta Escarpment has a significant role in the recent seismotectonic framework of the Western Ionian Basin and the Hyblean foreland domain of SE Sicily, where some of the largest and most destructive Mediterranean earthquakes are located according to available historical catalogs. Offshore seismic data along with bathymetric grids illuminate the shallow subseafloor setting and allow more accurate mapping of the seafloor expression of previously identified faults in the area. The seismic interpretation and the nearfault sediment pattern analysis provide constraints on fault 3D geometries as well as on their through-time tectonic activity, suggesting also that part of the observed deformation may have been caused by nontectonic processes. Identified faults form currently an E-dipping, roughly N–S trending, and 60 km-long extensional belt deforming the seafloor with a significant displacement amount in the Ionian offshore between Catania and Siracusa. 3-dimensional parameters of faults were then used to derive expected magnitudes and their reactivation propensity. Empirical scaling relationships and forward methods point to a high seismic potential for the detected fault as well as predict the fault slip behavior according to the fieldderived differential stress. This combined analysis along with faults displacement measurements pointed out how the longest and most continuous fault could be capable of generating M 〉 7 seismic events, putting forward strong seismotectonic implications for the adjacent and densely populated Hyblean Plateau. The expected magnitude and the estimated recurrence time interval are compatible with those inferred for large historical earthquakes in the area even if other offshore seismic sources cannot be ruled out.
    Description: Published
    Description: 594176
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-02-14
    Description: A tomographic analysis of Mt. Pollino area (Italy) has been performed using earthquakes recorded in the area during an intense seismic sequence that occurred between 2010 and 2014. 870 local earthquakes with magnitude ranging from 1.8 to 5.0 were selected considering the number of recording stations, the signal quality, and the hypocenter distribution. P- and S-wave arrival times were manually picked and used to compute 3D velocity models through tomographic seismic inversion. The resulting 3D distributions of VP and VS are characterized by high resolution in the central part of the investigated area and from surface to about 10 km below sea level. The aim of the work is to obtain high- quality tomographic images to correlate with the main lithological units that characterize the study area. The results will be important to enhance the seismic hazard assessment of this complex tectonic region. These images show the ductile Apennine platform (VP = 5.3 km/s) overlaying the brittle Apulian platform (VP=6.0 km/s) at depth of around 5 km. The central sector of the area shows a clear fold and thrust interface. Along this structure,most of the seismicity occurred, including the strongest event of the sequence (M W 5.0). High V P (〉6.8 km/s) and high V P /VS (〉1.9) patterns, intersecting the southern edge of this western seismogenic volume, have been interpreted as water saturated rocks, in agreement with similar geological context in the Apennines. These fluids could have played a role in nucleation and development of the seismic sequence. A recent study revealed the occurrence of clusters of earthquakes with similar waveforms along the same seismogenic volume. The hypocenters of these cluster events have been compared with the events re-located in this work. Jointly, they depict a 10 km × 4 km fault plane, NW-SE oriented, deepening towards SW with a dip angle of 40–45° . Instead, the volume of seismicity responsible for the M L 4.3 earthquake developed as a mainshock-aftershock sequence, occurring entirely within the average-to-low VP /VS Apennine platform. Our results agree with other independent geophysical analyses carried out in this area, and they could significantly improve the actual knowledge of the main lithologic units of this complex tectonic area.
    Description: Published
    Description: 735340
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Keywords: elocity tomography, crustal structure, seismic sequence, geodynamics and seismicity, Italian Apennine, Pollino, seismic gap
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-01-03
    Description: Dikes feed most eruptions, so understanding their mechanism of propagation is fundamental for volcanic hazard assessment. The variation in geometry of a propagating dike as a function of the injection rate remains poorly studied. Here we use experiments injecting water into gelatin to investigate the variation of the thickness, width and length of a flux-driven dike connected to its source as a function of the injection time and intruded volume. Results show that the thickness of vertically propagating dikes is proportional to the injection rate and remains constant as long as the latter is constant. Neither buoyancy nor injected volume influence the thickness. The along-strike width of the dike is, however, proportional to the injected volume. These results, consistent with the inferred behavior of several dikes observed during emplacement, open new opportunities to better understand how dikes propagate and also to forecast how emplacing dikes may propagate once their geometric features are detected in real-time through monitoring data.
    Description: Published
    Description: 665865
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Relating Dike Geometry and Injection Rate in Analogue Flux-Driven Experiments
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-02-02
    Description: Traditional tsunami catalogues are conceived as a collection of tsunamis classified by the generating cause, providing a general description of the effects observed for each tsunami. Those catalogues, even if they provide fundamental information, are not suitable for producing an exhaustive picture of the geographical distribution of the tsunami effects. In this paper we introduce the new Italian Tsunami Effects Database (ITED), a collection of evidence documenting the effects along the Italian coasts from historical times to present. The database comes forth the Euro-Mediterranean Tsunami Catalogue (EMTC) and focusses on the effects of tsunamis observed along the Italian coasts providing descriptive and quantitative information for each OP. The information reported in ITED does not only concern the effects produced by Italian tsunamis, but also those effects produced by tsunamis originated outside the Italian territory. ITED contains 318 OPs, related to 73 Italian tsunamis and to four tsunamis which occurred outside Italy. The database can be accessed through aWebApp that displays for each OP the description of effects, quantitative data (run-up, inundation, withdrawal, etc.) and tsunami intensity with the corresponding bibliographic references. The database also provides the tsunami intensity distribution along time (tsunami-history) for each site, allowing the end user to know how a place has been affected by tsunamis over the time. The information contained in ITED makes this database a useful tool to understand how tsunamis have affected the Italian territory and emphasizes the importance of studying the tsunami hazard along the Italian coasts.
    Description: Published
    Description: 596044
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: tsunami ; tsunami effects ; historical tsunami ; Italian coasts ; tsunami intensity ; tsunami hazard ; tsunami history ; 05.02. Data dissemination
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-02-02
    Description: Extreme environments are excellent places to find microorganisms capable of tolerating extreme temperature, pH, salinity pressure, and elevated concentration of heavy metals and other toxic compounds. In the last decades, extremophilic microorganisms have been extensively studied since they can be applied in several fields of biotechnology along with their enzymes. In this context, the characterization of heavy metal resistance determinants in thermophilic microorganisms is the starting point for the development of new biosystems and bioprocesses for environmental monitoring and remediation. This work focuses on the isolation and the genomic exploration of a new arsenic-tolerant microorganism, classified as Alicyclobacillus mali FL18. The bacterium was isolated from a hot mud pool of the solfataric terrains in Pisciarelli, a well-known hydrothermally active zone of the Campi Flegrei volcano near Naples in Italy. A. mali FL18 showed a good tolerance to arsenite (MIC value of 41 mM), as well as to other metals such as nickel (MIC 30 mM), cobalt, and mercury (MIC 3 mM and 17 μM, respectively). Signatures of arsenic resistance genes (one arsenate reductase, one arsenite methyltransferase, and several arsenite exporters) were found interspersed in the genome as well as several multidrug resistance efflux transporters that could be involved in the export of drugs and heavy metal ions. Moreover, the strain showed a high resistance to bacitracin and ciprofloxacin, suggesting that the extreme environment has positively selected multiple resistances to different toxic compounds. This work provides, for the first time, insights into the heavy metal tolerance and antibiotic susceptibility of an Alicyclobacillus strain and highlights its putative molecular determinants.
    Description: Published
    Description: 639697
    Description: 6SR VULCANI – Servizi e ricerca per la società
    Description: JCR Journal
    Keywords: arsenic resistance system ; bioremediation; ; toxic metals ; genomic sequencing and annotation; ; thermophilic microorganism; ; geothermal environment;
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-01-03
    Description: A main challenge in open conduit volcanoes is to detect and interpret the ultra-small strain (〈10–6) associated with minor but critical eruptions such as the lava fountains. Two years after the flank eruption of December 2018, Etna generated a violent and spectacular eruptive sequence of lava fountains. There were 23 episodes from December 13, 2020 to March 31, 2021, 17 of which in the brief period 16 February to 31 March with an intensified occurrence rate. The high-precision borehole dilatometer network recorded significant strain changes in the forerunning phase of December 2020 accompanying the final magma migration at the shallower levels, and also during the single lava fountains and during the entire sequence. The source modeling provided further information on the shallow plumbing system. Moreover, the strain signals also gave useful information both on the explosive efficiency of the lava fountains sequence and the estimate of erupted volume. The high precision borehole dilatometers confirm to be strategic and very useful tool, also to detect and interpret ultra-small strain changes associated with explosive eruptions, such as lava fountains, in open conduit volcanoes.
    Description: Published
    Description: 740505
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: etna volcano ; lava fountains ; volcano monitoring ; borehole strainmeters ; eruption modeling ; Magma Migration at Shallower Levels and Lava Fountains Sequence as Revealed by Borehole Dilatometers on Etna Volcano
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-01-11
    Description: We compile existing seismic, gravity, radar and magnetic data, together with the subglacial bedrock relief from the BEDMACHINE project, to build the most detailed sediment model for Antarctica. We interpolate these data according to a tectonic map of Antarctica using a statistical kriging method. Our results reveal significant sediment accumulation in Antarctica with several types of sedimentary basins: parts of the Beacon Supergroup and more recent rifting basins. The basement relief closely resembles major geological and tectonic structures. The thickness of sediments has significant variations around the continent, and depends on the degree of crustal extension. West Antarctica has wide sedimentary basins: the Ross basin (thickness 2–6 km), the Filchner-Ronne basin (2–12 km) with continuations into East Antarctica, the Bentley Subglacial Trench and the Byrd basin (2–4 km). The deepest Filchner-Ronne basin has a complex structure with multi-layered sediments. East Antarctica is characterized by vast sedimentary basins such as the Pensacola-Pole (1–2 km), Coats Land (1–3 km), Dronning Maud Land (1–2 km), Vostok (2–7 km), Aurora (1–3 km), Astrolabe (2–4 km), Adventure (2–4 km), and Wilkes (1–4 km) basins, along with narrow deep rifts filled by sediments: JutulStraumen (1–2 km), Lambert (2–5 km), Scott, Denman, Vanderford and Totten (2–4 km) rifts. The average thickness of sediments for the whole continent is about 0.77 km. The new model, ANTASed, represents a significant improvement over CRUST 1.0 for Antarctica, and reveals new sedimentary basins. Differences between ANTASed and CRUST 1.0 reach +12/−3 km.
