ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (64)
  • MDPI Publishing
  • 2020-2023  (64)
  • 2020-2022
  • 2022  (64)
  • 2022  (64)
Collection
Years
Year
  • 1
    Publication Date: 2022-03-07
    Description: Coastal dynamics are the result of several processes controlling the balance between sediment input and output over time. The beach system is not always able to maintain a neutral coastal balance due to natural and anthropogenic causes. We present an integrated marine geology, geomorphological and sea-level rise analysis in the coastal sector between Torre delle Ciavole and Capo Calavà (North-Eastern Sicily, Italy).This sector is characterized by high uplift rates and frequent seismicity (mainly generated by the very active Vulcano-Tindari Fault System), promoting the development of mass-wasting processes in the coastal and offshore sectors. A main erosive feature observed in the area is the head of the Gioiosa Marea submarine canyon, located at some meters of depth, few hundred meters far the coastline. The main morphological features of the canyon were reconstructed through the analysis of high-resolution multibeam data, indicating that the canyon is active, as also testified by the comparison of time-lapse aerial photos. Due to this active setting, the study area is exposed to multiple geohazards, among which we deal with: (1) retrogressive instability at the head of the Gioiosa Marea submarine canyon, (2) coastal erosion favored by the downlope funnelling of littoral drift at the canyon head, (3) flooding scenario at 2100 using the IPCC (Intergovernmental Panel on Climate Change) and Rahmstorf sea-level projections. The consequences associated with these geohazards are amplified by the strong anthropization pressures occurring along in this sector. Our results provide key insights regarding the future scenarios of this coastal sector, revealing the effects of the retrogressive activity associated with the canyon head on the coastal strip. We also present the first management tool for the application of forecasting studies by local administrations.
    Description: Published
    Description: 2
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Description: JCR Journal
    Keywords: Submarine canyon · Sicily continental margin · Uplift rate · Coastal erosion · Relative sea-level projections · Coastal flooding ; Geohazard assessment
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-04-21
    Description: This book outlines the current development of geoethical thinking, proposing to the general public reflections and categories useful for understanding the ethical, cultural, and societal dimensions of anthropogenic global changes. Geoethics identifies and orients responsible behaviors and actions in the management of natural processes, redefining the human interaction with the Earth system based on a critical, scientifically grounded, and pragmatic approach. Solid scientific knowledge and a philosophical reference framework are crucial to face the current ecological disruption. The scientific perspective must be structured to help different human contexts while respecting social and cultural diversity. It is impossible to respond to global problems with disconnected local actions, which cannot be proposed as standard and effective operational models. Geoethics tries to overcome this fragmentation, presenting Earth sciences as the foundation of responsible human action toward the planet. Geoethics is conceived as a rational and multidisciplinary language that can bind and concretely support the international community, engaged in resolving global environmental imbalances and complex challenges, which have no national, cultural, or religious boundaries that require shared governance. Geoethics is proposed as a new reading key to rethinking the Earth as a system of complex relationships, in which the human being is an integral part of natural interactions.
