ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-01-03
    Description: Abstract
    Description: This dataset contains processed (downsampled, rotated to local Äspö96 coordinate system, cut) broadband seismograms from two seismometers (Trillium Compact 120s), showing long-period transients on the horizontal components recorded during multiple hydraulic fracturing experiments in the Äspö Hard Rock Laboratory (HRL). Furthermore, the dataset contains extracted tilt time series and the injection parameters of the experiment to allow reproducing the results of Niemz et al. (2021). The seismic waveforms were recorded during meter-scale hydraulic fracturing experiments in the Äspö Hard Rock Laboratory (HRL) in Sweden (Zang et al., 2017). This dataset only contains a subset of the data recorded during the experiments, monitored by a complementary monitoring system. The two seismometers contained in this dataset (A89 and A8B) were located in galleries adjacent/close to the injection borehole (see Fig. 2 in Niemz et al., 2021). The experiments were conducted at the 410m-depth level of the Äspö HRL. Each of the six experiments (HF1 to HF6) consisted of multiple stages with an initial fracturing and three to five refracturing stages (see injection parameters contained in this dataset). The six injection intervals were located along a 28m-long injection borehole. The borehole was drilled sub-parallel to the minimum horizontal compressive stress direction. The distance of the two seismometers to the injection intervals in the injection borehole is between 17 m and 29 m for sensor A89 and 52 m to 72 m for sensor A8B. A89 and A8B correspond to BB1 and BB2 in Niemz et al., 2021. For more details regarding the experimental setup, see Zang et al., 2017; Niemz et al., 2020; and Niemz et al., 2021. The records of the two seismometers show long-period transients that correlate with the injection parameters. These transients are the response of the seismometers to a tilting of the gallery floor. The extracted tilt time series provide independent insight into the fracturing process during the hydraulic stimulations (Niemz et al., 2021).
    Keywords: Tilt ; Äspö Hardrock Laboratory ; Broadband seismometers ; Hydraulic fracturing ; energy 〉 energy type 〉 non-conventional energy 〉 geothermal energy ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers 〉 SEISMOMETERS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-05
    Description: Abstract
    Description: The southern Central Andes (SCA, 29°S-39°S) are characterized by the subduction of the oceanic Nazca Plate beneath the continental South American Plate. One striking feature of this area is the change of the subduction angle of the Nazca Plate between 33°S and 35°S from the Chilean-Pampean flat-slab zone (〈 5° dip) in the north to a steeper sector in the south (~30° dip). Subduction geometry, tectonic deformation, and seismicity at this plate boundary are closely related to the lithospheric strength in the upper plate. Despite recent research focused on the compositional and thermal characteristics of the SCA lithosphere, the lithospheric strength distribution remains largely unknown. Here we calculated the long-term lithospheric strength on the basis of an existing 3D model describing the variation of thickness, density and temperature of geological units forming the lithosphere of the SCA. The model consists of a continental plate with sediments, a two-layer crust and the lithospheric mantle being subducted by an oceanic plate. The model extension covers an area of 700 km x 1100 km, including the orogen (i.e. magmatic arc, main orogenic wedge), the forearc and the foreland, and it extents down to 200 km depth.