    Description: Published
    Description: 722699
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-02-11
    Description: Thermohaline staircases are a well-known peculiar feature of the Tyrrhenian Sea. Generated by extensive double diffusion processes fueled by lateral intrusions, they are considered to be the most stable of all the staircases that have been detected in the world ocean, seeing their persistence of more than 40 years in the literature. Double diffusion leads to efficient vertical mixing, potentially playing a significant role in guiding the diapycnal mixing. The present study investigates this process of mixing in the case of the Tyrrhenian staircases by calculating the heat and salt fluxes in their gradient zones (interfaces) and the resulting net fluxes in adjacent layers using hydrological profiles collected from 2003 to 2016 at a station in the heart of the basin interior. The staircases favor downward fluxes of heat and salt, and the results of the calculations show that these are greater where temperature and salinity gradients are also high. This condition is more frequently encountered at thin and sharp interfaces, which sometimes appear as substructures of the thicker interfaces of the staircases. These substructures are hot spots where vertical fluxes are further accentuated. Due to the increasing salt and heat content of the Levantine Intermediate Water (LIW) during the observation period, a rise in the values of the fluxes was noted in the portion of the water column below it down to about 1800 m. The data furthermore show that internal gravity waves can modulate the structure of the staircases and very likely contribute to the mixing, too, but the sampling frequency of the time series is too large to permit a proper assessment of these processes. It is shown that, at least during the period of observation, the fluxes due to salt fingers do not reach the bottom layer but remain within the staircases.
    Description: Published
    Description: 672437
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Keywords: Tyrrhenian Sea ; thermohaline staircases ; salt fingers ; diapycnal mixing ; heat and salt fluxes ; 03.03. Physical
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-02-11
    Description: Editorial article
    Description: Seismic activity (e.g., earthquakes, tremors) beneath volcanic areas is primarily caused by the dynamic interaction of molten rock and hydrothermal fluids with the solid host rock, by fracturing and fragmentation of the magma itself, and by tectonic processes interacting with the volcano. In addition, near-surface phenomena such as explosions and rockfalls at a volcanic edifice also produce seismic events. At volcano observatories globally, the real-time monitoring of the spatial and temporal patterns of seismic events is an essential geophysical tool to quantify the state of unrest, and forecast eruptions successfully. Seismic waveforms, earthquake catalogues and earthquake ray-path properties commonly supplement this tool to model the complex processes responsible for the earthquakes quantitatively, and to image subsurface magmatic and tectonic structures. Independent constraints provided by other disciplines such as geodesy and structural geology also significantly help scientists to understand the volcanic processes. Recent advances in earthquake recording technology, computing power and algorithms in artificial intelligence, allow processing and interpretation of large and complex multi-parametric datasets and scenarios.
    Description: Published
    Description: 829460
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: earthquake swarms ; volcanic areas ; 04.08. Volcanology ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-02-11
    Description: Settling-driven gravitational instabilities observed at the base of volcanic ash clouds have the potential to play a substantial role in volcanic ash sedimentation. They originate from a narrow, gravitationally unstable region called a Particle Boundary Layer (PBL) that forms at the lower cloud-atmosphere interface and generates downward-moving ash fingers that enhance the ash sedimentation rate. We use scaled laboratory experiments in combination with particle imaging and Planar Laser Induced Fluorescence (PLIF) techniques to investigate the effect of particle concentration on PBL and finger formation. Results show that, as particles settle across an initial density interface and are incorporated within the dense underlying fluid, the PBL grows below the interface as a narrow region of small excess density. This detaches upon reaching a critical thickness, that scales with (Formula presented.), where (Formula presented.) is the kinematic viscosity and (Formula presented.) is the reduced gravity of the PBL, leading to the formation of fingers. During this process, the fluid above and below the interface remains poorly mixed, with only small quantities of the upper fluid phase being injected through fingers. In addition, our measurements confirm previous findings over a wider set of initial conditions that show that both the number of fingers and their velocity increase with particle concentration. We also quantify how the vertical particle mass flux below the particle suspension evolves with time and with the particle concentration. Finally, we identify a dimensionless number that depends on the measurable cloud mass-loading and thickness, which can be used to assess the potential for settling-driven gravitational instabilities to form. Our results suggest that fingers from volcanic clouds characterised by high ash concentrations not only are more likely to develop, but they are also expected to form more quickly and propagate at higher velocities than fingers associated with ash-poor clouds.
    Description: Published
    Description: 640090
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: PLIF ; analogue experiments ; ash concentration ; settling-driven gravitational instabilities ; tephra sedimentation ; volcanic ash clouds ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-02-08
    Description: Volcano dynamics results from an interplay between internal and external processes spanning different time scales. Unravelling how such processes interact may provide key insights into the mechanisms that may lead to the destabilization of the volcanoes and eruption, a critical information to forecast hazards. Studies dealing with tidal influence on volcanoes fall within this context, yet the cause-effect relationship between tides and eruptions is still poorly understood. In the present study, we investigate the tidal influence on two nearby volcanoes, Ischia and Campi Flegrei (Italy), characterized by intense hydrothermal activity. We analyze the seismic tremor of hydrothermal origin recorded by four seismic stations between January and June 2020 by using Singular Spectrum Analysis. We detect up to five long term tidal periodicities ranging from ∼5 to ∼29 days. The results indicate that the seismic tremor is modulated by Earth tides at both volcanoes. In addition, differences in phase and amplitude modulation between the response of both hydrothermal systems to tidal forcing reveal specific features related to the tremor source and to properties of the surrounding medium. These phenomena indicate an interplay between solid Earth and the dynamics of these two volcanoes. Similar approaches on hydrothermal systems at volcanoes would contribute to better characterize the hydrothermal circulation and their evolving conditions that may represent a precursor of a new phase of activity.
    Description: Published
    Description: 775269
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Campi Flegrei ; Ischia ; seismic tremor ; hydrothermal activity ; tidal modulation ; SSA ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-02-11
    Description: Geophysical surveys in the eastern slope of the Gela Basin (Strait of Sicily, central Mediterranean) contributed to the identification of several episodes of sediment mass transport, recorded by scars and deposits of various dimensions within the Pleistocene succession. In addition to a huge failure called Gela Slide with volume exceeding 600 km3, the most studied events show volumes estimated between 0.5 and 1.5 km3, which is common to many other submarine landslide deposits in this region and that can therefore be considered as a characteristic value. In this work, the tsunamigenic potential of two of such landslides, the so-called Northern Twin Slide and South Gela Basin Slide located about 50 km apart along the eastern slope of the Gela Basin, are investigated using numerical codes that describe the onset and motion of the slide, as well as the ensuing tsunami generation and propagation. The results provide the wave height of these tsunami events on the coast of southern Sicily and Malta and can be taken as representative of the tsunamigenic potential of typical landslides occurring along the slope of the Gela Basin.
    Description: Published
    Description: 602171
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: tsunami ; landslide ; hydrosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-02-10
    Description: The Joint Task Force, Science Monitoring And Reliable Telecommunications (JTF SMART) Subsea Cables, is working to integrate environmental sensors for ocean bottom temperature, pressure, and seismic acceleration into submarine telecommunications cables. The purpose of SMART Cables is to support climate and ocean observation, sea level monitoring, observations of Earth structure, and tsunami and earthquake early warning and disaster risk reduction, including hazard quantification. Recent advances include regional SMART pilot systems that are the first steps to trans-ocean and global implementation. Examples of pilots include: InSEA wet demonstration project off Sicily at the European Multidisciplinary Seafloor and water column Observatory Western Ionian Facility; New Caledonia and Vanuatu; French Polynesia Natitua South system connecting Tahiti to Tubaui to the south; Indonesia starting with short pilot systems working toward systems for the Sumatra-Java megathrust zone; and the CAM-2 ring system connecting Lisbon, Azores, and Madeira. This paper describes observing system simulations for these and other regions. Funding reflects a blend of government, development bank, philanthropic foundation, and commercial contributions. In addition to notable scientific and societal benefits, the telecommunications enterprise’s mission of global connectivity will benefit directly, as environmental awareness improves both the integrity of individual cable systems as well as the resilience of the overall global communications network. SMART cables support the outcomes of a predicted, safe, and transparent ocean as envisioned by the UN Decade of Ocean Science for Sustainable Development and the Blue Economy. As a continuation of the OceanObs’19 conference and community white paper (Howe et al., 2019, doi: 10.3389/fmars.2019.00424), an overview of the SMART programme and a description of the status of ongoing projects are given.
    Description: Published
    Description: 775544
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-09-15
    Description: The abundance of mantle-derived rocks and lavas, in combination with its tectonic evolution, render Mexico a perfect laboratory to investigate the chemical and the isotopic heterogeneity of the lithospheric mantle. New data on the composition of noble gases and CO2 in Mexican mantle xenoliths and lavas is reported. Our samples consist of six ultramafic nodules from the Durango Volcanic Field (DVF) and the San Quintin Volcanic Field (SQVF), monogenetic complexes belonging to the Mexican Basin and Range province; and four lavas from the Sierra Chichinautzin (SCN), a Quaternary monogenetic volcanic field located in the Mexican volcanic arc. Ne and Ar isotopes in fluid inclusions reveal mixing between atmospheric and MORB-like fluids (e.g., 40Ar/36Ar 〈 1,200). DVF and SQVF nodules record low 40Ar/36Ar and 4He/20Ne that confirm the existence of recycled atmospheric-derived noble gases in the local mantle. The averages of the Rc/Ra ratios (3He/4He corrected for atmospheric contamination) measured in Mexican localities are within the MORB-like range: DVF= 8.39 ± 0.24 Ra, SQVF = 7.43 ± 0.19 Ra and SCN lavas = 7.15 ± 0.33 Ra (1σ). With the aim of assessing the isotopic variability of the Mexican lithospheric mantle, the above results were compared with similar data previously obtained from ultramafic nodules found in the Ventura Espiritu Santo Volcanic Field (VESVF), another Quaternary monogenetic volcanic complex belonging the Basin and Range. The higher 3He/4He ratios in DVF relative to those reported for the VESVF and the SQVF are explained as reflecting different ages of mantle refertilization, triggered by the retreating of the Farallon slab (~40 Ma ago) and associated delamination slab processes. We propose that the DVF mantle was refertilized more recently (〈10 Ma ago) than the mantle beneath the SQVF and VESVF (~40–20 Ma ago). On the other hand, He-Ne- Ar compositions of SCN olivines share similarities with VESVF xenoliths,suggesting a relatively homogeneous lithospheric mantle in central Mexico. Finally, DVF and the SCN samples exhibit δ13C values within the MORB range (comparable to other values previously reported in fluid inclusions and fumaroles from Popocatépetl, Colima—Ceboruco volcanoes). While we explain the MORB-like carbon signatures of the DVF samples as the result of the above-mentioned refertilization process, the SCN signatures likely reflect either (i) trapping of isotopically fractionated CO2 derived from magmatic degassing or (ii) a mantle source unaffected by subduction-related crustal carbon recycling.