    Description: Published
    Description: 1TM. Formazione
    Description: 2TM. Divulgazione Scientifica
    Description: 3TM. Comunicazione
    Keywords: geoethics ; responsibility ; social-ecological systems ; Earth ; environmental ethics ; Anthropocene ; ecological humanism ; global anthropogenic changes ; 05.03. Educational, History of Science, Public Issues ; 05.09. Miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-04
    Description: The availability of computer tools able to describe the behavior of pyroclastic density currents (PDCs) with uncertainty quantification is of primary importance for the assessment of volcanic hazard. A common strategy to assess the intrinsic variability of these phenomena is based on the analysis of large sets of numerical simulations with variable input parameters. The use of models fast enough to allow for a large number of simulations, such as the so-called kinetic energy models, is thus advantageous. Due to the sensitivity of kinetic energy models to poorly constrained input parameters, the definition of their variation ranges is a critical step in the construction of hazard maps and a numerical calibration becomes necessary. We present a set of reproducible and structured calibration procedures of numerical models based either on a reference deposit or on the distribution of runout distance or inundation area of documented PDCs. In the first case, various metrics can be adopted to compare the model results with the reference PDC deposit (root mean square distance, Hausdorff distance, and Jaccard index), facilitating the development of scenario-based hazard assessments. Calibrations based on the distribution of runout distance or inundation area allow the construction of probabilistic hazard maps that are not conditioned on the occurrence of a specific scenario, but rather reflect the variability of the documented PDCs during the time window considered. Importantly, our calibration strategies allow one to set the input parameters considering their potential statistical dependence. These procedures have been implemented on the user-friendly versions of two kinetic energy models: ECMapProb 2.0 and BoxMapProb 2.0, whose functionalities are presented for the first time in this paper. The different calibration strategies and the functionalities of the two programs are illustrated by considering three case studies: El Misti (Peru), Merapi (Indonesia), and Campi Flegrei (Italy).
    Description: Published
    Description: 29
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-03-16
    Description: The increased concentration of greenhouse gases in the atmosphere from human activities traps heat within the climate system and increases ocean heat content (OHC). Here, we provide the first analysis of recent OHC changes through 2021 from two international groups. The world ocean, in 2021, was the hottest ever recorded by humans, and the 2021 annual OHC value is even higher than last year’s record value by 14 ± 11 ZJ (1 zetta J = 1021 J) using the IAP/CAS dataset and by 16 ± 10 ZJ using NCEI/NOAA dataset. The long-term ocean warming is larger in the Atlantic and Southern Oceans than in other regions and is mainly attributed, via climate model simulations, to an increase in anthropogenic greenhouse gas concentrations. The year-to-year variation of OHC is primarily tied to the El Niño-Southern Oscillation (ENSO). In the seven maritime domains of the Indian, Tropical Atlantic, North Atlantic, Northwest Pacific, North Pacific, Southern oceans, and the Mediterranean Sea, robust warming is observed but with distinct inter-annual to decadal variability. Four out of seven domains showed record-high heat content in 2021. The anomalous global and regional ocean warming established in this study should be incorporated into climate risk assessments, adaptation, and mitigation.
    Description: Published
    Description: 373–385
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Keywords: ocean warming
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-03-17
    Description: Physics of earthquake source can be investigated by monitoring active faults from borehole observatory in reservoirs (Maxwell et al. 2010) or by interpretation of seismic waves at the earth’s surface (Shearer 2019). Indeed, most information on earthquake mechanics is retrieved from seismology (e.g., Lee et al. 2002). However, the low resolution of these indirect techniques (cm to km scale) yields limited information on the physical and chemical deformation mechanisms active during earthquake rupture nucleation and propagation (Kanamori and Anderson 1975). Experimental studies of frictional instabilities on fault gouge material or pre-existing surfaces (e.g., Brace and Byerlee 1966) may overcome those limitations (Scholz 1998; Marone 1998; Persson 2013). For instance, friction controls earthquake nucleation and propagation, the static and dynamic stress drops, the frictional heat generated during slip, and consequently the energy budget of earthquakes (Scholz 2019; Di Toro et al. 2011). All these processes can be investigated and monitored through laboratory experiments. In the last decades, rock friction properties have long been investigated using triaxial apparatuses in saw-cut configuration (e.g., Jaeger 1959; Byerlee 1967; Handin 1969), in which the fault is loaded at low velocities, typically orders of µm/s, and accumulates small displacements, typically few mm. In a seminal paper, Brace and Byerlee (1966) suggested that the