    Description: Methods
    Description: To compute the lithospheric strength distribution in the SCA, we used the geometries and densities of the units forming the 3D lithospheric scale model of Rodriguez Piceda et al. (2020a,b). The units considered for the rheological calculations are (1) oceanic and continental sediments; (3) upper continental crystalline crust; (4) lower continental crystalline crust; (5) continental lithospheric mantle (6) shallow oceanic crust; (7) deep oceanic crust; (8) oceanic lithospheric mantle; and (9) oceanic sub-lithospheric mantle. The thermal field was derived from a temperature model of the SCA (Rodriguez Piceda et al. under review) covering the same region as the structural model of Rodriguez Piceda et al. (2020a). To calculate the temperature distribution in the SCA, the model volume was split into two domains: (1) a shallow domain, including the crust and uppermost mantle to a depth of ~50 km below mean sea level (bmsl), where the steady-state conductive thermal field was calculated using as input the 3D structural and density model of the area of Rodriguez Piceda et al. (2020b, a) and the finite element method implemented in GOLEM (Cacace and Jacquey 2017); (2) a deep domain between a depth of ~50 and 200 km bmsl, where temperatures were converted from S wave seismic velocities using the approach by Goes et al. (2000) as implemented in the python tool VelocityConversion (Meeßen 2017). Velocities from two alternative seismic tomography models were converted to temperatures (Assumpção et al. 2013; Gao et al. 2021). A detailed description of the method can be found in Rodriguez Piceda et al. (under review). The yield strength of the lithosphere (i.e. maximum differential stress prior to permanent deformation) was calculated using the approach by Cacace and Scheck-Wenderoth (2016). We assumed brittle-like deformation as decribed by Byerlee’s law (Byerlee 1968) and steady state creep as the dominant form of viscous deformation. Low-temperature plasticity (Peierls creep) at differential stresses greater than 200 MPa was also included (Goetze et al. 1978; Katayama and Karato 2008). In addition, effective viscosities were computed from a thermally activated power-law (Burov 2011) We assigned rheological properties to each unit of the model on the basis of laboratory measurements (Goetze and Evans 1979; Ranalli and Murphy 1987; Wilks and Carter 1990; Gleason and Tullis 1995; Hirth and Kohlstedt 1996; Afonso and Ranalli 2004). These properties were chosen, in turn, based on the dominant lithology of each layer derived from seismic velocities and gravity-constrained densities. More methodological details and a table with the rheological properties are depicted in Rodriguez Piceda et al. (under review). The rheological results using the thermal model derived from the seismic tomography of Assumpção et al. (2013) and Gao et al. (2021) can be found in Rodriguez Piceda et al. (under review, under review), respectively
    Description: Other
    Description: Two comma-separated files can be found with the calculated lithospheric temperature, strength and effective viscosity for all the points in the model (2,274,757). These points are located at the top surface of each model unit. Therefore, the vertical resolution of the model is variable and depends on the thickness and refinement of the structural modelled units. SCA_RheologicalModel_V01.csv corresponds to the results using the mantle thermal field from the tomography by Assumpção et al. (2013) and presented in Rodriguez Piceda et al. (under review). SCA_RheologicalModel_V02.csv includes the results using the mantle thermal field of Gao et al. (2021) and presented in Rodriguez Piceda et al. (under review). Each of these files contains the following columns: -Northing as " X COORD (m [UTM Zone 19S]) " -Easting as " Y COORD (m [UTM Zone 19S]) " -Depth to the top surface as " Z COORD (m.a.s.l.)" -Temperature in degree Celsius as " TEMP (deg. C) " -Yield strength in MPa as “STRENGTH (MPa)” -Effective viscosity in base-10 logarithm of Pa*s as “EFF VISCOSITY (log10(Pa*s))” The dimensions of the model is 700 km x 1100 km x 200 km. The horizontal resolution is 5 km, while the vertical resolution depends on the thickness of the structural units.
    Keywords: Lithosphere ; Rheology ; Subduction ; Andes ; EARTH SCIENCE ; EARTH SCIENCE 〉 SOLID EARTH ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC LANDFORMS 〉 MOUNTAINS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC PROCESSES 〉 SUBDUCTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRESS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-05
    Description: Abstract
    Description: The Central Andean orogen formed as a result of the subduction of the oceanic Nazca plate beneath the continental South-American plate. In the southern segment of the Central Andes (SCA, 29°S-39°S), the oceanic plate subducts beneath the continental plate with distinct dip angles from north to south. Subduction geometry, tectonic deformation, and seismicity at this plate boundary are closely related to lithospheric temperature distribution in the upper plate. Previous studies provided insights into the present-day thermal field with focus on the surface heat flow distribution in the orogen or through modelling of the seismic velocity distribution in restricted regions of the SCA as indirect proxy of the deep thermal field. Despite these recent advances, the information on the temperature distribution at depth of the SCA lithosphere remains scarcely constrained. To gain insight into the present-day thermal state of the lithosphere in the region, we derived the 3D lithospheric temperature distribution from inversion of S-wave velocity to temperature and calculations of the steady state thermal field. The configuration of the region – concerning both, the heterogeneity of the lithosphere and the slab dip – was accounted for by incorporating a 3D data-constrained structural and density model of the SCA into the workflow (Rodriguez Piceda et al. 2020a-b). The model consists on a continental plate with sediments, a two-layer crust and the lithospheric mantle being subducted by an oceanic plate. The model extension covers an area of 700 km x 1100 km, including the orogen (i.e. magmatic arc, main orogenic wedge), the forearc and the foreland, and it extents down to 200 km depth.