    Description: Published
    Description: 973645
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Basin and Range province ; Trans-mexican Volcanic Belt ; Mexican mantle xenoliths ; arc lavas ; fluid inclusions ; noble gas isotopes ; CO2 isotopes ; carbon recycling ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-09-23
    Description: For active volcanoes, knowledge about probabilities of eruption and impacted areas becomes valuable information for decision-makers to develop short- and long-term emergency plans, for which probabilistic volcanic hazard assessment (PVHA) is needed. High-resolution or spatially extended PVHA requires extreme-scale high-performance computing systems. Within the framework of ChEESE (Center of Excellence for Exascale in Solid Earth; www.cheese-coe.eu), an effort was made to generate exascale-suitable codes and workflows to collect and process in some hours the large amount of data that a quality PVHA requires. To this end, we created an optimized HPC-based workflow coined PVHA_HPC-WF to develop PVHA for a volcano. This tool uses the Bayesian event tree methodology to calculate eruption probabilities, vent-opening location(s), and eruptive source parameters (ESPs) based on volcano history, monitoring system data, and meteorological conditions. Then, the tool interacts with the chosen hazard model, performing a simulation for each ESP set or volcanic scenario (VS). Finally, the resulting information is processed by proof-of-concept-subjected high-performance data analytics (HPDA) scripts, producing the hazard maps which describe the probability over time of exceeding critical thresholds at each location in the investigated geographical domain. Although PVHA_HPC-WF can be adapted to other hazards, we focus here on tephra (i.e., lapilli and ash) transport and deposition. As an application, we performed PVHA for Campi Flegrei (CF), Italy, an active volcano located in one of the most densely inhabited areas in Europe and under busy air traffic routes. CF is currently in unrest, classified as being in an attention level by the Italian Civil Protection. We consider an approximate 2,000 × 2,000 × 40 km computational domain with 2 km grid resolution in the horizontal and 40 vertical levels, centered in CF. To explore the natural variability and uncertainty of the eruptive conditions, we consider a large number of VSs allowing us to include those of low probability but high impact, and simulations of tephra dispersal are performed for each of them using the FALL3D model. Results show the potential of HPC to timely execute a vast range of simulations of complex numerical models in large high-resolution computational domains and analyze great volumes of data to obtain quality hazard maps.
    Description: Published
    Description: 941789
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-10-14
    Description: Assessing the variations in space and time of groundwater circulation in volcanic islands is of paramount importance to the description of the hydro-geo-thermal system and implementation of hydrogeological, geochemical, and volcanic monitoring systems. In fact, the reliable reconstruction of the groundwater potentiometric surface in such composite volcanic aquifer systems can enable the identification of the most advantageous strategies for both the sustainable use of groundwater resources and the management of volcanic risk. Geographical Information System (GIS) platforms can support the integration and analysis of many spatial and temporal variables derived from monitoring of active volcanoes and the elaboration of spatially continuous data. However, open issues still affect the reliability and general applicability of common spatial interpolation methods in the case of groundwater potentiometric surfaces. This is related to the assessment of the main stratigraphic and volcano-tectonic features affecting the hydraulic head changes. With regard to the dynamically very active Ischia Island (Italy), this study illustrates a GIS-based hydrogeological approach to identify the most accurate interpolation method for mapping the potentiometric surface in complex hydrogeological terrains. The proposed approach has been applied to the existing dataset (1977–2003) stored by Istituto Nazionale di Geofisica e Vulcanologia. Based on a careful geological and hydrogeological survey, a total of 267 wells, from 5 to 250 m in depth, were processed. The data pre-processing involved four meteorological time-series data (1922–1997) and six long records of piezometric water levels (1930–1994). As a result, knowledge of the delineation of rather homogeneous stratigraphic and volcano-tectonic structures at the basin-scale has improved. Thus, new, more reliable potentiometric surfaces of the four main geothermal areas closest to the coast were produced during both dry and wet seasons. The reliability of the processed potentiometric surface was then validated by comparing the spatially continuous data with complementary field data. These findings point toward an optimal interpolation approach for representing the seasonal and areal distribution of main hydrogeological parameters in complex aquifer systems. Finally, insights into variations of hydrological behavior at an active volcanic area will foster an understanding of possible involvement of fresh and thermal waters in triggering phreatic explosions.
    Description: Published
    Description: 883719
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: groundwater map ; hydrothermal system ; conceptual model ; volcanic island hydrogeology ; spatial interpolation ; GIS ; Ischia Island
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    Frontiers Media S.A.
    Publication Date: 2022-12-22
    Description: Gender equality is far from being reached in the areas of Science, Technology, Engineering, and Mathematics. Women in Earth Sciences still remain underrepresented although positive trends are recognized in the last decades. Dealing with gender inequalities in academia, however, is only part of the problem. As well as Earth Sciences need more women in leadership positions and decision-making committees, and more girls educated in the field, alike there are well-founded reasons for scientists to put attention to gender in a broader sense. According to United Nations, inadequate attention has been given how gender inequality drives disaster risks and impacts. The present contribution aims to broaden the gender perspective from improving underrepresentation in the workplace and breaking down barriers in research careers, to including gender in research content in an extensive sense. A paradigm shift is proposed from women in science to women in society, coping with gender-responsive disaster risk reduction and multiple gender dimensions in Earth Sciences. Counterbalancing present inequalities in the workplace, as well as applying a gender lens in all hazard-related activities is needed to cope with complex social systems in earthquake-prone areas. An intersectional approach and transdisciplinary research are needed.
    Description: Published
    Description: 1033321
    Description: 2TM. Divulgazione Scientifica
    Description: JCR Journal
    Keywords: gender, women, gender-responsive, disaster risk reduction, natural hazards, earthquake science ; 05.03. Educational, History of Science, Public Issues ; 05.09. Miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-12-16
    Description: Communicating scientific information about earthquakes is an important and delicate issue in countries like Italy, where seismic risk is high. Furthermore, continuous and scientifically sound communication is needed, especially in recent times when social media have amplified the risk of being biased by misinformation, fake news and conspiracy theories. For this reason, we have developed a communication strategy for earthquake science and risk in Italy, mostly based on social media. The INGVterremoti platform was born between 2010 and 2012 with the goal of increasing scientific information released to the public, and also establishing a two-way communication channel between scientists and citizens. In the past 12 years, the INGVterremoti platform has gained trust and popularity, increasing the number of involved people, which amounts today to several hundred thousand. The platform consists of a coordinated suite of social media channels and a blog-magazine, where updates on ongoing earthquake sequences and posts on scientific topics are continuously published. Our end users are mostly citizens, but also authorities and media. Special attention has been given to interactions with the public, especially on our Facebook page, in order to understand their information needs, identify rumors and fake news, particularly in areas affected by seismic sequences, and address the most pressing requests. In this paper we describe the INGVterremoti strategy, the different media that we use, focusing on their strengths and weaknesses. We concentrate on the experience, carried out in the last few years, of the publication of provisional information on ongoing earthquakes, a long-standing issue strongly requested by our followers. The INGVterremoti platform has played a fundamental role in many seismic sequences of the past 12 years in Italy, starting from the Emilia sequence in 2012, to the central Italy one, started with the deadly earthquake of 24 August 2016 and still ongoing. Besides the periods of high attention after strong earthquakes, we used the INGVterremoti social media as a tool for releasing continuous and sound information to the public, and as a way to involve citizens in the communication arena.
    Description: Published
    Description: 1003867
    Description: 4TM. Web e Social
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-07-05
    Description: In this work we present and discuss new geodetic velocity and strain-rate fields for the Euro-Mediterranean region obtained from the analysis of continuous GNSS stations. We describe the procedures and methods adopted to analyze raw GPS observations from 〉4000 stations operating in the Euro-Mediterranean, Eurasian and African regions. The goal of this massive analysis is the monitoring of Earth’s crust deformation in response to tectonic processes, including plate- and micro-plate kinematics, geodynamics, active tectonics, earthquake-cycle, but also the study of a wide range of geophysical processes, natural and anthropogenic subsidence, sea-level changes, and hydrology. We describe the computational infrastructure, the methods and procedures adopted to obtain a threedimensional GPS velocity field, which is used to obtain spatial velocity gradients and horizontal strain-rates. We then focus on the Euro-Mediterranean region, where we discuss the horizontal and vertical velocities, and spatial velocity gradients, obtained from stations that have time-series lengths longer than 6 and 7 years, which are found to be the minimum spans to provide stable and reliable velocity estimates in the horizontal and vertical components, respectively. We compute the horizontal strain-rate field and discuss deformation patterns and kinematics along the major seismogenic belts of the Nubia-Eurasia plate boundary zone in the Mediterranean region. The distribution and density of continuous GNSS stations in our geodetic solution allow us to estimate the strain-rate field at a spatial scale of ~27 km over a large part of southern Europe, with the exclusion of the Dinaric mountains and Balkans.
    Description: The GNSS data analysis center described in this work is realized and maintained by different founding resources and projects, including EPOS-MIUR, the Department of Italian Civil Protection and Istituto Nazionale di Geofisica e Vulcanologia agreement (Annex A), Programma Operativo Nazionale (PON) GRINT, ILG Minerbio, MISE DGISSEGINGV 2020 agreement, Med-MFC. FP is supported by the project MUSE, funded by the Istituto Nazionale di Geofisica e Vulcanologia (INGV), within which the re-analysis discussed in this work has been developed.
    Description: Published
    Description: 907897
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: GNSS data processing ; time series analysis ; horizontal strain rates ; vertical ground velocities ; Euro- Mediterranean region
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-05-16
    Description: The island of Ischia, an active volcanic field emerging in the western sector of the Gulf of Naples (Southern Italy), represents an archetypal case of caldera that underwent a very large resurgence related to the intrusion of a shallow magma body. The resurgence culminated with the formation of a structural high in the central sector of the island, i.e., the Mt. Epomeo block. This is bordered by a system of faults along which volcanic activity occurred up to 1302 A.D., and damaging earthquakes were generated in historical and recent time. The seismicity is located prevalently in the northern sector of the island and appears to be correlated with the most recent phase (〈5 ka) of ground movement (subsidence), although the mechanism of earthquakes’ generation is still debated. By jointly analyzing offshore and onshore data (seismic profile and stratigraphy wells, respectively) and new petrological and geochemical data related to the most recent phase of volcano-tectonic activity, we develop a geological and structural layout of the northern sector of the island. In particular, we identify the seismogenic fault associated with the historical and recent destructive earthquakes of Ischia. This fault formed in the northern sector of the island during the final stage of the resurgence.We also propose a conceptual volcano-tectonic model of the northern sector of the Ischia Island, depicting the displacement of the fault zones in the off-shore area and the possible mechanism of stress loading and release in the on-shore zone, which is mainly driven by the subsidence of the Mt. Epomeo block. Our results are crucial for evaluating the dynamics of the seismogenic structures in the framework
    Description: Published
    Description: 730023
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-05-16
    Description: SOURCE utility for reprocessing, calibration, and evaluation is a software designed for web applications that permits to calibrate and validate ocean models within a selected spatial domain using in-situ observations. Nowadays, in-situ observations can be freely accessed online through several marine data portals together with the metadata information about the data provenance and its quality. Metadata information and compliance with modern data standards allow the user to select and filter the data according to the level of quality required for the intended use and application. However, the available data sets might still contain anomalous data, bad data flagged as good, due to several reasons, i.e., the general quality assurance procedures adopted by the data infrastructure, the selected data type, the timeliness of delivery, etc. In order to provide accurate model skill scores, the SOURCE utility performs a secondary quality check, or re-processing, of observations through gross check tests and a recursive statistical quality control. This first and basic SOURCE implementation uses Near Real Time moored temperature and salinity observations distributed by the Copernicus Marine Environment and Monitoring Service (CMEMS) and two model products from Istituto Nazionale di Geofisica e Vulcanologia (INGV), the first an analysis and the second a reanalysis, distributed during CMEMS phase I for the Mediterranean Sea. The SOURCE tool is freely available to the scientific community through the ZENODO open access repository, consistent with the open science principles and for that it has been designed to be relocatable, to manage multiple model outputs, and different data types. Moreover, its observation reprocessing module provides the possibility to characterize temperature and salinity variability at each mooring site and continuously monitor the ocean state. Highest quality mooring time series at 90 sites and the corresponding model values have been obtained and used to compute model skill scores. The SOURCE output also includes mooring climatologies, trends, Probability Density Functions and averages at different time scales. Model skill scores and site statistics can be used to visually inspect both model and sensor performance in Near Real Time at the single site or at the basin scale. The SOURCE utility uptake allows the interested user to adapt it to its specific purpose or domain, including for example additional parameters and statistics for early warning applications.
