ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4,309)
  • Oxford University Press  (4,309)
  • Public Library of Science
  • Journal of Petrology  (514)
  • 2319
  • 1
    Publication Date: 2020-07-24
    Description: Transformation of refractory cratonic mantle into more fertile lithologies is the key to the fate of cratonic lithosphere. This process has been extensively studied in the eastern North China Craton (NCC) while that of its western part is still poorly constrained. A comprehensive study of newly-found pyroxenite xenoliths from the Langshan area, in the northwestern part of this craton is integrated with a regional synthesis of pyroxenite and peridotite xenoliths to constrain the petrogenesis of the pyroxenites and provide an overview of the processes involved in the modification of the deep lithosphere. The Langshan pyroxenites are of two types, high-Mg# [Mg2+/(Mg2++Fe2+)*100 = ∼ 90, atomic ratios] olivine-bearing websterites with high equilibration temperatures (880 ∼ 970 oC), and low-Mg# (70 ∼ 80) plagioclase-bearing websterites with low equilibration temperatures (550 ∼ 835 oC). The high-Mg# pyroxenites show trade-off abundances of olivine and orthopyroxene, highly depleted bulk Sr-Nd (ƐNd = +11.41, 87Sr/86Sr = ∼0.7034) and low clinopyroxene Sr isotopic ratios (mean 87Sr/86Sr = ∼0.703). They are considered to reflect the reaction of mantle peridotites with silica-rich silicate melts derived from the convective mantle. Their depletion in fusible components (e.g., FeO, TiO2 and Na2O) and progressive exhaustion of incompatible elements suggest melt extraction after their formation. The low-Mg# pyroxenites display layered structures, convex-upward rare earth element patterns, moderately enriched bulk Sr-Nd isotopic ratios (ƐNd = -14.20 ∼ -16.74, 87Sr/86Sr = 0.7070 ∼ 0.7078) and variable clinopyroxene Sr-isotope ratios (87Sr/86Sr = 0.706-0.711). They are interpreted to be crustal cumulates from hypersthene-normative melts generated by interaction between the asthenosphere and heterogeneous lithospheric mantle. Combined with studies on regional peridotite xenoliths, it is shown that the thinning and refertilization of the lithospheric mantle was accompanied by crustal rejuvenation and that such processes occurred ubiquitously in the northwestern part of the NCC. A geodynamic model is proposed for the evolution of the deep lithosphere, which includes long-term mass transfer through a mantle wedge into the deep crust from the Paleozoic to the Cenozoic, triggered by subduction of the Paleo-Asian ocean and the Late Mesozoic lithospheric extension of eastern Asia.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-10
    Description: The orogenic development after the continental collision between Laurussia and Gondwana, led to two contrasting associations of mantle-derived magmatic rocks on the territory of the Bohemian Massif: (i) a 340–310 Ma lamprophyre-lamproite orogenic association and (ii) a 300–275 Ma lamprophyre association of anorogenic affinity. Major types of potassic mantle-derived magmatic rocks recognised in the orogenic and anorogenic associations include: (i) calc-alkaline to alkaline lamprophyres, (ii) alkaline “orthopyroxene minettes” (and geochemically related rocks), and (iii) peralkaline lamproites. These three types significantly differ with respect to mineral, whole-rock and Sr–Nd–Pb–Li isotope composition, and spatial distribution. The calc-alkaline lamprophyres occur throughout the entire Saxo-Thuringian and Moldanubian zones, whereas the different types of malte-derived potassic rocks are spatially restricted to particular zones. Rocks of the Carboniferous lamprophyre-lamproite orogenic association are characterised by variable negative εNd(i) and variably radiogenic Sr(i), whereas the rocks of the Permian lamprophyre association of anorogenic affinity are characterised by positive εNd(i) and relatively young depleted-mantle Nd-model ages reflecting increasing input from upwelling asthenospheric mantle. The small variation in the Pb isotopic composition of post-collisional potassic mantle-derived magmatic rocks (of both the orogenic and anorogenic series) implies that the Pb budget of the mantle beneath the Bohemian Massif is dominated by the same crust-derived material, which itself may include material derived from several sources. The source rocks of “orthopyroxene minettes” are characterised by isotopically light (“eclogitic”) Li and strongly radiogenic (crustal) Sr and may have been metasomatised by high-pressure fluids along the edge of a subduction zone. In contrast, the strongly Al2O3 and CaO depleted mantle source of the lamproites is characterised by isotopically heavy Li and high SiO2 and extreme K2O contents. This mantle source may have been metasomatised predominantly by melts. The mantle source of the lamprophyres may have undergone metasomatism by both fluids and melts.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-07-14
    Description: The Lu–Hf isotope system and Sr–Nd–Hf–Os isotope systematics of mantle rocks are capable of unravelling the early processes in collision belts, especially in a hot subduction context where the Sm–Nd and U–Pb systems in crustal rocks are prone to resetting owing to high temperatures and interaction with melts during exhumation. To improve models of the Devonian–Carboniferous evolution of the Bohemian Massif, we investigated in detail mafic and ultramafic rocks (eclogite, pyroxenite, and peridotite) from the ultrahigh-pressure and ultrahigh-temperature Kutná Hora Crystalline Complex (KHCC: Úhrov, Bečváry, Doubrava, and Spačice localities). Petrography, multiphase solid inclusions, major and trace element compositions of rocks and minerals, and radiogenic isotopic data document contrasting sources and protoliths as well as effects of subduction-related processes for these rocks. The Úhrov peridotite has a depleted composition corresponding to the suboceanic asthenospheric mantle, whereas Bečváry and Doubrava peridotites represent lithospheric mantle that underwent melt refertilization by basaltic and SiO2-undersaturated melts, respectively. Multiphase solid inclusions enclosed in garnet from Úhrov and Bečváry peridotites represent trapped H2O ± CO2-bearing metasomatizing agents and Fe–Ti-rich melts. The KHCC eclogites either formed by high-pressure crystal accumulation from mantle-derived basaltic melts (Úhrov) or represent a fragment of mid-ocean ridge basalt-like gabbroic cumulate (Spačice) and crustal-derived material (Doubrava) both metamorphosed at high P–T conditions. The Lu–Hf age of 395 ± 23 Ma obtained for the Úhrov peridotite reflects garnet growth related to burial of the asthenospheric mantle during subduction of the oceanic slab. By contrast, Spačice and Doubrava eclogites yield younger Lu–Hf ages of ∼350 and 330 Ma, respectively, representing mixed ages as demonstrated by the strong granulite-facies overprint and trace element zoning in garnet grains. We propose a refined model for the Early Variscan evolution of the Bohemian Massif starting with the subduction of the oceanic crust (Saxothuringian ocean) and associated oceanic asthenospheric mantle (Úhrov) beneath the Teplá–Barrandian at ≥380 Ma, which was responsible for melt refertilization of the associated mantle wedge (Bečváry, Doubrava). This was followed by continental subduction (∼370–360 Ma?) accompanied by the oceanic slab break-off and incorporation of the upwelling asthenospheric mantle into the Moldanubian lithospheric mantle and subsequent coeval exhumation of mantle and crustal rocks at ∼350–330 Ma.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-07-11