    Description: Methods
    Description: To predict the temperature distribution in the SCA, the model volume was subdivided into two domains: (1) a shallow domain, including the crust and uppermost mantle to a depth of ~50 km below mean sea level (bmsl), where the steady-state conductive thermal field was calculated using as input the 3D structural and density model of the area (Rodriguez Piceda et al., 2020a-b); (2) a deep domain between a depth of ~50 and 200 km bmsl, where temperatures were converted from S wave seismic velocities (Assumpção et al., 2013) using the approach by Goes et al. (2000) as implemented in the python tool VelocityConversion (Meeßen 2017). The 3D model of Rodriguez Piceda et al. (2020) consists of the following layers: (1) water; (2) oceanic sediments; (3) continental sediments; (4) upper continental crystalline crust; (5) lower continental crystalline crust; (6) continental lithospheric mantle (7) shallow oceanic crust; (8) deep oceanic crust; (9) oceanic lithospheric mantle; and (10) oceanic sub-lithospheric mantle. For the computation of temperatures in the shallow domain, three main modifications were made to the 3D model of Rodriguez Piceda et al. (2020a-b). First, we removed the water layer thus considering the topography/bathymetry as the top of the model. Second, the horizontal resolution was increased to 5 km and, third, the layers were vertically refined by a factor of 3 to 32. We assigned constant thermal properties (bulk conductivity λ and radiogenic heat production S) to each layer of the model according to each lithology (Alvarado et al. 2007, 2009; Ammirati et al. 2013, 2015, 2018; Araneda et al., 2003; Brocher, 2005; Čermák and Rybach, 1982; Contreras-Reyes et al., 2008; Christensen & Mooney, 1995; Gilbert et al., 2006; Hasterok & Chapman, 2011; He et al., 2008; Marot et al., 2014, Pesicek et al., 2012; Rodriguez Piceda et al., 2020; Scarfi & Barbieri, 2019; Vilà et al.,2010; Wagner et al., 2005; Xu et al., 2004). The steady-state conductive thermal field in the shallow domain was calculated applying the Finite Element Method as implemented in the software GOLEM (Cacace & Jacquey, 2017; Jacquey & Cacace, 2017). For the computation, we assigned fixed temperatures along the top and base of the model as thermal boundary conditions. The upper boundary condition was set at the topography/bathymetry and it is the temperature distribution from the ERA-5 land data base (Muñoz Sabater, 2019). The lower boundary condition was set at a constant depth of 50 km bmsl for areas where the Moho is shallower than 50 km bmsl and at the Moho depth proper where this interface is deeper than the abovementioned threshold. The temperature distribution at this boundary condition was calculated from the conversion of S-wave velocities to temperatures (Assumpção et al., 2013).