stick–slip phenomenon observed in these rock friction experiments is analogous to natural earthquakes. Furthermore, to address the problem of earthquakes nucleation, biaxial apparatuses were developed and have long been used to study frictional properties of experimental faults under sub-seismic slip velocities in double-direct shear configuration (e.g., Dieterich 1972; Mair et al. 2002; Collettini et al. 2014; Giorgetti et al. 2015). The biaxial apparatus developed at USGS (USA) is amongst the first biaxial apparatuses used to investigate rock frictional properties (e.g., Dieterich 1972). Other pioneering biaxial apparatuses are the one in the Rock and Sediment Mechanics Laboratory at the Pennsylvania State University (USA) (e.g., Mair et al. 2002) and BRAVA (Brittle Rock deformAtion Versatile Apparatus) installed at INGV in Rome (Italy) (Collettini et al. 2014). Although the biaxial apparatuses developed in the past 50 years are characterized by different boundary conditions in terms of forces, pressures, temperatures and size of the samples, all of them take advantages from the double-direct shear configuration that allows good control of the normal and shear forces acting of the fault, accurate measurements of fault slip and dilation/compaction, and constant contact area. Friction studies conducted with triaxial and biaxial deformation apparatuses are characterized by sub-seismic slip velocities and a limited amount of slip, 〈 10–3 m/s and few cm, respectively (e.g., Jaeger 1959; Byerlee 1967,1978; Brace and Byerlee 1966; Handin 1969; Paterson and Wong 2005; Lockner and Beeler 2002; Mair et al. 2002; Savage and Marone 2007; Samuelson et al. 2009; Carpenter et al. 2016). These experiments showed that the apparent static friction coefficient μ (i.e., μ = τ/σneff, where τ is the shear stress and σneff the effective normal stress acting on the fault) is between 0.60 and 0.85 for most rocks (Byerlee’s rule; except for phyllosilicates-rich rocks [Byerlee 1978]), for normal stresses up to 2 GPa, and temperatures up to 780 K. The apparent friction can thus be expressed as a function of slip velocity and a state variable, and modelled with the empirical rate- and state-dependent friction law (Dieterich 1979; Ruina 1983). Additionally, at velocities typical of earthquake nucleation phase, the apparent friction varies only a few percents for small changes in slip velocity, determining if a fault is or not prone to nucleate earthquakes. Although Byerlee’s rule and the rate-and-state law have many applications in earthquake mechanics (inter-seismic and nucleation phase of earthquakes), these experiments were performed at slip velocities and displacements orders of magnitude smaller than those of earthquakes. Therefore, these experiments are unable to characterize the propagation phase of earthquakes. In the last 15 years, the multiplication of the rotary shear apparatus, designed to achieve slip velocities higher than 1 m/s and infinite displacement, overcome those limitations and produced unexpected results (Di Toro et al. 2010). A pioneering rotary shear apparatus capable of achieving seismic slip velocities up to 1.3 m/s were built and installed in Japan (Shimamoto 1994). Amongst others (see Di Toro et al. 2010 and references therein), a state-of-art rotary shear apparatus (SHIVA, Slow to High-Velocity Shear Apparatus) capable of deforming samples at slip rates up to 9 m/s has been installed at INGV in Rome (Italy) (Di Toro et al. 2010). Studies performed with these rotary shear apparatuses have shown a significant decrease in fault strength with increasing slip and slip velocity. They also reveal various dynamic fault‐weakening mechanisms (frictional melting, thermal pressurization, silica gel, elastohydrodynamic lubrication) that are likely active during earthquakes, including mechanisms that were unknown before conducting these experiments. Though this new frontier is promising, key aspects of earthquake mechanics laboratory investigation, like being able to conduct high slip velocity experiments on rocks under elevated pore fluid pressure and temperatures characteristic of natural and induced earthquakes, remain beyond current experimental capabilities. Furthermore, studying links between pore‐fluid pressure, permeability, and frictional properties remains a challenge. To date, very few high-velocity friction experiments have been performed in presence of pore fluid pressure (Tanikawa 2012a, b, 2014; Violay et al. 2014, 2015, 2019; Cornelio et al. 2019a, b). In this paper, we present a new state-of-art apparatus combining the advantages of biaxial apparatuses, i.e., simple geometry, high normal forces, confining pressure and pore fluid pressure, and the advantages of the rotary shear apparatuses, i.e. high slip velocity implemented thanks to the presence of electromagnetic motors. Building on the design of recent low-velocity biaxial machines implemented with pressure vessels (Samuelson et al. 2009; Collettini et al. 2014) and implementing the system with powerful linear motors (Di Toro et al. 2010), the new HighSTEPS (High Strain TEmperature Pressure Speed) apparatus is able to reproduce the deformation conditions typical of the seismogenic crust, i.e., confining pressure up to 100 MPa, slip velocity from 10–5 to 0.25 m/s, temperature up to 120 °C, pore pressure up to 100 MPa. Under these unique boundary conditions, the new apparatus allows the investigation of the entire seismic cycle (inter-seismic, nucleation and propagation).