    Description: The Changning–Menglian orogenic belt (CMOB) in the southeastern Tibetan Plateau is an important link between the Longmu Co–Shuanghu suture (LCSS) in the northern Tibetan Plateau and the Chiang Mai–Inthanon and Bentong–Raub sutures in Thailand and Peninsular Malaysia. These belts and sutures are generally regarded as containing the remnants of the oceanic crust of the Palaeo-Tethys that formed by seafloor spreading as a result of the separation of Gondwana- and Eurasia-derived blocks during the Middle Cambrian. In this paper we report the first discovery of abundant unaltered and retrograde eclogites that occur as irregular lenses and blocks in metasedimentary rocks of the CMOB, and these eclogites form an elongate and almost north–south-trending high-pressure (HP)–ultrahigh-pressure (UHP) metamorphic belt that is ∼200 km long and ∼50 km wide. The newly discovered phengite/talc/epidote–glaucophane eclogites, lawsonite–talc–phengite eclogites, dolomite/magnesite–kyanite eclogites and phengite–kyanite-bearing retrograde eclogites have enriched (E-) and normal mid-ocean ridge basalt (N-MORB)-like affinities and mainly positive as well as some negative whole-rock εNd values (–4·34 to +7·89), which suggest an enriched and depleted oceanic lithosphere source for their protoliths. Magmatic zircons separated from the epidote–glaucophane, magnesite–kyanite and (phengite–kyanite-bearing) retrograde eclogites gave protolith ages of 317–250 Ma, which fit well within the time frame of the opening of the Palaeo-Tethys during the Middle Cambrian and its closure during the Triassic. Abundant metamorphic zircons in the eclogites indicate a Triassic metamorphic event related to the subduction of the Palaeo-Tethys oceanic crust from 235 to 227 Ma. Taking into account previous isotopic age data, we now establish the periods of Early–Middle Triassic (246–227 Ma) and Late Triassic (222–209 Ma) as the ages of subduction and exhumation of the Palaeo-Tethyan oceanic crust, respectively. Thermodynamic modelling revealed that the eclogites record distinct HP–UHP peak metamorphic conditions of 23·0–25·5 kbar and 582–610 °C for the phengite–glaucophane eclogites, 24·0–25·5 kbar and 570–586 °C for the talc–glaucophane eclogites, 29·0–31·0 kbar and 675–712 °C for the dolomite–kyanite eclogites, and 30·0–32·0 kbar and 717–754 °C for the magnesite–kyanite eclogites. These P–T estimates and geochronological data indicate that the Palaeo-Tethys oceanic slab was subducted to different mantle depths from 75 km down to 95 km, forming distinct types of eclogite with a variety of peak eclogite-facies mineral assemblages. The eclogites consistently record clockwise metamorphic P–T–t paths characterized by a heating–compression prograde loop under a low geothermal gradient of 5–10 °C km–1, indicating the rapid subduction of cold oceanic crust at a rate of 4·5–6·0 km Ma–1, followed by isothermal or cooling–decompressive retrogression and exhumation at an average rate of 3·2–4·2 km Ma–1. The newly discovered eclogites of the CMOB with their signatures of ocean-crust subduction are petrologically, geochemically and geochronologically comparable with those of the LCSS, providing powerful support for the idea that a nearly 2000 km long HP–UHP eclogite belt extends from the northern Tibetan Plateau to the southeastern Tibetan Plateau, and that it represents the main boundary suture of the Palaeo-Tethyan domain. These results have far-reaching implications for the tectonic framework and complex metamorphic evolution of the Palaeo-Tethyan domain.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-07-10
    Description: Replacive symplectites (vermicular intergrowths of two or more minerals) are an important feature of layered igneous intrusions, recording evidence of late-stage reactions between interstitial liquid and crystals. They are common throughout the Layered Series of the 564 Ma Sept Iles layered intrusion in Quebec, Canada, and fall into three types: oxy-symplectites, ‘Type I’ symplectites, and ‘Type II’ symplectites. Oxy-symplectites are comprised of magnetite and orthopyroxene, nucleate on olivine primocrysts, and form via the reaction Olivine + O2 → Orthopyroxene + Magnetite; Type I symplectites (of which there are 3 distinct categories) are comprised of anorthitic plagioclase with pyroxene, amphibole, or olivine vermicules, grow from primocryst oxide grains, and replace primary plagioclase; and Type II symplectites (of which there are 2 distinct categories) are comprised of anorthitic plagioclase with orthopyroxene ± amphibole vermicules, grow from primocryst olivine grains, and replace primocryst plagioclase. Rare symplectites composed of biotite and plagioclase are also present. Symplectite growth occurred at 700-1030 °C with pressure constraints of 1-2 kbar. We propose that Type I symplectites, and some Type II symplectites, formed from interaction of primocrysts with residual Fe-rich liquid as a consequence of differential loss of an immiscible Si-rich liquid conjugate from the crystal mush. However, redistribution and concentration of hydrous fluids in incompletely solidified rock, or an increase in water activity of the interstitial melt, may be more plausible processes responsible for the formation of replacive symplectites comprising abundant hydrous mineral assemblages.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-01-09
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-09-23
    Description: The Matachewan Large Igneous Province (LIP) is interpreted to have formed during the early stages of mantle plume-induced continental break-up in the early Proterozoic. When the Matachewan LIP is reconstructed to its original configuration with units from the Superior Craton and other formerly adjacent blocks (Karelia, Kola, Wyoming and Hearne), the dyke swarms, layered intrusions and flood basalts, emplaced over the lifetime of the province, form one of the most extensive magmatic provinces recognized in the geological record. New geochemical data allow, for the first time, the Matachewan LIP to be considered as a single, coherent entity and show that Matachewan LIP rocks share a common tholeiitic composition and trace element geochemistry, characterized by enrichment in the most incompatible elements and depletion in the less incompatible elements. This signature, ubiquitous in early Proterozoic continental magmatic rocks, may indicate that the Matachewan LIP formed through contamination of the primary magmas with lithospheric material or that the early Proterozoic mantle had a fundamentally different composition from the modern mantle. In addition to the radiating geometry of the dyke swarms, a plume origin for the Matachewan LIP is consistent with the geochemistry of some of the suites; these suites are used to constrain a source mantle potential temperature of c. 1500–1550°C. Comparison of these mantle potential temperatures with estimated temperatures for the early Proterozoic upper mantle indicates that they are consistent with a hot mantle plume source for the magmatism. Geochemical data from coeval intrusions suggest that the plume head was compositionally heterogeneous and sampled material from both depleted and enriched mantle. As has been documented with less ancient but similarly vast LIPs, the emplacement of the Matachewan LIP probably had a significant impact on the early Proterozoic global environment. Compilation of the best age estimates for various suites shows that the emplacement of the Matachewan LIP occurred synchronously with the Great Oxidation Event. We explore the potential for the eruption of this LIP and the emission of its associated volcanic gases to have been a driver of the irreversible oxygenation of the Earth.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-09-23