    Keywords: Lithosphere ; Andes ; Subduction ; Thermal Model ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC LANDFORMS 〉 MOUNTAINS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC PROCESSES 〉 SUBDUCTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL TEMPERATURE ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL TEMPERATURE 〉 TEMPERATURE PROFILES ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 SEDIMENTS ; EARTH SCIENCE SERVICES 〉 MODELS 〉 GEOLOGIC/TECTONIC/PALEOCLIMATE MODELS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-12
    Description: Das GERICS hat für alle 401 deutschen Landkreise, Kreise, Regionalkreise und kreisfreien Städte einen Klimaausblick veröffentlicht. https://www.gerics.de/products_and_publications/fact_sheets/landkreise/index.php.de Jeder Bericht fasst die Ergebnisse für Klimakenngrößen wie z.B. Temperatur, Hitzetage, Trockentage oder Starkregentage auf wenigen Seiten zusammen. Die Ergebnisse zeigen die projizierten Entwicklungen der Klimakenngrößen im Verlauf des 21. Jahrhunderts für ein Szenario mit viel Klimaschutz, ein Szenario mit mäßigem Klimaschutz und ein Szenario ohne wirksamen Klimaschutz. Datengrundlage sind 85 EURO-CORDEX-Simulationen, sowie der HYRAS-Datensatz des Deutschen Wetterdienstes. GERICS has published a climate report for each of the 401 German districts. https://www.gerics.de/products_and_publications/fact_sheets/landkreise/index.php.de Each report summarizes a selection of climate indices like temperature, hot days, dry days or days with heavy precipitation on a few pages. The results show the future development of these indices in the 21st century for three scenarios with strong, medium and weak climate protection, respectively. The data originates from 85 EURO-CORDEX simulations with regional climate models, and the HYRAS dataset of the German Weather Service.
    Type: experiment
    Format: CSV
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-18
    Description: Abstract
    Description: The data presented here were produced to study glacial and glacio-fluvial catchment erosion using 'tracer thermochronology' where detrital downstream samples can be used to infer the source elevation sectors of sediments when integrated with known surface bedrock ages from the catchment. For the first time, our study used the zircon (U-Th)/He (ZHe) method as tracer thermochronometer. The samples come from the Leones Valley at the northeastern flank of the Northern Patagonian Icefield, Chile (46.7° S) This data set comprises ZHe analytical results from (i) six detrital samples of different depositional age and grain size (622 single-grain analyses in total), and (ii) two previously analyzed (Andrić-Tomašević et al., 2021) bedrock samples (22 single-grain analyses in total), as well as grain size measurements and lithology identification of two of the detrital samples (two pebble samples with 262 and 211 pebbles, respectively). Data are provided in 10 tab-delimited text files. The full description of the data and methods is provided in the data description file.
    Description: Methods
    Description: Six detrital samples were collected along ~19 km of the Leones Valley at the northeastern flank of the Northern Patagonian Icefield, Chile. Sample coordinates are presented in Table 1. Samples include one sand- to pebble-sized sample from the ~2.5–1.1 ka (Harrison et al., 2008) Leones terminal moraine that dams Lago Leones, four modern trunk river samples from ~7.5 km and ~19 km downstream of the moraine, where at each location a sand and a pebbles sample was collected separately, and one modern tributary river sand sample from ~13.5 km downstream of the moraine. The moraine sample is a mixture of mainly very fine to coarse sand and granules with some fine to coarse pebbles (grain sizes according to the classification of Wentworth, 1922) from four locations at the lakeward flank of the ~135-m-high and 2-km-wide moraine. The sample material was collected from beneath coarser material at the surface of the moraine and was in total ~16 kg. Sand and pebble samples of the modern river were collected as mixtures from several locations along tens of meters of point bars or sand/pebble bars within the river. Sand samples were ~8 kg each and the two pebble samples contained 211 and 262 individual pebbles, respectively, of ~2–4 cm diameter (Table S1). The pebble samples are representative of the pebble lithologies present at each sampling location, but not of the pebble grain sizes present at