    Description: This work has been co-funded by the Italian RITMARE Flagship Project and the INGV internal project Relocatable integrated Cal/Val system for sea observations reprocessing and ocean models evaluation (project code 9999.526 - RL2019)
    Description: Published
    Description: 750387
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-08-16
    Description: Most volcanoes on the Earth rise from the bottom of seas and oceans. Most of them do not reach the surface of sea and remain hidden to all conventional observations from surface and space. Only some of them rise above the sea level, forming islands and passing from submarine to subaerial volcanism. Volcanic islands develop in virtually all the geodynamic contexts on Earth, from mid-ocean ridges (Iceland), to intraplate (Hawaii), to volcanic arcs (Aeolian Islands). All the liquid-descent evolutive degrees of magma are finally represented, from primitive compositions up to strongly evolved rhyolite, trachyte and phonolite lavas. So, the eruptive styles of these volcanoes range consequently from mild effusions to plinian eruptions.
    Description: Published
    Description: 954902
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: volcanoes ; seafloor ; 04.08. Volcanology ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-08-16
    Description: Italy is the land of iconic volcanoes, whose activity has been witnessed, described and portrayed for centuries. This legacy has greatly contributed to shaping the public perception of volcanoes and their impact, well beyond the national borders. Stories about famous eruptions overlap and nowadays easily mix up with the impressive footage that is readily available from ongoing eruptions worldwide. As a result, the public discourse may flatten the wide spectrum of possible phenomena into an oversimplified sketch of volcanic eruptions and their impact, where all events seem equally probable and look alike. Actual volcanoes differ in size, eruption magnitude, state of activity, eruptive style, geographical position, and each is located within a specific social and cultural context. All these elements combine in defining the consequences of volcanic activity as well as in determining the severity of the damage and the size of the impacted area. How can we convey such a complexity to the general public? Can social media contribute to raise awareness and build a more resilient society? An effective hazard communication should propose a comprehensible yet realistic description of volcanic settings and provide adequate tools to recognize and understand the specific features of each phenomenon and volcanic area. As we write, two Italian volcanoes display persistent eruptive activity, while other two are going through unrest phases that started in 2012, at Campi Flegrei, and in late summer of 2021, at Vulcano Island. Other active volcanoes (Vesuvius, Ischia, Colli Albani, Lipari, and Pantelleria) have been dormant for tens, hundreds, or thousands of years. Communication in these different contexts also require different approaches that take into account the specific needs of local communities. Social media may provide a unique opportunity to quickly share relevant news and information. Yet, this type of communication has its challenges and volcano observatories can rarely rely on expert social media managers. Sharing experiences and lessons learned is a key to ensure the growth of the volcanological community and improve its ability to connect and engage local residents. Here we discuss the online communication strategies implemented by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) since 2018 to inform Internet and social media users about volcanoes, volcanology, and ongoing volcanic activity, both in Italy and abroad. We describe the internal procedures that we developed and practiced and the experience gathered so far, during both quiet periods and a few volcanic crises. Our experience confirms previous indications about the importance of a steady online presence and suggests that public interest is not always easily predictable.
    Description: Published
    Description: 926155
    Description: 2TM. Divulgazione Scientifica
    Description: 3TM. Comunicazione
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-08-22
    Description: Open conduit volcanoes like Stromboli can display elusive changes in activity before major eruptive events. Starting on December 2020, Stromboli volcano displayed an increasing eruptive activity, that on 19 May 2021 led to a crater-rim collapse, with pyroclastic density currents (PDCs) that spread along the barren NWflank, entered the sea and ran across it for more than 1 km. This episode was followed by lava flow output from the crater rim lasting a few hours, followed by another phase of lava flow in June 2021. These episodes are potentially very dangerous on island volcanoes since a landslide of hot material that turns into a pyroclastic density current and spreads on the sea surface can threaten mariners and coastal communities, as happened at Stromboli on 3 July and 28 August 2019. In addition, on entering the sea, if their volume is large enough, landslides may trigger tsunamis, as occurred at Stromboli on 30 December 2002. In this paper, we present an integration of multidisciplinary monitoring data, including thermal and visible camera images, ground deformation data gathered from GNSS, tilt, strainmeter and GBInSAR, seismicity, SO2 plume and CO2 ground fluxes and thermal data from the ground and satellite imagery, together with petrological analyses of the erupted products compared with samples from previous similar events. We aim at characterizing the preparatory phase of the volcano that began on December 2020 and led to the May–June 2021 eruptive activity, distinguishing this small intrusion of magma from the much greater 2019 eruptive phase, which was fed by gas-rich magma responsible for the paroxysmal explosive and effusive phases of July–August 2019. These complex eruption scenarios have important implications for hazard assessment and the lessons learned at Stromboli volcano may prove useful for other open conduit active basaltic volcanoes.
    Description: This research was funded by the Project FIRSTForecastIng eRuptive activity at Stromboli volcano: Timing, eruptive style, size, intensity, and duration, INGV-Progetto Strategico Dipartimento Vulcani 2019 (Delibera n. 144/2020). This research was funded by the “Presidenza del Consiglio dei Ministri–Dipartimento della Protezione Civile,” through the UniFi-DPC 2019-2021 agreement (Scientific Responsibility: N.C.).
    Description: Published
    Description: 899635
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Stromboli volcano ; multi-disciplinary monitoring data ; crater-rim collapse ; pyroclastic density current ; hazard assessment ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-06-27
    Description: Studying a large number of volcanic eruptions is a way to decipher general characteristics related to volcano dynamics but also on external forcing influencing it, such as solid Earth and ocean tides. Many studies have tackled this tidal influence on the onset of volcanic eruptions and more generally, on volcanic activity. However, the interplay between this quasi-permanent forcing and volcanic systems is still poorly understood. With the present study, we propose to consider a global viewpoint to address this interaction. We analyzed the number of monthly volcanic eruptions and the global mean sea level between 1880 and 2009 using the Singular Spectrum Analysis time-series analysis technique to evaluate the existence of common periodicities. We found multi-decadal components of similar periodicities present in both time-series which we link to those already recognized in the polar motion. Its multi-decadal variations result in a mass reorganization in the oceans whose associated stress changes may impact processes generating volcanic eruptions worldwide. Our results show the influence of global processes on volcanic activity and open many questions to further investigate these multi-scale interactions.
    Description: Published
    Description: 845511
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: external forcing ; volcanic activity ; global mean sea level ; solid Earth and ocean tides ; eruption triggering ; interaction external/internal processes ; singular spectrum analysis ; polar motion ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-06-17
    Description: Sea wave monitoring is key in many applications in oceanography such as the validation of weather and wave models. Conventional in situ solutions are based on moored buoys whose measurements are often recognized as a standard. However, being exposed to a harsh environment, they are not reliable, need frequent maintenance, and the datasets feature many gaps. To overcome the previous limitations, we propose a system including a buoy, a micro-seismic measuring station, and a machine learning algorithm. The working principle is based on measuring the micro-seismic signals generated by the sea waves. Thus, the machine learning algorithm will be trained to reconstruct the missing buoy data from the micro-seismic data. As the micro-seismic station can be installed indoor, it assures high reliability while the machine learning algorithm provides accurate reconstruction of the missing buoy data. In this work, we present the methods to process the data, develop and train the machine learning algorithm, and assess the reconstruction accuracy. As a case of study, we used experimental data collected in 2014 from the Northern Tyrrhenian Sea demonstrating that the data reconstruction can be done both for significant wave height and wave period. The proposed approach was inspired from Data Science, whose methods were the foundation for the new solutions presented in this work. For example, estimating the period of the sea waves, often not discussed in previous works, was relatively simple with machine learning. In conclusion, the experimental results demonstrated that the new system can overcome the reliability issues of the buoy keeping the same accuracy.
    Description: Assist in Gravitation and Instrumentation srl Istituto Nazionale di Geofisica e Vulcanologia
    Description: Published
    Description: 798167
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Keywords: sea swell ; machine learning ; ocean waves ; micro-seismic data ; sea state ; sea wave period ; buoy ; Marine Science ; Oceanography
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-07-08
    Description: Volcanic and Seismic source Modeling (VSM) is an open-source Python tool to model ground deformation. VSM allows the user to choose one or more deformation sources of various shapes as a forward model among sphere, spheroid, ellipsoid, rectangular dislocation, and sill. It supports multiple datasets from most satellite and terrestrial geodetic techniques: Interferometric SAR, GNSS, leveling, Electronic Distance Measurements, tiltmeters, and strainmeters. Two sampling algorithms are available: one is a global optimization algorithm based on the Voronoi cells and yields the best-fitting solution and the second follows a probabilistic approach to parameters estimation based on the Bayes theorem and the Markov chain Monte Carlo method. VSM can be executed as Python script, in Jupyter Notebook environments, or by its Graphical User Interface. Its broad applications range from high-level research to teaching, from single studies to near real-time hazard estimates. Potential users range from early-career scientists to experts. It is freely available on GitHub (https://github.com/EliTras/VSM) and is accompanied by step-by-step documentation in Jupyter Notebooks. This study presents the functionalities of VSM and test cases to describe its use and comparisons among possible settings.
    Description: This work was jointly supported by the “Research Lifecycle Management technologies for Earth Science Communities and Copernicus users in EOSC” Reliance project funded by the European Commission’s H2020 2021-2022 (Grant Agreement no. 101017501); Pianeta Dinamico—Working Earth project (2020-2030) funded by the Italian Ministry of University and Research (Decree no. 1118 04/12/2019); and “Linking Surface Observables to sub-Volcanic Plumbing-System: A Multidisciplinary Approach for Eruption Forecasting at Campi Flegrei Caldera (Italy)” LOVE-CF (2020-2023) project funded by INGV (Internal Register no. 1865 17/07/2020).