    Description: Published
    Description: 2039–2052
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Keywords: Biaxial friction apparatus ; Low to high slip velocity ; Deformation conditions of the seismogenic upper crust
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-03-29
    Description: Endemic Antarctic macroalgae are especially adapted to live in extreme Antarctic conditions. Their potential biogeographic distribution niche is primarily controlled by the photoperiodic regime and seawater temperatures, since these parameters regulate growth, reproduction, and survival during the entire life cycle. Here we analyzed the upper survival temperature (UST) of juvenile sporophytes and the temperature range for sporophyte formation from gametophytes of Desmarestia menziesii, one of the dominant endemic Antarctic brown algal species. This process is a missing link to better evaluate the full biogeographical niche of this species. Two laboratory experiments were conducted. First, growth and maximum quantum yield of juvenile sporophytes were analyzed under a temperature gradient (0, 5, 10, 12, 13, 14, 15, and 16 °C) in a 16:8 h light:dark (LD) regime (Antarctic spring condition) for 2 weeks. Second, the formation of sporophytes from gametophytes (as a proxy of gametophyte reproduction) was evaluated during a 7 weeks period under a temperature gradient (0, 4, 8, 12, and 16 °C), and two different photoperiods: 6:18 h LD regime simulating winter conditions and a light regime simulating the Antarctic shift from winter to spring by gradually increasing the light period from 7.5:16.5 h LD (late winter) to 18.5:5.5 h LD (late spring). Sporophytes of D. menziesii were able to grow and survive up to 14 °C for 2 weeks without visible signs of morphological damage. Thus, this species shows the highest UST of all endemic Antarctic Desmarestiales species. In turn, gametophyte reproduction solely took place at 0 °C but not at 4–8 °C. The number of emerging sporophytes was six times higher under the light regime simulating the transition from winter to spring than under constant short day winter conditions. There was a negative relationship between the number of sporophytes formed and the gametophyte density at the beginning of the experiment, which provides evidence that gametophyte density exerts some control upon reproduction in D. menziesii. Results strongly indicate that although sporophytes and gametophytes may survive in warmer temperatures, the northernmost distribution limit of D. menziesii in South Georgia Islands is set by the low temperature requirements for gametophyte reproduction. Hence, global warming could have an impact on the distribution of this and other Antarctic species, by influencing their growth and reproduction.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-03-21
    Description: On 30 October 2020 a MW 7.0 earthquake occurred in the eastern Aegean Sea, between the Greek island of Samos and Turkey’s Aegean coast, causing considerable seismic damage and deaths, especially in the Turkish city of Izmir, approximately 70 km from the epicenter. In this study, we provide a detailed description of the Samos earthquake, starting from the fault rupture to the ground motion characteristics. We first use Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) data to constrain the source mechanisms. Then, we utilize this information to analyze the ground motion characteristics of the mainshock in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and spectral pseudo-accelerations. Modelling of geodetic data shows that the Samos earthquake ruptured a NNE-dipping normal fault located offshore north of Samos, with up to 2.5-3 m of slip and an estimated geodetic moment of 3.3 ⨯ 1019 Nm (MW 7.0). Although low PGA were induced by the earthquake, the ground shaking was strongly amplified in Izmir throughout the alluvial sediments. Structural damage observed in Izmir reveals the potential of seismic risk due to the local site effects. To better understand the earthquake characteristics, we generated and compared stochastic strong ground motions with the observed ground motion parameters as well as the ground motion prediction equations (GMPEs), exploring also the efficacy of the region-specific parameters which may be used to better predict the expected ground shaking from future large earthquakes in the region.