each location. The percentage of pebble lithologies present was estimated and then pebbles of the same size range were collected one-by-one. We did not conduct point-counting. Sampling Measurements of pebble size and lithology identification Pebbles were measured along three axes (shortest, intermediate, longest) with a caliper, then their lithology was identified where possible. Data can be found in Table S1. Zircon (U-Th)/He thermochronometry The bulk moraine sample was processed for mineral separation by crushing, milling, and sieving to the 63–250 µm grain size fraction before density and magnetic separation at the University of Potsdam, Germany. The modern river sand samples were sieved to the 63–250 µm fraction before density and magnetic mineral separations at the University of Tübingen, Germany. After the measurements of pebble size and lithology identification, each pebble sample was crushed as bulk sample and sieved to the 63–250 µm fraction before density and magnetic mineral separation at the University of Tübingen. All samples' mineral separates were picked for suitable zircons at 256X magnification under reflected and transmitted light at a binocular microscope at the University of Tübingen. Selection criteria for bedrock zircons were their transparency, no or only few small inclusions, no fractures or broken parts, idiomorphic crystal habit, grain diameters of 〉80 µm, and similar size of crystals for each sample. Zircon quality and abundance was high in bedrock samples. Zircon selection in detrital samples aims at selecting a representative zircon population for measurements to avoid bias. We picked ~100 grains of representative sizes, crystal habits, and colors of each sample. Zircon abundance and quality was high in all detrital samples. Selected zircons were individually packed in niobium tubes and measured in an Alphachron™ helium line at the University of Tübingen. Subsequently, concentrations of uranium and thorium were measured by isotope dilution inductively-coupled plasma mass spectrometry (ID-ICP-MS) at the University of Tübingen. For this, zircons were first spiked with a 233U and 230 Th spike solution, dried, and then digested in a two-step high-pressure digestion procedure. Final solutions of 5% HNO3 + 0.5% HF were measured with a Thermo Fisher Scientific iCAP Qc quadrupole ICP-MS. Analytical procedures were developed by Stübner et al. (2016) and analytical details and instrument settings are reported in their supplementary material. Alpha-ejection correction (Ft-correction) of helium measurements was performed after Glotzbach et al. (2019) and ZHe age calculations followed Meesters and Dunai (2005). Grain masses and sphere-equivalent radii (ser) were determined from numerically determined grain geometries (after Glotzbach et al., 2019) and assumed densities (see description of data tables).
    Keywords: tracer thermochronolgy ; glacial erosion ; grain size fractions ; Leones Glacier ; Leones River ; equilibrium line altitude ; zircon (U-Th)/He dating ; EARTH SCIENCE 〉 CRYOSPHERE 〉 GLACIERS/ICE SHEETS 〉 GLACIERS ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 EROSION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPIC AGE ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 SEDIMENTS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-01-18
    Description: Abstract
    Description: The simulations of the end‐Cretaceous climate and the effects of the impact are carried out with a coupled climate model consisting of a modified version of the ocean general circulation model MOM3, a dynamic/thermodynamic sea ice model, and a fast statistical‐dynamical atmosphere model. Our impact simulations are based on a climate simulation of the end‐Cretaceous climate state using a Maastrichtian (70 Ma) continental configuration. The solar constant is scaled to 1354 W/m2, based on the present‐day solar constant of 1361 W/m2 and a standard solar model. A baseline simulation with 500 ppm of atmospheric CO2 and a sensitivity experiment at 1000 ppm CO2 concentration. The impact is assumed to release 100 Gt sulfur and 1400 Gt CO2. We simulate stratospheric residence times of 2.1 y, 4.3 y and 10.6 y. More information about the model can be found in the manuscript (https://doi.org/10.1002/2016GL072241).
    Description: Methods
    Description: The data is model output from the coupled ocean-atmosphere model CLIMBER3alpha which models climate globally on a 3.75°x3.75° (ocean) and 22.5° (longitude) x 7.5° (latitude) (atmosphere) grid.