    Description: Olivine major and trace element compositions from 12 basalts from the southern Payenia volcanic province in Argentina have been analyzed by electron microprobe and laser ablation inductively coupled plasma mass spectrometry. The olivines have high Fe/Mn and low Ca/Fe and many fall at the end of the global olivine array, indicating that they were formed from a pyroxene-rich source distinct from typical mantle peridotite. The olivines with the highest Fe/Mn have higher Zn/Fe, Zn and Co and lower Co/Fe than the olivines with lower Fe/Mn, also suggesting contributions from a pyroxene-rich source. Together with whole-rock radiogenic isotopes and elemental concentrations, the samples indicate mixing between two mantle sources: (1) a pyroxene-rich source with EM-1 ocean island basalt type trace element and isotope characteristics; (2) a peridotitic source with more radiogenic Pb that was metasomatized by subduction-zone fluids and/or melts. The increasing contributions from the pyroxene-rich source in the southern Payenia basalts are correlated with an increasing Fe-enrichment, which caused the olivines to have lower forsterite contents at a given Ni content. Al-in-olivine crystallization temperatures measured on olivine–spinel pairs are between 1155 and 1243°C and indicate that the magmas formed at normal upper mantle (asthenospheric) temperatures of ~1350°C. The pyroxene-rich material is interpreted to have been brought up from the deeper parts of the upper mantle by vigorous asthenospheric upwelling caused by break-off of the Nazca slab south of Payenia during the Pliocene and roll-back of the subducting slab beneath Payenia. The pyroxene-rich mantle mixed with peridotitic metasomatized South Atlantic mantle in the mantle wedge beneath Payenia.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-09-23
    Description: To reconstruct the magmatic–hydrothermal processes leading to porphyry Mo ore formation at the Climax Mo mine, Colorado, four magma units that were emplaced before, during and shortly after the mineralization events were investigated: (1) a pre-mineralization white dike of the Alma district; (2) the syn-mineralization Chalk Mountain Rhyolite; (3) a late- to post-mineralization rhyolite porphyry dyke; (4) a mafic enclave within the productive Bartlett stock. Melt inclusions, mineral inclusions and fluid inclusions in quartz phenocrysts were investigated by means of laser ablation inductively coupled plasma mass spectrometry, electron microprobe and microthermometry. Based on melt inclusion data both the Chalk Mountain Rhyolite and the rhyolite porphyry were ~10 times more fractionated than average granite and show geochemical characteristics of topaz rhyolites. They were saturated in magnetite, Mn-rich ilmenite, fluorite, aeschynite, monazite, pyrrhotite and thorite, and crystallized predominantly at 710–730°C, 1·2–2·6 kbar and log f O 2 FMQ + 2·2 (where FMQ is fayalite–magnetite–quartz). The silicate melt of the Chalk Mountain Rhyolite contained 3·5 ± 0·4 wt % F, 0·09 ± 0·03 wt % Cl, ≥ 3·0 wt % H 2 O, 15–90 µg g –1 Cs, 500–1500 µg g –1 Rb and 5–7 µg g –1 Mo, whereas that of the rhyolite porphyry contained 1·1 ± 0·3 wt % F and 4·9 ± 1·2 wt % H 2 O, but otherwise had a virtually identical major and trace element composition. The fluid exsolving from the latter melt had a bulk salinity of 10 ± 2 wt % NaCl equiv and contained of the order of 100 µg g –1 Mo. After emplacement of the Chalk Mountain Rhyolite magma at subvolcanic levels, extremely fractionated silicate melts coexisting with hypersaline brines (salt melts) and low-density vapor percolated at near-solidus conditions through the rock. These silicate melts contained 6·6 ± 0·4 wt % F, ≥ 7·5 ± 0·6 wt % H 2 O, 0·51 ± 0·05 wt % Cl, and up to 0·5 wt % Cs and 100 µg g –1 Mo, whereas the hypersaline brines contained 1–2 wt % Cs and 0·3–0·6 wt % Mo. However, owing to their negligible masses these liquids are unlikely to have played a major role in the mineralization process. The majority of Mo in the Climax deposit appears to have been derived from melts containing 5–7 µg g –1 Mo and bulk fluids containing ~100 µg g –1 Mo. These concentrations are similar to those found in similarly fractionated melts and fluids in barren and sub-economically mineralized intrusions. However, whereas in the latter intrusions fractionated melts occurred in a rather dispersed state, they seem to have been present as large, coherent masses in the apical parts of Climax-type porphyry Mo-forming magma systems. Efficient segregation of fractionated melts and fluids into the top of mineralizing magma chambers appears to have been promoted by high fluorine concentrations in the silicate melt, which was partly a primary feature, and partly an indirect consequence of other characteristics of within-plate magmatism.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-09-23
    Description: The Skaergaard intrusion, Greenland, is the type locality for Skaergaard-type mineralizations. Mineralization levels are perfectly concordant with igneous layering, up to 5 m thick, internally fractionated, and contain crystallized sulphide droplets and precious metal alloys, sulphides, arsenides and telluride. Immiscible Cu-rich sulphide droplets, formed in a mush zone below the roof, scavenged precious metals. They were subsequently dissolved and transported to the floor in late-formed, immiscible, Fe-rich mush melts. Mineralized stratigraphic intervals of floor gabbro formed in ‘proto-macrolayers‘, owing to local sulphide saturation in melt concentrated between floating plagioclase and sinking clinopyroxene. The floor mineralization is divided into four stratigraphic sections. Formation of the Lower Platinum Group Element Mineralization (LPGEM) involved: (1) crystallization of the bulk liquid liquidus paragenesis and in situ fractionation; (2) sulphide saturation and formation of sulphide droplets in melt in the upper part of ‘proto-macrolayers‘. After further in situ fractionation, the following steps occurred: (3) the onset of silicate–silicate immiscibility and the consequent loss of buoyant and immiscible Si-rich melt; (4) dissolution of unprotected droplets of sulphide melt present in the Fe-rich mush melt; (5) compaction-driven upwards loss of residual mush melt enriched in, for example, Au. The LPGEM preserves upward increasing bulk Pd/Pt (~6–13) owing to a continued supply of PGE and Au, with high Pd/Pt. The further development of the LPGEM ceased as the supply of precious metals to the floor waned. The Upper PGE Mineralization (UPGEM) subsequently formed from precious metals recycled in the floor. The UPGEM is characterized by increasing Au substitution in PGE phases, and a decrease in total PGE and Pd/Pt owing to upward fractionation in migrating mush melts and exhaustion of Pd and Pt. An upper Au-rich mineralization level (UAuM) was caused by late remobilization of Au and deposition on grain boundaries in