    Description: Published
    Description: 917222
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: analytical model ; geodetic data ; natural hazards ; open science ; inverse theory ; InSAR ; 04.08. Volcanology ; 04.03. Geodesy ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-09-09
    Description: Volcanoes are complex systems that evolve in space and time as a result of their internal dynamics. These internal dynamics span both long and short time scales, reflecting the different steps for the magma to form, accumulate and evolve before being eventually erupted. All of these stages may be influenced by processes external to the volcano, although most of the evidence that has been gathered on this has considered influences on the magmatic fluids stored at crustal depths, or emerging at surface. External forcing acts either through the stress or gravitational fields that may accelerate or slow down the transfer of magma towards the surface. Changing tectonic stresses and Earth tides may induce changes in the dynamical state of volcanoes, ultimately providing the triggers that may lead to eruption. Water, which is ubiquitous on Earth, and present in its different fluid and solid envelopes, appears to play a key role, acting on volcanic systems from pore- to global-scale in various ways (hydrological modulation, ice cap loading), due to its physico-chemical properties. This Research Topic brings together contributions, which provide new constraints and lines of evidence on the nature and variety of external processes influencing activity at quiet, restless and erupting volcanoes.
    Description: Published
    Description: 999214
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: external forcing ; modulation of volcanic processes ; eruption triggering ; periodic variations and behaviors ; short and long time scales ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2021-11-30
    Description: Historical seismic catalogs report that the Gargano Promontory (southern Italy) was affected in the past by earthquakes with medium to high estimated magnitude. From the instrumental seismicity, it can be identified that the most energetic Apulian sequence occurred in 1995 with a main shock of MW = 5.2 followed by about 200 aftershocks with a maximum magnitude of 3.7. The most energetic earthquakes of the past are attributed to right-lateral strike-slip faults, while there is evidence that the present-day seismicity occur on thrust or thrust-strike faults. In this article, we show a detailed study on focal mechanisms and stress field obtained by micro-seismicity recorded from April 2013 until the present time in the Gargano Promontory and surrounding regions. Seismic waveforms are collected from the OTRIONS Seismic Network (OSN), from the Italian National Seismic Network (RSN), and integrated with data from the Italian National Accelerometric Network (RAN) in order to provide a robust dataset of earthquake localizations and focal mechanisms. The effect of uncertainties of the velocity model on fault plane solutions (FPS) has been also evaluated indicating the robustness of the results. The computed stress field indicates a deep compressive faulting with maximum horizontal compressive stress, SHmax, trending NW-SE. The seismicity pattern analysis indicates that the whole crust is seismically involved up to a depth of 40 km and indicates the presence of a low-angle seismogenic surface trending SW-NE and dipping SE-NW, similar to the Gargano–Dubrovnik lineament. Shallower events, along the eastern sector of the Mattinata Fault (MF), are W-E dextral strike-slip fault. Therefore, we hypothesized that the seismicity is locally facilitated by preexisting multidirectional fractures, confirmed by the heterogeneity of focal mechanisms, and explained by the different reactivation processes in opposite directions over the time, involving the Mattinata shear zone.
    Description: Published
    Description: 589332
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Keywords: Gargano promontory ; OTRIONS local seismic network ; focal mechanisms ; stress field ; microseismicity ; mattinata fault ; gargano-dubrovnik lineament ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    Frontiers Media S.A.
    In:  EPIC3Frontiers in Marine Science, Frontiers Media S.A., 8(757702), ISSN: 22967745
    Publication Date: 2022-01-10
    Description: Cold-water corals (CWC) can be found throughout a wide range of latitudes (79°N–78°S). Since they lack the photosymbiosis known for most of their tropical counterparts, they may thrive below the euphotic zone. Consequently, their growth predominantly depends on the prevalent environmental conditions, such as general food availability, seawater chemistry, currents, and temperature. Most CWC communities live in regions that will face CaCO3 undersaturation by the end of the century and are thus predicted to be threatened by ocean acidification (OA). This scenario is especially true for species inhabiting the Chilean fjord system, where present-day carbonate water chemistry already reaches values predicted for the end of the century. To understand the effect of the prevailing environmental conditions on the biomineralization of the CWC Tethocyathus endesa, a solitary scleractinian widely distributed in the Chilean Comau Fjord, a 12-month in situ experiment was conducted. The in situ skeletal growth of the test corals was assessed at two sites using the buoyant weight method. Sites were chosen to cover the naturally present carbonate chemistry gradient, with pH levels ranging between 7.90 ± 0.01 (mean ± SD) and 7.70 ± 0.02, and an aragonite saturation (Ωarag) between 1.47 ± 0.03 and 0.98 ± 0.05. The findings of this study provide one of the first in situ growth assessments of a solitary CWC species, with a skeletal mass increase of 46 ± 28 mg per year and individual, at a rate of 0.03 ± 0.02% day. They also indicate that, although the local seawater chemistry can be assumed to be unfavorable for calcification, growth rates of T. endesa are comparable to other cold-water scleractinians in less corrosive waters (e.g., Lophelia pertusa in the Mediterranean Sea).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2021-10-28
    Description: In this paper, based on non-negative matrix factorization (NMF), we analyzed the ionosphere magnetic field data of the Swarm Alpha satellite before the 2016 (Mw = 7. 8) Ecuador earthquake (April 16, 0.35°N, 79.93°W), including the whole data collected under quiet and disturbed geomagnetic conditions. The data from each track were decomposed into basis features and their corresponding weights. We found that the energy and entropy of one of the weight components were more concentrated inside the earthquake-sensitive area, which meant that this weight component was more likely to reflect the activity inside the earthquake-sensitive area. We focused on this weight component and used five times the root mean square (RMS) to extract the anomalies. We found that for this weight component, the cumulative number of tracks, which had anomalies inside the earthquake-sensitive area, showed accelerated growth before the Ecuador earthquake and recovered to linear growth after the earthquake. To verify that the accelerated cumulative anomaly was possibly associated with the earthquake, we excluded the influence of the geomagnetic activity and plasma bubble. Through the random earthquake study and low-seismicity period study, we found that the accelerated cumulative anomaly was not obtained by chance. Moreover, we observed that the cumulative Benioff strain S, which reflected the lithosphere activity, had acceleration behavior similar to the accelerated cumulative anomaly of the ionosphere magnetic field, which suggested that the anomaly that we obtained was possibly associated with the Ecuador earthquake and could be described by one of the Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) models.
    Description: This research was supported by the National Natural Science Foundation of China under Grant No. 41974084 and the International Cooperation Project of Department of Science and Technology of Jilin Province No. 20200801036GH.
    Description: Published
    Description: 621976
    Description: 7T. Variazioni delle caratteristiche crostali e "precursori"
    Description: JCR Journal
    Keywords: Ecuador earthquake ; cumulative number of anomalous tracks ; Swarm satellites magnetic field ; non-negative matrix factorization decomposition ; 04.05. Geomagnetism ; 01.02. Ionosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2021-11-29
    Description: Since the first studies on biogeophysics in the early 2000s our understanding of how biogeochemical processes affect geophysical signatures has significantly improved. This interdisciplinary field now incorporates and integrates environmental and rock magnetism with traditional biological and geochemical methods to interpret geophysical signatures in highly dynamic environments (e.g., biogeochemical hotspots, contamination plumes). Environmental magnetism, in particular, can trace environmental changes by identifying magnetic mineral transformations induced from several biogeochemical processes. This Special Issue includes papers that present applications of environmental and rock magnetism in biogeophysics and discuss their impact on Earth Sciences.
    Description: Published
    Description: 757171
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Keywords: environmental magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2021-12-14
    Description: Tsunamis are unpredictable and infrequent but potentially large impact natural disasters. To prepare, mitigate and prevent losses from tsunamis, probabilistic hazard and risk analysis methods have been developed and have proved useful. However, large gaps and uncertainties still exist and many steps in the assessment methods lack information, theoretical foundation, or commonly accepted methods. Moreover, applied methods have very different levels of maturity, from already advanced probabilistic tsunami hazard analysis for earthquake sources, to less mature probabilistic risk analysis. In this review we give an overview of the current state of probabilistic tsunami hazard and risk analysis. Identifying research gaps, we offer suggestions for future research directions. An extensive literature list allows for branching into diverse aspects of this scientific approach.
    Description: Published
    Description: 628772
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2021-12-15
    Description: Since the beginning of the XXI Century, our society has witnessed a number of catastrophic earthquakes with devastating consequences (e.g., Sumatra 2004, Haiti 2010, Japan 2010, Nepal 2015, Italy 2009 and 2016). Localizing the active faults and understanding their earthquake history is key to improve modern probabilistic seismic hazard assessment (PSHA) and, thus, to mitigate the consequences of future events. Seismicity models to characterize the earthquake frequency in a region in PSHA studies have been traditionally based on archaeological, historical and instrumental earthquake records. However, the rapid advance of active tectonics and paleoseismological studies has resulted in the development of seismicity models for faults, since they allow characterizing the active faults, reconstructing their 3D geometry at depth, and determining their past earthquake history and seismic potential based on the interpretation of the geological record. Traditionally, active tectonics and paleoseismological research had been mainly conducted to study onshore active faults. However, the occurrence of the offshore Sumatra (2004) and Japan (2010) earthquakes and consequent tsunamis, which caused tens of thousands of casualties and extensive and severe damage and economic losses, have brought into sharp focus the need to better understand the geohazards related to submarine active faults. In the last few years, the availability of offshore geological and geophysical data at various scales (e.g., deep and shallow borehole, wide angle seismic profiles, tomography, 3D and 2D seismic reflection surveys, high resolution bathymetry or seafloor imaging) has allowed for a better definition of offshore fault systems. These studies focused on accurately constraining the kinematic, architecture and linkage of active faults, and, in some cases, identify recent earthquake ruptures or recognize and date individual events. In addition, underwater active tectonics and paleoseismological studies benefit from: (1) low erosional rates that preserve fault morphology and segmentation; (2) continuous sedimentation in time and space that allows for local and/or regional stratigraphic and chronostratigraphic correlations; (3)multiscale seafloor mapping and sub-seafloor seismic imaging; and 4) absence–or lowest amount–of human modification. This Research Topic includes fourteen published articles focused in the study of underwater active tectonic regions or active fault systems around the world
    Description: Published
    Description: 809205
    Description: 2T. Deformazione crostale attiva
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2021-12-15
    Description: Deciphering the triggering mechanisms of violent explosive activity is of broad interest for understanding the dynamics of basaltic open-vent volcanic systems. For nearly 1300 years Stromboli has been renowned not only for its continuous degassing activity and mild explosions at the summit craters, but also for short-lived, violent explosive events of variable scale, known as major explosions and paroxysms. Here, we focus on the 1456 and 1930 paroxysms and on the most recent events, in July and August 2019 at Stromboli. We show that shallow phenomena such as flank collapse, lava outpouring through fractures opening, or partial emptying of the shallow conduit, only speed up volatile-rich magma ascent by increasing the decompression rate, whereas pressurization of the crustal system and the deep refilling by magma and its CO2-rich gas phase play a major role in triggering paroxysms. Moreover, we present new data on the geochemistry of the 2019 bulk pumice, along with a compilation of data from the literature, chemical profiles in olivine crystals, and the physical parameters of explosive eruptions of wide ranging magnitude and intensity. For small and large paroxysms, timescales were derived from Fe–Mg diffusion profiles in olivine. In both types of explosion, the last phases of crystallization-diffusion indicate rapid magma ascent rates of two to ten days prior to eruption. Trace element concentrations (Nb, La and Ba) and ratios (Rb/Th) indicate that the 2019 pumice samples plot in the domain of magma batches erupted within the last 20 years at Stromboli. As a whole, there is no correlation between magma geochemistry and magnitude or intensity of explosive eruptions, which span a range of ∼3 orders of magnitude (from major explosions to large paroxysms) based on estimates of erupted tephra volumes. In contrast, olivine compositions are a good proxy for erupted tephra volumes and magma flux. The correlation among physical and chemical parameters, which is valid for the overall spectrum of eruptions, implies that the magmatic source ultimately controls eruptive dynamics.