    Keywords: Aerosols and particles ; Abrupt/rapid climate change ; Paleoecology ; Impact phenomena ; Cretaceous ; K-Pg boundary ; climate model simulations ; Chicxulub impact ; EARTH SCIENCE 〉 PALEOCLIMATE ; EARTH SCIENCE SERVICES 〉 MODELS 〉 COUPLED CLIMATE MODELS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-01-19
    Description: Abstract
    Description: Natural gas hydrates encase predominantly methane, but also higher hydrocarbons as well as CO2 and H2S. The formation of gas hydrates from a changing gas mixture, either due to the preferred incorporation of certain components into the hydrate phase or an inadequate gas supply, may lead to significant changes in the composition of the resulting hydrate phase. To determine the overall composition of a hydrate phase during the hydrate formation process, Raman spectroscopy is regarded as a non-destructive and powerful tool. This technique enables to distinguish between guest molecules in the free gas or liquid phase, encased into a clathrate cavity or dissolved in an aqueous phase, therefore providing time-resolved information about the guest molecules during the hydrate formation process. Experiments were carried out at the Micro-Raman Spectroscopy Laboratory, GFZ. Mixed gas hydrates were synthesized in a high-pressure cell from pure water and a specific gas flow containing CH4, C2H6, C3H8, iso-C4H10 and n-C4H10 at 274 K and 2.20 MPa. Three potential different gas supply conditions were selected for the formation of mixed gas hydrates, namely an open system (test scenario 1) with a continuous gas supply, a closed system (test scenario 2) with no gas supply after initial pressurization with the gas mixture, and a semi-closed system (test scenario 3) with only an incoming gas but a disrupted outlet. In situ Raman spectroscopic measurements and microscopic observations were applied to record changes in both gas and hydrate compositions over the whole formation period until it reached a steady state. In all three test scenarios, 12 hydrate crystals were selected and continuously characterized for 5 days with single point Raman measurements to record the formation process of mixed gas hydrates. Each test scenario was repeated for 3 times, therefore resulting in 9 separate experimental tests. This dataset encompasses raw Raman spectra of the 9 experimental tests (.txt files) which contained Raman shifts and the respective measured intensities. Each Raman spectrum was fitted to Gauss/Lorentz function after an appropriate background correction to estimate the band areas and positions (Raman shift). The Raman band areas were then corrected with wavelength-independent cross-sections factors for each specific component. The concentration of each guest molecule in the hydrate phase / gas phase was given as mol% in separate spreadsheet for three different test scenarios. Further details on the analytical setup, experimental procedures and composition calculation are provided in the following sections.
    Description: Methods
    Description: Mixed gas hydrates were synthesized in a custom-made pressure cell in the laboratory from water and a certified gas mixture containing CH4, C2H6, C3H8, iso-C4H10, and n-C4H10. Initially, the sample cell was filled with 150 μl deionized and degassed water, carefully sealed and pressurized with the respective gas mixture. When the pressure reached 2.20 MPa and the flowrate was constant, the cell was cooled down to 253 K to induce the spontaneous crystallization of hydrate and ice. After the formation of hydrates and ice, the cell was slowly warmed up to allow the dissociation of ice and most hydrate crystals until only a few hydrate crystals were left. Subsequently, the cell was cooled down again to a temperature within the stability field of the hydrate phase, but above the melting temperature of the ice. Under these conditions set, euhedral gas hydrate crystals were allowed to grow. This “melting-cooling” process was carried out three times before the p-T condition was fixed at 2.20 MPa and 274 K for the formation of mixed gas hydrates. To investigate the hydrate formation process, three different test scenarios were carried out with different gas flows but under identical p-T conditions. The inlet and outlet valves located outside the pressure cell were set to the desired position once the mixed gas hydrates started to form. In test scenario 1 (open system), the inlet and outlet valves were kept open throughout the whole experiment. Test scenario 2 (closed system) was carried out with the inlet and outlet valves being closed right after initial pressurization to mimic a system with a limited gas supply. The outlet valve was closed in test scenario 3 (semi-closed system) while the inlet valve was open. These changes on the gas flow were maintained throughout the whole formation process. Each test scenario was repeated for 3 times during the experiments. A confocal Raman spectrometer (LABRAM HR Evolution, Horiba Jobin Yvon) with 1800-grooves/mm grating and a 20× microscope Olympus BX-FM objective was used for the in situ Raman measurements on the mixed gas hydrates. The excitation source was a frequency-doubled Nd:YAG solid-state laser with an output power of 100 mW working at 532 nm. With a focal length of 800 mm, the spectral resolution reached around 0.6 cm-1. A motorized pinhole in the analyzing beam path enabled to variably increase the spatial resolution of laser-spot measurements which in x-y-direction was 0.5 µm and 1.5 µm in z-direction. Before the experiments, the Silicon band (521 cm-1) was employed for the calibration of Raman band positions. During the experiments, a pinhole size of 50 µm was chosen for measurements on the hydrate surface while a pin hole size of 100 µm was set for the gas phase measurements. The acquisition time was 5 seconds with 2 averaged exposures. Neutral density filters that adjusted the output laser power was selected at 100% for the experiment since it provided the best signal-to-noise ratio while laser irradiation damage at the sample was not observed. For each experimental test, 12 hydrate crystals were randomly selected in the pressure cell. With the help of a motorized, software controlled Märzhauser Scan+ sample stage attached to the microscope, which allowed for the positioning of the sample cell at defined coordinates, the selected hydrate crystals could be monitored over the entire duration of the experiment. Single point Raman spectroscopic measurements were performed right after initial pressurization on hydrate crystal surface. For the following 4 days, a continuous characterization on these crystals were carried out to record the changes of hydrate composition during the formation process.