fully crystallized gabbro. Cu concentrations (~150 ppm) are not correlated with PGE and Au. Repeated Cu mineralization levels (CuM), attaining 〉1000 ppm, occur above the Au levels, caused by local mush layer sulphide saturation. PGE, Au and Cu distributions in the floor mineralization reflect sub-liquidus, but supra-solidus, processes and reactions in mushes at the roof, wall and floor. Constraints provided by a new model for the mineralization provide the basis for re-evaluation of the solidification processes in the Skaergaard intrusion. We have identified the importance of extensive in situ fractionation and intrusion-wide elemental redistributions in immiscible Fe- and Si-rich silicate melts. Our model characterizes the floor cumulates as bulk liquid orthocumulates containing an upwards-increasing proportion crystallized from Fe-rich, immiscible mush melt. The roof-rocks are complementary to the floor, with downwards increasing proportions crystallized from the conjugate Si-rich melt. Petrographic observations and the relative timing of crystallization support the hypothesis that crystallization was restricted to marginal mush zones. Bulk melt remaining in the magma chamber evolved not, as generally assumed, as a result of loss of crystals grown from the bulk melt, but as the consequence of mixing with recycled and evolved melt expelled from the mush by compaction. Redistribution of Fe in immiscible melts may be common to mafic intrusions and puts into question the validity of petrogenetic modelling of bulk liquids in mafic intrusions based only on consideration of floor cumulates.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2015-09-23
    Description: We have determined experimentally the hydrous phase relations and trace element partitioning behaviour of ocean floor basalt protoliths at pressures and temperatures (3 GPa, 750–1000°C) relevant to melting in subduction zones. To avoid potential complexities associated with trace element doping of starting materials we have used natural, pristine mid-ocean ridge basalt (MORB from Kolbeinsey Ridge) and altered oceanic crust (AOC from Deep Sea Drilling Project leg 46, ~20°N Atlantic). Approximately 15 wt % water was added to starting materials to simulate fluid fluxing from dehydrating serpentinite underlying the oceanic crust. The vapour-saturated solidus is sensitive to basalt K 2 O content, decreasing from 825 ± 25°C in MORB (~0·04 wt % K 2 O) to 750°C in AOC (~0·25 wt % K 2 O). Textural evidence indicates that near-solidus fluids are sub-critical in nature. The residual solid assemblage in both MORB and AOC experiments is dominated by garnet and clinopyroxene, with accessory kyanite, epidote, Fe–Ti oxide and rutile (plus quartz–coesite, phengite and apatite below the solidus). Trace element analyses of quenched silica-rich melts show a strong temperature dependence of key trace elements. In contrast to the trace element-doped starting materials of previous studies, we do not observe residual allanite. Instead, abundant residual epidote provides the host for thorium and light rare earth elements (LREE), preventing LREE from being released (LREE 〈3 ppm at 750–900°C). Elevated Ba/Th ratios, characteristic of many arc basalts, are found to be generated within a narrow temperature field above the breakdown temperature of phengite, but below exhaustion of epidote. Melts with Ba/Th 〉1500 and La/Sm PUM (where PUM indicates primitive upper mantle) ~1, most closely matching the geochemical signal of arc lavas worldwide, were generated from AOC at 800–850°C.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-09-23
    Description: We constrain the physical nature of the magma reservoir and the mechanisms of rhyolite generation at Yellowstone caldera via detailed characterization of zircon and sanidine crystals hosted in three rhyolites erupted during the ( c . 170–70 ka) Central Plateau Member eruptive episode—the most recent post-caldera magmatism at Yellowstone. We present 238 U– 230 Th crystallization ages and trace-element compositions of the interiors and surfaces (i.e. unpolished rims) of single zircon crystals from each rhyolite. We compare these zircon data with 238 U– 230 Th crystallization ages of bulk sanidine separates coupled with chemical and isotopic data from single sanidine crystals. Zircon age and trace-element data demonstrate that the magma reservoir that sourced the Central Plateau Member rhyolites was long-lived (150–250 kyr) and genetically related to the preceding episode of magmatism, which occurred c . 256 ka. The interiors of most zircons in each rhyolite were inherited from unerupted material related to older stages of Central Plateau Member magmatism or the preceding late Upper Basin Member magmatism (i.e. are antecrysts). Conversely, most zircon surfaces crystallized near the time of eruption from their host liquids (i.e. are autocrystic). The repeated recycling of zircon interiors from older stages of magmatism demonstrates that sequentially erupted Central Plateau Member rhyolites are genetically related. Sanidine separates from each rhyolite yield 238 U– 230 Th crystallization ages at or near the eruption age of their host magmas, coeval with the coexisting zircon surfaces, but are younger than the coexisting zircon interiors. Chemical and isotopic data from single sanidine crystals demonstrate that the sanidines in each rhyolite are in equilibrium with their host melts, which considered along with their near-eruption crystallization ages suggests that nearly all Central Plateau Member sanidines are autocrystic. The paucity of antecrystic sanidine crystals relative to antecrystic zircons requires a model in which eruptible rhyolites are generated by extracting melt and zircons from a long-lived mush of immobile crystal-rich magma. In this process the larger sanidine crystals remain trapped in the locked crystal network. The extracted melts (plus antecrystic zircon) amalgamate into a liquid-dominated (i.e. eruptible) magma body that is maintained as a physically distinct entity relative to the bulk of the long-lived crystal mush. Zircon surfaces and sanidines in each rhyolite crystallize after melt extraction and amalgamation, and their ages constrain the residence time of eruptible magmas at Yellowstone. Residence times of the large-volume rhyolites (~40–70 km 3 ) are ≤1 kyr (conservatively 〈6 kyr), which suggests that large volumes of rhyolite can be generated rapidly by extracting melt from a crystal mush. Because the lifespan of the crystal mush that sourced the Central Plateau Member rhyolites is two orders of magnitude longer than the residence time of eruptible magma bodies within the reservoir, it is apparent that the Yellowstone magma reservoir spends most of its time in a largely crystalline (i.e. uneruptible) state, similar to the present-day magma reservoir, and that eruptible magma bodies are ephemeral features.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2015-09-23