    Description: Published
    Description: 593339
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Stromboli, paroxysms, diffusion profiles, olivine
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2021-12-13
    Description: Here we introduce the updated, interactive and open-access database for African volcanic lakes, country by country. The previous database VOLADA (VOlcanic LAke DAta Base, Rouwet et al., 2014) reported 96 volcanic lakes for Africa. This number is now revised and established at 220, converting VOLADA_Africa 2.0 in the most comprehensive resource for African volcanic lakes: 81 in Uganda, 37 in Kenya, 33 in Cameroon, 28 in Madagascar, 19 in Ethiopia, 6 in Tanzania, 2 in Rwanda, 2 in Sudan, 2 in D.R. Congo, 1 in Libya, and 9 on the minor islands around Africa. We present the current state-of-the-art of arguably all the African volcanic lakes that the global experts and regional research teams are aware of, and provide hints for future research directions, with a special focus on the volcanic hazard assessment. All lakes in the updated database are classified for their genetic origin and their physical and chemical characteristics, and level of study. The predominant rift-related volcanism in Africa favors basaltic eruptive products, leading to volcanoes with highly permeable edifices (e.g. scoria), and hence less-developed hydrothermal systems. Basal aquifers accumulate under large volcanoes and in rift depressions providing a potential scenario for phreatomagmatic volcanism. This hypothesis, based on a morphometric analysis and volcanological research from literature, conveys the predominance of maar lakes in large monogenetic fields in Africa (e.g. Uganda, Cameroon, Ethiopia), and the absence of high-activity crater lakes, generally found at arc-volcanoes. Considering the large number of maar lakes in Africa (172), within similar geotectonic settings and meteoric conditions as in Cameroon, it is somewhat surprising that “only” from Lake Monoun and Lake Nyos fatal CO2 bursts have been recorded. Explaining why other maars did not erupt in such fashion is a question that can only be answered by enhancing insights into physical limnology and fluid geochemistry of the so far poorly studied lakes. From a hazard perspective, there is an urgent need to tackle this task as a community.
    Description: Published
    Description: 717798
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2021-12-15
    Description: We present a benchmark study aimed at identifying the most effective modeling approach for tsunami generation, propagation, and hazard in an active volcanic context, such as the island of Stromboli (Italy). We take as a reference scenario the 2002 landslide-generated tsunami event at Stromboli simulated to assess the relative sensitivity of numerical predictions to the landslide and the wave models, with our analysis limited to the submarine landslide case. Two numerical codes, at different levels of approximation, have been compared in this study: the NHWAVE three-dimensional non-hydrostaticmodel in sigma-coordinates and theMultilayer-HySEA model. In particular, different instances of Multilayer-HySEA with one or more vertical discretization layers, in hydrostatic and non-hydrostatic formulation and with different landslide models have been tested. Model results have been compared for the maximum runup along the shores of Stromboli village, and the waveform sampled at four proximal sites (two of them corresponding to the locations of the monitoring gauges, offshore the Sciara del Fuoco). Both rigid and deformable (granular) submarine landslide models, with volumes ranging from 7 to 25 million of cubic meters, have been used to trigger the water waves, with different physical descriptions of the mass movement. Close to the source, the maximum surface elevation and the resulting runup at the Stromboli village shores obtainedwith hydrostatic and non-hydrostaticmodels are similar. However, hydrostatic models overestimate (with respect to non-hydrostatic ones) the amplitude of the initial positive wave crest, whose height increases with the distance. Moreover, as expected, results indicate significant differences between the waveforms produced by the different models at proximal locations. The accuratemodeling of near-field waveforms is particularly critical at Stromboli in the perspective of using the installed proximal sea-level gauges, together with numerical simulations, to characterize tsunami source in an early-warning system. We show that the use of non-hydrostatic models, coupled with a multilayer approach, allows a better description of the waveforms. However, the source description remains the most sensitive (and uncertain) aspect of the modeling. We finally show that non-hydrostatic models, such as Multilayer-HySEA, solved on accelerated GPU architectures, exhibit the optimal trade-off between accuracy and computational requirements, at least for the envisaged problem size and for what concerns the proximal wave field of tsunamis generated by volcano landslides. Their application and future developments are opening new avenues to tsunami early warning at Stromboli.
    Description: Published
    Description: 628652
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: landslide ; tsunami ; volcano ; Stromboli ; numerical simulation ; benchmark ; hazard assessment ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2021-12-22
    Description: In order to be able to forecast the weather and estimate future climate changes in the ocean, it is crucial to understand the past and the mechanisms responsible for the ocean variability. This is particularly true in a complex area such as the Mediterranean Sea with diverse dynamics like deep convection and overturning circulation. To this end, effective tools are ocean reanalyses or reconstructions of the past ocean state. Here we present a new physical reanalysis of the Mediterranean Sea at high resolution, developed in the Copernicus Marine Environment Monitoring Service (CMEMS) framework. The hydrodynamic model is based on the Nucleus for European Modelling of the Ocean (NEMO) combined with a variational data assimilation scheme (OceanVar). The model has a horizontal resolution of 1/24° and 141 unevenly distributed vertical z* levels. It provides daily and monthly temperature, salinity, current, sea level and mixed layer depth as well as hourly fields for surface velocities and sea level. ECMWF ERA-5 atmospheric fields force the model and daily boundary conditions in the Atlantic are taken from a global reanalysis. The reanalysis covers the 33 years from 1987 to 2019. Initialized from SeaDataNet climatology in January 1985, it reaches a nominal state after a 2-years spin-up. In-situ data from CTD, ARGO floats and XBT are assimilated into the model in combination with satellite altimetry observations. This reanalysis has been validated and assessed through comparison to in-situ and satellite observations as well as literature climatologies. The results show an overall improvement of the comparison with observations and a better representation of the main dynamics of the region compared to a previous, lower resolution (1/16°), reanalysis. Temperature and salinity RMSD are decreased by respectively 14 and 18%. The salinity biases at depth of the previous version are corrected. Climate signals show continuous increase of the temperature and salinity, confirming estimates from observations and other reanalysis. The new reanalysis will allow the study of physical processes at multi-scales, from the large scale to the transient small mesoscale structures and the selection of climate indicators for the basin.
    Description: Published
    Description: 702285
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Keywords: ocean ; mediterranean sea ; reanalysis ; numerical modelling ; observations ; data assimilation ; multi-scale
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2021-12-22
    Description: Seismic activity in volcanic settings could be the signature of processes that include magma dynamics, hydrothermal activity and geodynamics. The main goal of this study is to analyze the seismicity of Lipari Island (Southern Tyrrhenian Sea) to characterize the dynamic processes such as the interaction between pre-existing structures and hydrothermal processes affecting the Aeolian Islands. We deployed a dense seismic array of 48 autonomous 3-component nodes. For the first time, Lipari and its hydrothermal field are investigated by a seismic array recording continuously for about a month in late 2018 with a 0.1–1.5 km station spacing. We investigate the distribution and evolution of the seismicity over the full time of the experiment using self-organized maps and automatic algorithms. We show that the sea wave motion strongly influences the background seismic noise. Using an automatic template matching approach, we detect and locate a seismic swarm offshore the western coast of Lipari. This swarm, made of transient-like signals also recognized by array and polarization analyses in the time and frequency domains, is possibly associated with the activation of a NE-SW fault. We also found the occurrence of hybrid events close to the onshore Lipari hydrothermal system. These events suggest the involvement of hot hydrothermal fluids moving along pre-existing fractures. Seismological analyses of one month of data detect signals related to the regional tectonics, hydrothermal system and sea dynamics in Lipari Island.
    Description: Published
    Description: 678581
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2021-12-23
    Description: Infrasonic signals investigation plays a fundamental role for both volcano monitoring purpose and the study of the explosion dynamics. Proper and reliable detection of weak signals is a critical issue in active volcano monitoring. In particular, in volcanic acoustics, it has direct consequences in pinpointing the real number of generated events (amplitude transients), especially when they exhibit low amplitude, are close in time to each other, and/or multiple sources exist. To accomplish this task, several algorithms have been proposed in literature; in particular, to overcome limitations of classical approaches such as short-time average/long-time average and cross-correlation detector, in this paper a subspace-based detection technique has been implemented. Results obtained by applying subspace detector on real infrasound data highlight that this method allows sensitive detection of lower energy events. This method is based on a projection of a sliding window of signal buffer onto a signal subspace that spans a collection of reference signals, representing similar waveforms from a particular infrasound source. A critical point is related to subspace design. Here, an empirical procedure has been applied to build the signal subspace from a set of reference waveforms (templates). In addition, in order to determine detectors parameters, such as subspace dimension and detection threshold, even in presence of overlapped noise such as infrasonic tremor, a statistical analysis of noise has been carried out. Finally, the subspace detector reliability and performance, have been assessed by performing a comparison among subspace approach, cross correlation detector and short-time average/long-time average detector. The obtained confusion matrix and extrapolated performance indices have demonstrated the potentiality, the advantages and drawbacks of the subspace method in tracking volcanic activity producing infrasound events. This method revealed to be a good compromise in detecting low-energy and very close in time events recorded during Strombolian activity
    Description: Published
    Description: 579923
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: infrasound signal ; trigger algorithm ; infrasound volcano monitoring ; strombolian activity ; etna volcano ; infrasonic tremor ; subspace detector ; infrasound events ; solid earth ; 04.08. Volcanology ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2021-11-29
    Description: Explosive eruptions are the surface manifestation of dynamics that involve transfer of magma from the underground regions of magma accumulation. Evidence of the involvement of compositionally different magmas from different reservoirs is continuously increasing to countless cases. Yet, models of eruption dynamics consider only the uppermost portion of the plumbing system, neglecting connections to deeper regions of magma storage. Here we show that the extent and efficiency of the interconnections between different magma storage regions largely control the size of the eruptions, their evolution, the causes of their termination, and ultimately their impact on the surrounding environment. Our numerical simulations first reproduce the magnitude-intensity relationship observed for explosive eruptions on Earth and explain the observed variable evolutions of eruption mass flow rates. Because deep magmatic interconnections are largely inaccessible to present-day imaging capabilities, our results motivate the need to better image and characterize extant magma bodies.