    Keywords: mixed gas hydrates ; in situ Raman spectroscopy ; Earth Remote Sensing Instruments 〉 Active Remote Sensing 〉 Spectrometers/Radiometers 〉 Lidar/Laser Spectrometers ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 GAS HYDRATES 〉 GAS HYDRATES FORMATION ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 GAS HYDRATES 〉 GAS HYDRATES PHYSICAL/OPTICAL PROPERTIES 〉 STABILITY ; resource 〉 energy resource
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-01-19
    Description: Abstract
    Description: This dataset is supplemental to the paper Wallis et al. (2021) and contains data on dislocations and their stress fields in olivine from the Oman-UAE ophiolite measured by oxidation decoration, electron backscatter diffraction (EBSD) and high-angular resolution electron backscatter diffraction (HR-EBSD). The datasets include images of decorated dislocations, measurements of lattice orientation and misorientations, densities of geometrically necessary dislocations, and heterogeneity in residual stress. Data are provided as 6 TIF files, 8 CTF files, and 37 tab-delimited TXT files. Files are organised by the figure in which the data are presented in the main paper. Data types or sample numbers are also indicated in the file names.
    Keywords: EPOS ; multi-scale laboratories ; rock and melt physical properties ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 MINERALS 〉 MINERAL PHYSICAL/OPTICAL PROPERTIES 〉 COMPOSITION/TEXTURE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRESS ; olivine ; peridotite ; Scanning Electrone Microscope
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-01-21
    Description: Model runs over Europe were conducted within the ESM project (www.esm-project.net/) for the Frontier Simulations supporting the water and matter fluxes from the European landmass to receiving water bodies (Baltic Sea, Atlantic Ocean and the Mediterranean Sea). Daily discharge from the mesoscale Hydrologic Model (mHM; Samaniego et al., 2010; Kumar et al., 2013; Code version: git.ufz.de/mhm/mhm git version: 35b5cb1) operated at the spatial resolution of 1/16deg for the simulation period from 1.1.1960-31.12.2019 across the European domain (Longitude -11 to 41 Latitude 35 to 72). Model runs were conducted within the ESM project (www.esm-project.net/) for the Frontier Simulations supporting the water and matter fluxes from the European landmass to receiving water bodies (Baltic Sea, Atlantic Ocean and Mediterranian Sea). Special consideration was given to the coastal cells by filtering out those (bordering) grid cells that do not have 100% landmass (i.e., cells with a significant proportion of water bodies/sea/ocean coverage). Meteorological forcing data are based on the E-OBS v21e (daily precipitation, temperature, Hofstra et al. 2009), potential evapotranspiration is based on the Hargreaves-Samani method. Soil characteristics are obtained from the global SoilGrids database (Hengtl et al. 2014; the land cover is derived from the Globcover_V2 (http://due.esrin.esa.int/page_globcover.php); geomorphological features are based on the GMTED2010 (Danielson et al., 2011). Model parameterization was constrained using the observed discharge time series from the GRDC stations (https://portal.grdc.bafg.de/), satisfying the following three conditions: gauge LAT〉48degN, area〉 5000km2, area 〈170000km2. Multi-basin calibration and validation were employed to check the consistency of model simulations following Rakovec et al., 2016 and Samaniego et al. 2019, as follows. Calibration objective function using KGE, DDS algorithm with 500 iterations, to account for uncertainty in the calibration process and the basin selections, 50 random initial conditions were randomly drawn sub-set of basins (N=6basins). The best parameter set in the cross-validations across 1201 basins was selected for the final run (ID: 542). A static 2D file of flow direction over Europe at the routing resolution 1/16deg. Internal upscaling to 1/16deg from the higher resolution (1/512deg) done within mHM (Code version: mesoscale Hydrologic Model (git.ufz.de/mhm/mhm git version: 35b5cb1). Special consideration was given to the coastal cells by filtering out those (bordering) grid cells that do not have 100% landmass (i.e., cells with a significant proportion of water bodies/sea/ocean coverage). Flow direction network (lat,lon) and routed runoff (time,lat,lon) at 1/16deg are provided as separate datasets.