    Description: We report and interpret new geochemical and Pb–Sr–Nd isotopic data from 325 samples of shield, late-shield, postshield, and rejuvenated stage lavas from Kauai and Niihau, the two most northwesterly islands in the Hawaiian island chain. Kauai is unique in the Hawaiian chain in that it exhibits a near-continuous geochemical transition from shield to postshield to rejuvenated stage volcanism between 4·4 and 3·6 Ma and has been continuously active over ~6 Myr. From c . 5·7 to 4·3 Ma, the shield stage of both islands produced tholeiitic basalts typical of other Hawaiian shield volcanoes. The Niihau basalts are more evolved and have high Gd/Yb compared with Kauai, indicating a higher residual garnet content in the source. Both Kauai and Niihau shield basalts have Kea-like trace element ratios, but isotopic ratios are transitional between Kea- and Loa-like compositions. The geochemical similarity of the two shields indicates that mantle sources in different regions of the plume source were similar, and that the 〈2 Ma Loa and Kea trends of the southeastern Hawaiian volcanoes are not observed. More Loa-like compositions are evident in shield lavas from eastern Kauai, where the enhanced Loa composition may reflect melting of low-melting temperature plume components as the island migrates off the hotter, more Kea-like, center of the Hawaiian plume. Postshield lavas and intrusive rocks on both islands are rare: Kauai includes alkalic basalts, hawaiites and mugearites that are isotopically homogeneous and include a significant depleted mantle component compared with the shield basalts, whereas the Niihau late-shield and postshield rocks consist of highly contrasting transitional tholeiites or basanites with variable but shield-like isotopic compositions. The Niihau postshield rocks represent variable, but lower degrees of melting of the shield mantle source. Large volumes of rejuvenated stage lavas cover both islands and also form submarine cone fields, but lava compositions are different. On Kauai, rejuvenated lavas range from melilitite to alkalic basalt with trace element, Nd isotope, and Pb isotope ratios that vary as a function of Th and SiO 2 content. Low-degree (high-Th) melts are dominated by a mixed Kea–Loihi component and high-degree (low-Th) melts include more of a depleted rejuvenated component (DRC) typified by rejuvenated stage lavas and xenoliths from nearby Kaula Island. With the exception of a single basanite, the Niihau rejuvenated stage lavas are uniformly alkalic basalt, with Sr and Ba excesses combined with depleted Th and Nb abundances relative to the light rare earth elements. Rejuvenated stage alkalic basalts from both islands are dominated by contributions from the DRC, which have high Sr/Ce and 87 Sr/ 86 Sr but low 206 Pb/ 204 Pb. The Sr-rich, possibly carbonate-bearing, DRC component may be distributed patchily in the rejuvenated stage mantle source such that, where present, the degree of partial melting was enhanced compared with the degree of partial melting of the Sr-poor, mixed Kea–Loihi component. Given the lack of a hiatus between postshield and rejuvenated stages on Kauai, the rejuvenated mantle source is already able to melt at the tail end of shield stage activity and no secondary melting mechanism is required to explain the rejuvenated stage.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2015-06-13
    Description: A new thermodynamic model is presented for calculating phase relations in peridotite, from 0·001 to 60 kbar and from 800°C to liquidus temperatures, in the system NCFMASOCr. This model system is large enough to simulate phase relations and melting of natural peridotite and basaltic liquids. Calculations in the program thermocalc illustrate mantle phase relationships and melting conditions, specifically for the peridotite composition KLB-1. The garnet–spinel transition zone intersects the solidus at 21·4–21·7 kbar, where both Fe 3+ and Cr increase spinel stability, expanding the width of the transition. Orthopyroxene is lost at the solidus at 42 kbar in KLB-1, although this pressure is very sensitive to bulk composition. Calculated oxidation states are in excellent agreement with measured log f O 2 for xenolith suites with mantle Fe 2 O 3 contents in the range 0·1–0·3 wt %. It appears that mantle oxidation state is not just a simple function of P and T , but depends on phase assemblage, and may vary in a complex way within a single assemblage. The liquid model performs well, such that calculated solidus, melt productivity and liquid compositions compare favourably with those of experimental studies, permitting its use in interpolating between, and extrapolating from, experimental P–T conditions. Experimentally challenging but geologically useful regimes can be explored, such as subsolidus samples and very low melt fractions, with application to both mantle xenoliths and the origin of basalt.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-06-13
    Description: The anorthositic members of the Mealy Mountains Intrusive Suite (MMIS; Labrador, Canada) are host to 0·5–5 m diameter pegmatitic, pod-like segregations, originally described as graphic granite pods. U–Pb zircon geochronology confirms that the pods are coeval with the 1650–1630 Ma emplacement age range for the MMIS, yielding ages of 1654 ± 8 to 1628 ± 3·5 Ma. Petrographic and geochemical analysis of five pods from anorthositic rocks of the MMIS reveals that the pods have a diverse compositional range from monzodiorite to granite, varying from Fe-rich and Si-poor, to Fe-poor and Si-rich compositions. Fe-rich, Si-poor pods in the MMIS and other massifs (e.g. Laramie Anorthosite Complex) tend to be hosted by olivine-bearing anorthosites, whereas Si-rich, Fe-poor pods are hosted by pyroxene-bearing anorthosites. Each pod shows a range of graphic, myrmekitic and symplectitic textures, along with distinctive mineral assemblages (e.g. apatite and zircon) and highly enriched trace-element compositions. Evolved mineral assemblages, high concentrations of Fe, Ti and P (and in some cases SiO 2 ), and 10–1000 x chondrite enrichment in light rare earth elements, U, Th and Rb indicate that many of the pods are highly fractionated. The array of textural intergrowths provides clues about the final stages of crystallization in the pods and, by extension, the anorthosites. Macroscopic quartz–K-feldspar graphic intergrowths indicate high-viscosity, fluid-bearing and significantly undercooled magmatic conditions, whereas microscopic myrmekitic (plagioclase–quartz) and symplectitic (plagioclase–orthopyroxene) intergrowths on primary grain boundaries indicate replacement of phases in the presence of reactive fluids. In assessing the nature of these pegmatitic pods based on field, petrographic and geochemical evidence, we conclude that they represent the fluid-bearing, late-stage crystallization products of a residual liquid in the massif anorthosite system. The Fe and Si compositional variations observed in these late-stage pods can be linked to a fundamental olivine–pyroxene dichotomy observed in most Proterozoic anorthosite massifs, suggesting that pulses of magma experience variable contamination (in amount and/or composition) leading to varying differentiation paths. A range of lithologies (monzonites, monzonorites, ferrodiorites and jotunites) observed in similar pod-like structures, as well as dykes and plutons, has been observed in other Proterozoic anorthosite massifs and all have, at one time or another, been interpreted as the residual liquids of anorthosite crystallization. Our observation of in situ pods with similar compositions to all of the aforementioned lithologies, and displaying textures indicative of late-stage crystallization, supports the notion that all of these associated lithologies can be interpreted as comagmatic with, but variably contaminated and isolated residual liquids of, anorthosite crystallization. However, using isotopic evidence we cannot support the notion that the far larger granitic plutons associated with Proterozoic anorthosites are also residual liquids of anorthositic magma fractionation.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-06-13