    Description: Published
    Description: 681083
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2021-12-01
    Description: Ischia is a densely inhabited and touristic volcanic island located in the northern sector of the Gulf of Naples (Italy). In 2017, the Mw 3.9 Casamicciola earthquake occurred after more than one century of seismic quiescence characterized only by minor seismicity, which followed a century with three destructive earthquakes (in 1828, 1881, and 1883). These events, despite their moderate magnitude (Mw 〈 5.5), lead to dreadful effects on buildings and population. However, an integrated catalogue systematically covering historical and instrumental seismicity of Ischia has been still lacking since many years. Here, we review and systematically re-analyse all the available data on the historical and instrumental seismicity, to build an integrated earthquake catalogue for Ischia with a robust characterization of existing uncertainties. Supported by new or updated macroseismic datasets, we significantly enriched existing catalogues, as the Italian Parametric Earthquake Catalogue (CPTI15) that, with this analysis, passed from 12 to 57 earthquakes with macroseismic parametrization. We also extended back by 6 years the coverage of the instrumental catalogue, homogenizing the estimated seismic parameters. The obtained catalogue will not only represent a solid base for future local hazard quantifications, but also it provides the unique opportunity of characterizing the evolution of the Ischia seismicity over centuries. To this end, we analyse the spatial, temporal, and magnitude distributions of Ischia seismicity, revealing for example that, also in the present long-lasting period of volcanic quiescence, is significantly non-stationary and characterized by a b-value larger than 1.
    Description: This work benefited of the agreement between Istituto Nazionale di Geofisica e Vulcanologia and the Italian Presidenza del Consiglio dei Ministri, Dipartimento della Protezione Civile (DPC).
    Description: Published
    Description: 629736
    Description: 4T. Sismicità dell'Italia
    Description: 6SR VULCANI – Servizi e ricerca per la società
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: 4IT. Banche dati
    Description: JCR Journal
    Keywords: Ischia island ; Volcano seismicity ; Seismic catalogue ; Completeness analysis ; Ensemble modelling ; Frequency size distribution ; Poisson process ; 04.06. Seismology ; 04.08. Volcanology ; 05.02. Data dissemination ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2021-12-06
    Description: The Aleutian Arc is remote and highly active volcanically. Its 4,000 km extent from mainland Alaska to Russia’s Kamchatka peninsula hosts over 140 volcanic centers of which about 50 have erupted in historic times. We present data of volcanic gas samples and gas emission measurements obtained during an expedition to the western-most segment of the arc in September 2015 in order to extend the sparse knowledge on volatile emissions from this remote but volcanically active region. Some of the volcanoes investigated here have not been sampled for gases before this writing. Our data show that all volcanoes host high-temperature magmatic-hydrothermal systems and have gas discharges typical of volcanoes in oceanic arcs. Based on helium isotopes, the western Aleutian Arc segment has minimal volatile contributions from the overriding crust. Volcanic CO2 fluxes from this arc segment are small, compared to the emissions from volcanoes on the Alaska Peninsula and mainland Alaska. The comparatively low CO2 emissions may be related to the lower sediment flux delivered to the trench in this part of the arc.
    Description: Published
    Description: 786021
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Keywords: Aleutians ; volcano ; gas ; volatiles ; geochemistry ; 04.08. Volcanology ; 04.01. Earth Interior
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2021-12-14
    Description: We present results from a joint inversion of new seismic and recently compiled gravity data to constrain the structure of a prominent geophysical anomaly in the European Alps: the Ivrea Geophysical Body (IGB). We investigate the IGB structure along the West-East oriented Val Sesia profile at higher resolution than previous studies. We deployed 10 broadband seismic stations at 5 km spacing for 27 months, producing a new database of ∼1000 high-quality seismic receiver functions (RFs). The compiled gravity data yields 1 gravity point every 1–2 km along the profile. We set up an inversion scheme, in which RFs and gravity anomalies jointly constrain the shape and the physical properties of the IGB. We model the IGB’s top surface as a single density and shear-wave velocity discontinuity, whose geometry is defined by four, spatially variable nodes between far-field constraints. An iterative algorithm was implemented to efficiently explore the model space, directing the search toward better fitting areas. For each new candidate model, we use the velocity-model structures for both ray-tracing and observed-RFs migration, and for computation and migration of synthetic RFs: the two migrated images are then compared via cross-correlation. Similarly, forward gravity modeling for a 2D density distribution is implemented. The joint inversion performance is the product of the seismic and gravity misfits. The inversion results show the IGB protruding at shallow depths with a horizontal width of ∼30 km in the western part of the profile. Its shallowest segment reaches either 3–7 or 1–3 km depth below sea-level. The latter location fits better the outcropping lower crustal rocks at the western edge of the Ivrea-Verbano Zone. A prominent, steep eastward-deepening feature near the middle of the profile, coincident with the Pogallo Fault Zone, is interpreted as inherited crustal thickness variation. The found density and velocity contrasts of the IGB agree with physical properties of the main rock units observed in the field. Finally, by frequency-dependent analysis of RFs, we constrain the sharpness of the shallowest portion of the IGB velocity discontinuity as a vertical gradient of thickness between 0.8 km and 0.4 km.
    Description: The Swiss National Science Foundation (SNF) supported this research (grant numbers PP00P2_157627 and PP00P2_187199 of project OROG3NY), as well as the Grant Agency of the Czech Republic (No. 21-25710). The project CzechGeo/EPOS No. LM2015079 of the MEYS funded the MOBNET station pool.
    Description: Published
    Description: 671412
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: joint inversion ; seismic receiver functions ; gravity anomalies ; Ivrea Geophysical Body ; Ivrea-Verbano Zone ; continental crust ; intra-crustal structure ; 04.01. Earth Interior ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2021-12-06
    Description: Studying seismicity in a volcanic environment provides important information on the state of activity of volcanoes. The seismicity of the Neapolitan volcanoes, Campi Flegrei, Vesuvius, and Ischia, shows distinctive characteristics for each volcano, coveringwide range of patterns and types. In this study we relocated some significant volcano- tectonic earthquake swarms that occurred in Campi Flegrei and Vesuvius. Moreover, we compared the earthquake occurrence evolution, the magnitude and the seismic energy release of the three volcanoes. Also, we considered the results of seismic analysis in the light of geochemical and ground deformation data that contribute to defining the state of activity of volcanoes. In Campi Flegrei, which is experiencing a long term unrest, we identified a seismogenic structure at shallow depth in Pisciarelli zone that has been activated repeatedly. The increasing seismicity accompanies an escalation of the hydrothermal activity and a ground uplift phase. At Vesuvius a very shallow seismicity is recorded, which in recent years has shown an increase in terms of the number of events per year. Earthquakes are usually located right beneath the crater axis. They are concentrated in a volume affected by the hydrothermal system. Finally, Ischia generally shows a low level of seismicity, however, in Casamicciola area events with a moderate magnitude can occur and these are potentially capable of causing severe damage to the town and population, due to their small hypocentral depth (typically 〈 2.5 km). After the seismic crisis of August 21, 2017 (mainshock magnitude M 4), the seismicity returned to a low level in terms of occurrence rate and magnitude of earthquakes. The seismicity of these three different volcanic areas shows some common aspects that highlight a relevant role of hydrothermal processes in the seismogenesis of volcanic areas. However, while the main swarms in Campi Flegrei and most of the Vesuvian earthquakes are distributed along conduit-like structures, the seismicity of Ischia is mainly located along faults. Furthermore, the temporal evolution of seismicity in Neapolitan volcanic area suggests a concomitant increase in the occurrence of earthquakes both in Campi Flegrei and Vesuvius in recent years.
    Description: Published
    Description: 662113
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2021-12-13
    Description: Dissolved gases in the deep water of lakes can pose a safety hazard when extreme concentrations are reached. A sudden release of large amounts of gas can cost the lives of humans living in the neighbourhood, as has happened at Lake Nyos in 1986. Since 2001, Lake Nyos gas risk has been mitigated by induced degassing, but the connection to the gas source is still in place and a regular survey needs to be implemented to guarantee safe conditions. Frequent sampling at the remote location of Lake Nyos requires an enormous effort and many analytical techniques are nearly impossible to run at the lake site. In this contribution, we combined a commercially available sound speed sensor with a CTD (conductivity-temperature-depth) probe to gain an indirect but quantitative estimate of carbon dioxide concentrations at fine depth resolution (decimeter scale). Dissolved carbon dioxide increases sound speed but does not contribute to electrical conductivity. Hence the difference between measured and calculated (on the base of electrical conductivity, temperature and pressure) and measured sound speed gives a quantitative indication of dissolved carbon dioxide. We highly recommend the implementation of the sound speed-CTD probe combination, at Lake Nyos, or at other gas-laden volcanic lakes, as it could safeguard the people living in the area with acceptable cost and effort for the operators, when alarming CO2 concentrations in deep lake strata will be timely detected.
    Description: Published
    Description: 645011
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2021-12-14
    Description: Extreme events have long been underestimated in the extent to which they shape the surface of our planet, our environment, its ecological integrity, and the sustainability of human society. Extreme events are by definition rarely observed, of significant impact and, as a result of their spatiotemporal range, not always easily predicted. Extremes may be short-term catastrophic events such as tsunamis, or long-term evolving events such as those linked to climate change; both modify the environment, producing irreversible changes or regime shifts. Whatever the driver that triggers the extreme event, the damages are often due to a combination of several processes and their impacts can affect large areas with secondary events (domino effect), whose effects in turn may persist well beyond the duration of the trigger event itself. Early studies of extreme events were limited to opportunistic approaches: observations were made within the context of naturally occurring events with high societal impact. Given that climate change is now moving us out of a relatively static climate regime during the development of human civilization, extreme events are now a function of underlying climate shifts overlain by catastrophic processes. Their impacts are often due to synergistic factors, all relevant in understanding process dynamics; therefore, an integrated methodology has become essential to enhance the reliability of new assessments and to develop strategies to mitigate societal impacts. Here we summarize the current state of extreme event monitoring in the marine system, highlighting the advantages of a multidisciplinary approach using Research Infrastructures for providing the temporal and spatial resolution required to monitor Earth processes and enhance assessment of associated impacts.