    Type: experiment
    Format: NetCDF
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-20
    Description: Abstract
    Description: This dataset includes raw data used in the paper by Reitano et al. (2022), focused on the effect of boundary conditions on the evolution of analogue accretionary wedges affected by both tectonics and surface processes; the paper also focuses on the balance between tectonics and surface processes as a function of the boundary conditions applied. These boundary conditions are convergence velocity and basal slope (i.e., the tilting toward the foreland imposed prior the experimental run). The experiments have been carried out at Laboratory of Experimental Tectonics (LET), University “Roma Tre” (Rome). Detailed descriptions of the experimental apparatus and experimental procedures implemented can be found in the paper to which this dataset refers. Here we present: •Pictures recording the evolution of the models. •GIFs showing time-lapses of models. •Raw DEMs of the models and Incision DEMs, used for extracting data later discusses in the paper.
    Description: Methods
    Description: We took digital images during the evolution of the experiments. These images are stored in the “2021-041_Reitano-et-al_Pictures_and_GIFs” folder. Digital Images The qualitative evolution of the analogue models has been recorded using a digital oblique-view camera (Canon EOS 200D). Digital pictures have not been modified with other imaging software. Data from models' surface Laser scan provides a point cloud, composed by x, y, z coordinated of the points composing the model surface (the number of points is function of the laser resolution). The laser scans are converted to raw DEMs, here stored in the “DEMs” folder. For making the file easily readable to GIS software, data are expressed in m (100 m = 1 mm, see scaling section in the main paper). Bottom left corner in the DEMs is randomly chosen to be -70 ∙ 103 m. No data values equal to -9999. Cell size is 100 m (1 mm in the models). Incision and Mass Balance The .txt files inside the “2021-041_Reitano-et-al_DEMs” folder named “CR****_dem**clip” has been used for producing Fig. 6, 8, 10, and S3 in Reitano et al. (2021). From these DEMs we calculated the Mass Balance, as described in the paper this repository refers to. The .txt files named “CR****_inc**ok” have been used for calculating the incision values shown in Fig. 5 and 7 in Reitano et al. (2021). To obtain incision maps and incision over time, the volume of material incised was computed by comparing the actual topography with the reconstructed non-eroded surface at every shortening step. The non-eroded surface has been calculated by creating an envelope surface using crest lines between valleys as constraints (the assumption is that crests do not erode). The results are then a minimum estimate of the amount of incision.
    Keywords: Tectonics ; Erosion ; Sedimentation ; Mass Balance ; Analogue models ; EPOS ; multi-scale laboratories ; analogue models of geologic processes ; property data of analogue modelling materials ; analogue modelling results ; software tools ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 FLUVIAL LANDFORMS 〉 FLOOD PLAIN ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 FLUVIAL LANDFORMS 〉 RIVER ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 FLUVIAL LANDFORMS 〉 STREAM ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 FLUVIAL LANDFORMS 〉 VALLEY ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 FLUVIAL LANDFORMS 〉 WATERSHED/DRAINAGE BASINS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 FLUVIAL PROCESSES 〉 SEDIMENT TRANSPORT ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 FLUVIAL PROCESSES 〉 SEDIMENTATION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 FLUVIAL PROCESSES 〉 WEATHERING ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC LANDFORMS 〉 MOUNTAINS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC PROCESSES 〉 OROGENIC MOVEMENT ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC PROCESSES 〉 TECTONIC UPLIFT ; hydrosphere 〉 water (geographic) 〉 surface water ; science 〉 natural science 〉 earth science 〉 geology 〉 tectonics
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...