    Description: We report the results of experiments on two natural marine sediments with different carbonate contents (calcareous clay: CO 2 = 6·1 wt %; marl: CO 2 = 16·2 wt %) at subduction-zone conditions (3 GPa, 750–1200°C). Water (7–15 wt %) was added to the starting materials to simulate the effects of external water addition from within the subducting slab. The onset of melting is at 760°C in water-rich experiments; melt becomes abundant by 800°C. In contrast, the onset of melting in published, water-poor experiments occurs at variable temperatures with the production of significant melt fractions being restricted to more than 900°C (phengite-out). The different solidus temperatures ( T solidus ) can be ascribed to variable fluid X H2O [H 2 O/(CO 2 + H 2 O)], which, in turn, depends on bulk K 2 O, H 2 O and CO 2 . Partial melts in equilibrium with residual garnet, carbonate, quartz/coesite, epidote, rutile, kyanite, phengite, and clinopyroxene are granitic in composition, with substantial dissolved volatiles. Supersolidus runs always contain both silicate melt and solute-rich fluid, indicating that experimental conditions lie below the second critical endpoint in the granite–H 2 O–CO 2 system. Carbonatite melt coexists with silicate melt and solute-rich fluid above 1100°C in the marl. The persistence of carbonate to high temperature, in equilibrium with CO 2 -rich hydrous melts, provides a mechanism to both supply CO 2 to arc magmas and recycle carbon into the deep Earth. The trace element compositions of the experimental glasses constrain the potential contribution of calcareous sediment to arc magmas. The presence of residual epidote and carbonate confers different trace element characteristics when compared with the trace element signal of Ca-poor marine sediments (e.g. pelagic clays). Notably, epidote retains Th and light rare earth elements, such that some melts derived from calcareous sediments have elevated Ba/Th and U/Th, and low La/Sm PUM , thereby resembling fluids conventionally ascribed to altered oceanic crust. Our results emphasize the importance of residual mineralogy, rather than source lithology, in controlling the trace element characteristics of slab-derived fluids.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-06-13
    Description: Three crystal-poor obsidian samples (one dacite, 67 wt % SiO 2 ; two rhyolites, 73 and 75 wt % SiO 2 ), which erupted effusively from monogenetic vents, contain sparse (〈2%) plagioclase phenocrysts that span a remarkably wide and continuous range in composition (≤30 mol % An). Many, but not all, of the plagioclase crystals display diffusion-limited growth textures (e.g. swallow-tails, skeletal, vermiform). Hypotheses to explain the paradox of a wide compositional range despite a low abundance of plagioclase include (1) incorporation of xenocrysts and/or magma mingling, (2) slow crystallization of plagioclase driven by slow cooling in a magma chamber, (3) slow crystallization of plagioclase followed by a resorption (e.g. heating) event, and (4) crystallization driven by rapid degassing (i.e. loss of melt H 2 O) ± rapid cooling during ascent. To test these hypotheses, a series of phase equilibrium experiments were conducted under pure-H 2 O fluid-saturated conditions in a cold-seal pressure vessel between 30 and 300 MPa and 750 and 950°C. The results show that the plagioclase population in each obsidian sample could have grown from their respective melts, with the exception of a single calcic core (An 60–63 ) in one sample. The results additionally rule out slow cooling in a magma chamber, because this would lead to equilibrium abundances of plagioclase (≤20%), which are far higher than what is observed in the samples (〈2%). Nor can resorption (i.e. heating) explain the low abundance of plagioclase, because this would eliminate the more sodic plagioclase crystals and hence the wide compositional range of plagioclase that is observed. The most viable hypothesis is that the sparse plagioclase phenocrysts grew relatively rapidly during magma ascent to the surface; this is consistent with the results of isothermal (850°C) continuous decompression experiments (2·9, 1·0, 0·8, and 0·1 MPa h –1 ), under pure-H 2 O fluid-saturated conditions, which were performed on one of the rhyolites (MLV-36; 73 wt % SiO 2 ) and quenched at P H2O = 89, 58 and 40 MPa. The four decompression rates correspond to degassing rates of 1·6, 0·56, 0·45 and 0·06 wt % H 2 O per day. Decompressions ≥1·0 MPa( P H2O ) h –1 , initiated above the liquidus, quenched to 100% glass at all final P H2O . Decompressions at 0·8 MPa( P H2O ) h –1 , also initiated above the liquidus, led to plagioclase crystals nearly five times larger than those grown in runs decompressed at the same rate, but initiated just below the plagioclase-in curve. It is the kinetic hindrance to nucleation that permits crystal growth to be concentrated on relatively few crystals, leading to larger crystals. Plagioclase growth rates from these experiments show that the largest phenocrysts (~1 mm) in the MLV-36 obsidian could have grown in 〈42 h. A cooling rate of ~1·2°C h –1 closely matches both the increase in melt viscosity with time and the effective undercooling with time that occurs during the 0·8 MPa( P H2O ) h –1 decompression over the first 50 h. The combined results point to crystallization of sparse plagioclase driven by relatively rapid rates of degassing ± cooling during ascent to the surface of melts that were initially above their liquidus. The obsidian samples must have been efficiently segregated as nearly 100% liquids from their respective source regions at H 2 O-fluid undersaturated conditions to attain a degree of superheating upon ascent before reaching fluid saturation.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-06-13
    Description: The Jurassic Vestfjella dyke swarm at the volcanic rifted margin of western Dronning Maud Land represents magmatism related to the incipient Africa–Antarctica rift zone; that is, rift-assemblage magmatism of the Karoo continental flood basalt (CFB) province. Geochemical and Nd–Sr isotopic data for basaltic and picritic dyke samples indicate diverse low-Ti and high-Ti tholeiitic compositions with Nd (180 Ma) ranging from +8 to –17. Combined with previously reported data on a subcategory of ferropicritic dykes, our new data facilitate grouping of the Vestfjella dyke swarm into seven geochemically distinct types. The majority of the dykes exhibit geochemical affinity to continental lithosphere and can be correlated with two previously identified chemical types (CT) of the wall-rock CFB lavas and are accordingly referred to as the CT1 and CT3 dykes. The less abundant Low-Nb and High-Nb dykes, a relatively enriched subtype of CT3 (CT3-E) dykes, and dykes belonging to the depleted and enriched ferropicrite suites represent magma types found only as intrusions. The chemically mid-ocean ridge basalt (MORB)-like Low-Nb and the depleted ferropicrite suite dykes represent, respectively, relatively high- and low-degree partial melting of the same overall depleted mantle (DM)-affinity source in the sublithospheric mantle. In contrast, we ascribe the chemically ocean island basalt (OIB)-like High-Nb dykes and the enriched ferropicrite suite dykes to melting of enriched components in the sublithospheric mantle. Geochemical modelling suggests that the low-Ti affinity CT1 and CT3, and high-Ti affinity CT3-E magma types of Vestfjella dyke may predominantly result from mixing of DM-sourced Low-Nb type magmas with 〈10 wt % of crust- and lithospheric mantle-derived melts. U/Pb zircon dating confirms synchronous emplacement of CT1 dykes and Karoo main-stage CFBs at 182·2 ± 0·9 and 182·2 ± 0·8 Ma, whereas two 40 Ar/ 39 Ar plagioclase plateau ages of 189·2 ± 2·3 Ma (CT1) and 185·5 ± 1·8 Ma (depleted ferropicrite suite), and a mini-plateau age of 186·9 ± 2·8 Ma (CT3-E) for the Vestfjella dykes raise the question of whether the onset of rift-zone magmatism could predate the province-wide c. 179–183 Ma main stage of Karoo magmatism. Notably variable Ca/K spectra suggest that younger 40 Ar/ 39 Ar plagioclase plateau ages of 173, 170, 164, and 154 Ma are related to crystallization of secondary minerals during the late-stage tectono-magmatic development of the Antarctic rifted margin. The occurrence of rare MORB- and OIB-like magma types in Vestfjella and along the African and Antarctic rifted margins suggests melting of geochemically variable depleted and enriched sublithospheric mantle beneath the Africa–Antarctica rift zone. Our models for the Vestfjella dyke swarm indicate that the voluminous lithosphere-affinity low-Ti and high-Ti rift-assemblage tholeiites could have been derived from MORB-like parental magmas by contamination, which implies sublithospheric depleted mantle as the principal source of the CFB magmas of the Africa–Antarctica rift zone.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-06-13
    Description: Monazite laser ablation–split-stream inductively coupled plasma–mass spectrometry (LASS) was used to date monazite in situ in Barrovian-type micaschists of the Moravian zone in the Thaya window, Bohemian Massif. Petrography and garnet zoning combined with pseudosection modelling show that rocks from staurolite–chlorite, staurolite, kyanite and kyanite–sillimanite zones record burial in the S 1 fabric under a moderate geothermal gradient from 4–4·5 kbar and ~530–540°C to 5 kbar and 570°C, 6–7 kbar and 600–640°C, 7·5–8 kbar and 630–650°C, and 8 kbar and 650°C, respectively. In the kyanite and kyanite–sillimanite zones, garnet rim chemistry and local syntectonic replacement of garnet by sillimanite–biotite aggregates point to re-equilibration at 5·5–6 kbar and 630–650°C in the S 2 fabric. Heterogeneously developed retrograde shear zones (S 3 ) are marked by widespread chloritization, but minor chlorite is present in the studied samples. Monazite abundance and size increase with metamorphic grade from 5 µm in the staurolite–chlorite zone to 〉100 µm in the kyanite and kyanite–sillimanite zones. Irrespective of the monazite-forming reaction, this is interpreted as the onset of limited prograde monazite growth at staurolite grade, and continued prograde monazite growth after the kyanite-in reaction, compatible with conditions of about 5·5 kbar and 570°C and 7·5 kbar and 630°C from pseudosection modelling. Monazite is zoned, showing embayments and sharp boundaries between zones, with low Y in the staurolite zone, high-Y cores and low-Y rims in the kyanite zone, and high-Y cores, a low-Y mantle and a high-Y rim in the sillimanite zone. The 207 Pb-corrected 238 U/ 206 Pb ages from three samples range from 344 ± 7 to 330 ± 7 Ma, irrespective of metamorphic grade. The dates from monazite inclusions are interpreted as the ages of the staurolite- and kyanite-in reactions along the prograde path at 340 and 337 ± 7 Ma, respectively. The monazite in the matrix (and some inclusions) is interpreted as dating the prograde crystallization at (340–337) ± 7 Ma within the S 1 fabric, and then being affected by recrystallization at or down to 332 ± 7 Ma in the S 2 and S 3 fabrics. The two groups of data, for 340–337 and 332 Ma, are significantly different when only their in-run uncertainties (±1–3 Myr) are compared and indicate a 9 ± 3 Myr period of monazite (re)crystallization. A systematic increase in heavy rare earth element (HREE) content with decreasing monazite age from 344 to 335 Ma is correlated with growth on the prograde P–T path; the drop in HREE of monazite at 335–328 Ma is assigned to recrystallization. The presence of chlorite even in the least retrogressed samples witnesses limited external fluid availability on the retrograde P–T path. Migration of this fluid was probably responsible for heterogeneous fluid-assisted recrystallization and resetting of original prograde monazite, even where included in garnet, staurolite or kyanite. It is suggested that the rocks passed the chlorite-in reaction on the retrograde path at 332 ± 7 Ma. The timing of burial in the Thaya window, a deformed part of the underthrust Brunia microcontinent, was coeval with exhumation of granulites and migmatites of the Moldanubian orogenic root at c. 340 Ma.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-06-13
    Description: The Fanshan intrusion in the North China Craton (NCC) is concentrically zoned with syenite in the core (Unit 1), surrounded by ultramafic rocks (clinopyroxenite and biotite clinopyroxenite; Unit 2), and an outer rim of garnet-rich clinopyroxenite and orthoclase clinopyroxenite and syenite (Unit 3). The intrusive rocks are composed of variable amounts of Ca-rich augite, biotite, orthoclase, melanite, garnet, magnetite and apatite, with minor primary calcite. Monomineralic apatite rocks, nelsonite and glimmerite exclusively occur in Unit 2. Geochemically, the Fanshan rocks are highly enriched in light rare earth elements (LREE) and large ion lithophile elements (LILE), moderately depleted in high field strength elements (HFSE), and have a limited range of Sr–Nd–O isotopic compositions. The similar mineralogy, mineral compositions, and trace element characteristics of the three units suggest that all the rocks are co-magmatic. The parental magma is ultrapotassic and is akin to kamafugite. Very low-degree partial melting of metasomatized lithospheric mantle best explains the geochemistry and petrogenesis of the parental magmas of the Fanshan intrusion. We propose that the mantle source may have been metasomatized by a hydrous carbonate-bearing melt, which has imprinted the enriched Sr–Nd isotopic signature and incompatible element enrichment with conspicuous negative Nb–Ta–Zr–Hf–Ti anomalies and LREE enrichments. The mantle source enrichment may be correlated with oceanic sediment recycling during southward subduction of the Paleo-Asian oceanic plate during the Carboniferous and Permian. We propose that crystal settling and mechanical sorting combined with repeated primitive magma replenishment and mixing with previously fractionated magma is the predominant process responsible for the formation of the apatite ores.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2016-08-01