    Description: Published
    Description: 626668
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2021-12-23
    Description: In this Research Topic, we aimed to contribute to the ongoing scientific progress and the process of assessing and providing community-based standards, good practices, benchmarking tools and guidelines, based on the most recent observations and scientific findings. This purpose is in line with several community-based efforts like those of the “GTM—Global Tsunami Model” and “AGITHAR—Accelerating Global science In Tsunami Hazard and Risk analysis” scientific networks. We aimed to help better address the link between tsunami science and the Probabilistic Tsunami Hazard and Risk Analysis. This Topic includes numerous Original Research papers, one Brief Research Report and one Review. Overall, we gathered 20 articles contributed by more than 200 authors. We consider this a strong indication from the research community.
    Description: Published
    Description: 764922
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 8T. Sismologia in tempo reale e Early Warning Sismico e da Tsunami
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: 1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2021-12-22
    Description: Space techniques based on GPS and SAR interferometry allow measuringmillimetric ground deformations. Achieving such accuracy means removing atmospheric anomalies that frequently affect volcanic areas by modeling the tropospheric delays. Due to the prominent orography and the high spatial and temporal variability of weather conditions, the active volcano Mt. Etna (Italy) is particularly suitableto carry out research aimed at estimating and filtering atmospheric effects on GPS and DInSAR grounddeformation measurements. The aim of this work is to improve the accuracy of the ground deformation measurements by modeling the tropospheric delays at Mt. Etna volcano. To this end, data from the monitoring network of 29 GPS permanent stations and MODIS multispectral satellite data series are used to reproduce the tropospheric delays affecting interferograms. A tomography algorithm has been developed to reproduce the wet refractivityfield over Mt. Etna in 3D, starting from the slant tropospheric delays calculated by GPS in all the stations of the network. The developed algorithm has been tested on a synthetic atmospheric anomaly. The test confirms the capability of the software to faithfully reconstruct the simulated anomaly. With the aim of applying this algorithm to real cases, we introduce the water vapor contentmeasured by the MODIS instrument on board Terra and Aqua satellites. The use of such data,although limited by cloud cover, provides a two-fold benefit: it improves the tomographic resolution and adds feedback for the GPS wet delay measurements. A cross-comparison between GPS and MODIS water vapor measurements for thefirst time shows a fair agreement between those indirect measurements on an entire year of data (2015). The tomography algorithm was applied on selected real cases to correct the Sentinel-1 DInSAR interferograms acquired over Mt. Etna during 2015. Indeed, the corrected interferograms show that the differential path delay reaches 0.1 m (i.e. 3 C-band fringes) in ground deformation, demonstrating how the atmospheric anomaly affects precision and reliability of DInSAR space-based techniques. The real cases show that the tomography is often able to capturethe atmospheric effect at the large scale and correct interferograms, although in limited areas. Furthermore, the introduction of MODIS data significantly improves by ∼80% voxel resolution at the critical layer (1,000 m). Further improvements will be suitable for monitoring active volcanoes worldwide.
    Description: Published
    Description: 510514
    Description: 5IT. Osservazioni satellitari
    Description: JCR Journal
    Keywords: tomography, GPS, etna, earth observation data, SAR, water vapor
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2022-02-02
    Description: Changbaishan volcano (China/North Korea border) consists of a cone with a summit caldera and last erupted in 1903. An unrest episode occurred between 2002 and 2006, followed by subsidence. The volcano was responsible for the largest eruption of the last Millennium in 946 CE and it is characterized by a multi-level plumbing system. Here, we analyze the Changbaishan 2018-2020 deformations by using remote sensing data, detecting an up to 20 mm/yr, NW-SE elongated nearly-uplift of its southeastern flank and a -20 mm/yr nearly-subsidence of the southwestern flank. Modeling results show that three active sources are responsible for the observed ground velocities: a deep tabular deflating source, a shallower inflating NW-SE elongated spheroid source, and a NW-SE striking dip-slip fault. The depth and geometry of the inferred sources are consistent with independent petrological and geophysical data. Our results reveal an upward magma migration from 14 km to 7.7 km. The modeling of the leveling data of the 2002-2005 uplift and 2009-2011 subsidence depicts sources consistent with the 2018-2020 active system retrieved. The past unrest is related to pressurization of the upper portion of the spheroid magma chamber, whereas the subsidence is due to crystallization of its floor, this latter reactivated in 2018-2020. Therefore, Changbaishan is affected by an active magma recharge controlled by a NW-SE trending fault system. Satellite data analysis is a key tool to unravel the magma dynamics at poorly monitored and crossborder volcanoes.
    Description: Published
    Description: 741287
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: active magma recharge ; Plumbing system ; Deformation modelling ; Changbaishan volcano ; InSAR ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2021-12-14
    Description: The ocean is a crucial component of the Earth’s climate system. Heat and CO2 are absorbed in the ocean’s surface and transported throughout the ocean depths through the overturning circulation. Exchange across the ocean’s turbulent surface boundary layer can happen rapidly, in hours or days, and significant exchange of water between the boundary layer and the stratified main thermocline occurs over timescales of years to decades. Deepwater takes many decades to millennia to return to the surface, acting as long-term storage for heat and CO2 and thereby lessening the near-term impacts of climate change. The understanding of mechanisms and rates that control the bottom flows is essential to quantify re-transfer towards the upper layers of the energy stored at the seafloor. These processes are significantly affecting the ocean system as a whole and could contribute to accelerating the rising climate trends (thermohaline circulation, sea-level rise, and ocean acidification). The Mediterranean Sea, like the ocean, has its overturning circulation and it represents a suitable lab for investigating physical mechanisms such as deepwater formation, mixing processes, strait dynamics, advective-convective feedbacks that drive the ocean variability, and the internal exchange mechanisms. Also, the scale of variability is shorter compared to other ocean basins in time and space. As mechanisms governing exchanges of heat and carbon in the ocean occur with long timescales, observational datasets over many decades are required to document, understand, and predict the climate system as a whole. This is also an essential requirement to detect and attribute changes driven by human activities and to predict how the climate system will likely behave in the future. The needs for and uses of deep ocean data extend well beyond closing the global heat budget. Deep ocean data are needed to initialize and constrain ocean models and improve their representation of mixing of heat downwards/upwards within the deep ocean. In order to understand past and future climate changes, the characterization of the still unexplored deep dynamics aims to provide crucial results to support new interpretations of the paleo circulation and of those processes that have influenced ventilation and water masses overturning. These new insights will also be essential for leading, in the near future, new tailored parameterizations able to adequately represent the dynamics below 2000m of depth. This article collection conceived in the framework of MedCliver (http://www.medclivar.eu/) community, aims to gather outcomes on deep ocean circulation and bottom mixing not only in the Mediterranean area but also through other important case studies relevant in the characterization of deep processes, considering three different points of view: 1- Theoretical (role of the bottom diffusion) 2- New assimilation and modeling 3- In situ observations of deep long time series These will contribute to improving knowledge of the impacts of key deep processes on the climate system.
    Description: Published
    Description: 801479
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2021-12-23
    Description: The structure of an active volcano is highly dependent on the interplay between the geodynamic context, the tectonic assessment as well as the magmatic processes in the plumbing system. This complex scenario, widely explored at Etna during the last 40 years, is nevertheless incomplete for the recent historical activity. In 1763 two eruptions occurred along the west flank of the volcano. There, an eruption started on 6th February and formed the scoria cone of Mt. Nuovo and a roughly 4-km-long lava flow field. Another small scoria cone, known as Mt. Mezza Luna, is not dated in historical sources. It is located just 1 km eastward of Mt. Nuovo and produced a 700mlong flow field. We focused on the activity of Mts. Nuovo and Mezza Luna for several reasons. First, the old geological maps and volcanological catalogues indicate that Mt. Mezza Luna and Mt. Nuovo cones were formed during the same eruption, while historical sources described Mt. Nuovo’s activity as producing a single scoria cone and do not give information about the formation of Mt. Mezza Luna. Second, petrologic studies highlight that the products of Mt. Mezza Luna are similar to the sub-aphyric Etna basalts; they preserve a composition relatively close to Etna primitive magma which were also erupted in 1763, during La Montagnola flank eruption, which took place along the South Rift of the volcano. Third, the two scoria cones built up along the so-called West Rift of Etna, which represents one of the main magma-ascent zones of the volcano. We applied a multidisciplinary approach that could prove useful for other volcanoes whose past activity is still to be reconstructed. Critical reviews of historical records, new field surveys, petrochemical analyses and petrologic modelling of the Mts. Nuovo and Mezza Luna eruptions have been integrated with literature data. The results allowed improving the stratigraphic record of historical eruptions reported in the Mount Etna Geological map, modelling the sub-volcanic magmatic processes responsible for magma differentiation, and evidencing recurrent mechanisms of magma transfer at Etna. Indeed, the intrusion of a deep primitive magma along the South Rift is often associated with the activation of other rift zones that erupt residual magma stored in the shallow plumbing system.
    Description: This study has been funded by the EC FP7 Mediterranean Supersite Volcanoes project (ECGA 308665) of the European Commission
    Description: Published
    Description: 774361
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Etna volcano, historical activity, historical geological maps, stratigraphic sequence, deep magma composition, volcano rift zones ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2022-10-12
    Description: A marine sediment record from the central Bering Sea, spanning the last 20 thousand years (ka), was studied to unravel the depositional history with regard to terrigenous sediment supply and biogenic sedimentation. Methodic approaches comprised the inference of accumulation rates of siliciclastic and biogenic components, grain-size analysis, and (clay) mineralogy, as well as paleoclimatic modelling. Changes in the depositional history provides insight into land-ocean linkages of paleoenvironmental changes. During the finale of the Last Glacial Maximum, the depositional environment was characterized by hemipelagic background sedimentation. A marked change in the terrigenous sediment provenance during the late Heinrich 1 Stadial (15.7–14.5 ka), indicated by increases in kaolinite and a high glaciofluvial influx of clay, gives evidence of the deglaciation of the Brooks Range in the hinterland of Alaska. This meltwater pulse also stimulated the postglacial onset of biological productivity. Glacial melt implies regional climate warming during a time of widespread cooling on the northern hemisphere. Our simulation experiment with a coupled climate model suggests atmospheric teleconnections to the North Atlantic, with impacts on the dynamics of the Aleutian Low system that gave rise to warmer winters and an early onset of spring during that time. The late deglacial period between 14.5 and 11.0 ka was characterized by enhanced fluvial runoff and biological productivity in the course of climate amelioration, sea-level rise, seasonal sea-ice retreat, and permafrost thaw in the hinterland. The latter processes temporarily stalled during the Younger Dryas stadial (12.9-11.7 ka) and commenced again during the Preboreal (earliest Holocene), after 11.7 ka. High river runoff might have fertilized the Bering Sea and contributed to enhanced upper ocean stratification. Since 11.0 ka, advanced transgression has shifted the coast line and fluvial influence of the Yukon River away from the study site. The opening of the Bering Strait strengthened contour currents along the continental slope, leaving behind winnowed sand-rich sediments through the early to mid-Holocene, with non-deposition occurring since about 6.0 ka.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...