    Description: Published
    Description: 4745–4771
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-03-21
    Description: The China Seismo-Electromagnetic Satellite (CSES), China’s first satellite to measure geophysical fields with scientific goals in both space and solid earth physics, was launched successfully in February 2018. It carries high-precision magnetometers to measure the geomagnetic field. In this study, the CSES magnetic data were used to extract the signal of the lithospheric magnetic field caused by magnetized rocks in the crust and uppermost mantle. First, an along-track analysis of the CSES magnetic data was undertaken near the Bangui magnetic anomaly in central Africa and the Tarim magnetic anomaly in China, demonstrating that the CSES magnetic data are indeed sensitive to the lithospheric magnetic anomaly field. Then a lithospheric magnetic anomaly map over China and surrounding regions was derived. This map is consistent with the lithospheric part of the CHAOS-7 model. In particular, it clearly reveals four major magnetic anomalies containing long-wavelength signals at the altitude of Low-Earth-Orbiting satellites. Three magnetic highs are located over the Tarim, Sichuan and Songliao basin, the origins of which could be related to large-scale tectonic-magmatic activities during geological history. A prominent magnetic low is otherwise found in the southern Himalayan-Tibetan plateau, possibly caused by the shallow Curie depth in this region. To further improve the precision of the lithospheric magnetic field model, more detailed data processing and multi-source data merging are needed.
    Description: Published
    Description: 1118–1126
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-03-01
    Description: Porous carbons are materials of wide application and their request is more and more increasing in the last years: Properly designed synthesis is presently available for the preparation of materials to be used in several fields (e.g.: adsorption, molecular separation, and catalysis). The characterization of the porous carbons is usually carried out using different techniques such as thermogravimetric analyses, Raman spectroscopy, Scanning electron microscopy, etc. In this work, the micro-Raman technique is adopted in combination with N2 physisorption at 77 K to monitor how the synthetic approach influences the presence of either amorphous or ordered regions in porous carbons. The typical D and G Raman bands of activated carbons have been carefully deconvoluted in six different components by a fitting procedure, and the determined R1 = ID1/IG ratio correlated to their specific surface area.
    Description: Published
    Description: 419–431
    Description: 1TR. Georisorse
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-02-18
    Description: The petrological study of volcanic products emitted during the paroxysmal events of December 2015 from the summit craters of Mount Etna allow us to constrain T-P-XH2O phase stability, crystallization conditions, and mixing processes along the main open-conduit feeding system. In this study, we discuss new geochemical, thermo-barometric data and related Rhyolite- MELTS modelling of the eruptive activity that involved the concomitant activation of all summit craters. The results, in comparison with the previous paroxysmal events of the 2011–2012, reinforce the model of a vertically extended feeding system and highlight that the activity at the New South-East Crater was fed by magma residing at a significantly shallower depth with respect to the Central Craters (CC) and North-East Crater (NEC), even if all conduits were fed by a common deep (P = 530–440 MPa) basic magmatic input. Plagioclase dissolution, resorption textures, and the Rhyolite-MELTS stability model corroborate its dependence on H2O content; thus, suggesting that further studies on the effect that flushing from fluids with different H2O/ CO2 ratio are needed to understand the eruption-triggering mechanisms for high energetic strombolian paroxysmal episodes.
    Description: Published
    Description: 88
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...