    Description: Experimental studies of mantle petrology find that small concentrations of water and carbon dioxide have a large effect on the solidus temperature and distribution of melting in the upper mantle. However, it has remained unclear what effect small fractions of deep, volatile-rich melts have on melt transport and reactive melting in the shallow asthenosphere. Here we present theory and computations indicating that low-degree, reactive, volatile-rich melts cause channelization of magmatic flow at depths approximately corresponding to the anhydrous solidus temperature. These results are obtained with a novel method to simulate the thermochemical evolution of the upper mantle in the presence of volatiles. The method uses a thermodynamically consistent framework for reactive, disequilibrium, multi-component melting. It is coupled with a system of equations representing conservation of mass, momentum, and energy for a partially molten grain aggregate. Application of this method in two-phase, three-component upwelling-column models demonstrates that it reproduces leading-order features of hydrated and carbonated peridotite melting; in particular, it captures the production of low-degree, volatile-rich melt at depths far below the volatile-free solidus. The models predict that segregation of volatile-rich, deep melts promotes a reactive channelling instability that creates fast and chemically isolated pathways of melt extraction. Reactive channelling occurs where volatile-rich melts flux the base of the silicate melting region, enhancing dissolution of fusible components from the ambient mantle. We find this effect to be similarly expressed for models of both hydrated and carbonated mantle melting. These findings indicate that despite their small concentrations, water and carbon dioxide have an important control on the extent and style of magma genesis, as well as on the dynamics of melt transport.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2016-08-01
    Description: A study of whole-rock major and trace element and Sr–Nd–Pb–Hf isotope compositions, combined with zircon U–Pb ages and Hf–O isotopes, for postcollisional intermediate volcanic rocks from the Dabie orogen, China provides constraints on the origin of andesitic magmas and insights into slab–mantle interaction in continental subduction channels. The volcanic rocks exhibit variable contents of SiO 2 (50·28–63·86 wt %), MgO (1·18–4·65 wt %), (Fe 2 O 3 ) T (3·60–8·53 wt %), Al 2 O 3 (12·92–18·95 wt %), Na 2 O (2·08–6·30 wt %) and K 2 O (0·73–5·25 wt %). They are mainly trachyandesites, with lesser amounts of basaltic trachyandesite, andesite, dacite and trachyte, characterized by subduction-like trace element distribution patterns showing enrichment of large ion lithophile elements and light rare earth elements but depletion of high field strength elements. The volcanic rocks have relatively enriched Sr–Nd–Pb–Hf isotope compositions, with high initial 87 Sr/ 86 Sr ratios of 0·7075–0·7110, highly negative Nd ( t ) values of –23·1 to –15·0, Hf ( t ) values of –29·8 to –18·3 and elevated 207 Pb/ 204 Pb and 208 Pb/ 204 Pb ratios at given 206 Pb/ 204 Pb ratios. Zircon Hf–O isotope analyses yield negative Hf ( t ) values of –31·0 to –17·8 and 18 O values of 4·4–6·8 for syn-magmatic domains. Zircon U–Pb dating yields consistent Early Cretaceous ages of 124 ± 3 to 130 ± 2 Ma for magma emplacement. Residual zircon cores yield Triassic, Neoproterozoic and Paleoproterozoic U–Pb ages, consistent with the ages of tectonothermal events involving ultrahigh-pressure metamorphism and protolith formation in the Dabie orogen. The zircon cores also yield a few low to negative 18 O values. An integrated interpretation of these geochemical characteristics is that the andesitic magmas were derived by partial melting of metasomatized zones in the orogenic lithospheric mantle. The metasomatites were generated by reaction of subcontinental lithospheric mantle wedge peridotite with felsic melts that originated from deeply subducted continental crust during continental collision in the Triassic. Melt–peridotite reaction in a subduction channel is therefore a key to the origin of the mantle sources of andesitic magmas in collisional orogens.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2016-08-01
    Description: The late Proterozoic Ntaka Ultramafic Complex is a body of dominantly pyroxenitic cumulate rocks containing cyclic alternations of olivine–orthopyroxene cumulates. Chemical zoning in the pyroxenes has been imaged at 25–40 µm resolution using desktop microbeam X-ray fluorescence mapping followed up with laser ablation–inductively coupled plasma mass spectrometry analysis for minor and trace elements on selected samples. Poikilitic and granular harzburgites are finely intermingled, in some cases on a centimetre scale in the same thin section. Poikilitic varieties display spectacular textures, ranging from isolated equant orthopyroxene oikocrysts within olivine-rich heteradcumulate harzburgites to rocks composed entirely of interlocking centimetre-sized anhedral orthopyroxene oikocrysts containing sharply bounded idiomorphic Cr-enriched cores. The poikilitic harzburgites are interlayered with cumulate pyroxenites in which orthopyroxene grains show a variety of zoning patterns: Cr-rich cores similar to those in the oikocrysts; sharply bounded oscillatory zoned cores; and reverse zoning with Cr-poor cores and Cr-enriched rims. A further variation is the presence of a mingled harzburgite lithology in which dunite or poikilitic harzburgite is invaded on a centimetre scale by diffuse vein networks or patches of coarse orthopyroxenite. This range of textures and lithologies attests to a more complex set of processes than implied by the standard cumulus theory model in which oikocrysts are considered to have crystallized from intercumulus liquid within a permeable crystal mush. A range of hypotheses is proposed, including infiltration metasomatism of original olivine cumulates by migrating orthopyroxene-saturated pore fluid; however, the textural relationships, whole-rock chemistry and Cr zoning within the grains can best be explained by a model in which the orthopyroxene oikocrysts form in part or whole as mechanically accumulated cumulus grains. The complexity of zoning patterns is attributed to stirring of entrained olivine and orthopyroxene crystals within a heterogeneous flowing crystal mush, where the transporting magma has a wide range of silica contents owing to poorly stirred incorporation of siliceous country-rock material. The Cr-rich orthopyroxenite component grew from Si-enriched chromite-saturated magma. Mingled lithologies developed after accumulation as a result of percolation and infiltration metasomatism by Si-enriched liquid derived by melting of xenoliths within the crystal pile. The model may be more generally applicable: dunite–harzburgite cycles, common in many layered intrusions, may reflect variable degrees of contamination rather than cycles of fractional crystallization and replenishment.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-08-01
    Description: New thermodynamic data for skiagite garnet (Fe 3 Fe 2 3+ Si 3 O 12 ) are derived from experimental phase-equilibrium data that extend to 10 GPa and are applied to oxybarometry of mantle peridotites using a revised six-component garnet mixing model. Skiagite is more stable by 12 kJ mol –1 than in a previous calibration of the equilibrium 2 skiagite = 4 fayalite + ferrosilite + O 2 , and this leads to calculated oxygen fugacities that are higher (more oxidized) by around 1–1·5 logfO2 units. A new calculation method and computer program incorporates four independent oxybarometers (including 2 pyrope + 2 andradite + 2 ferrosilite = 2 grossular + 4 fayalite + 3 enstatite + O 2 ) for use on natural peridotite samples to yield optimum logfO2 estimates by the method of least squares. These estimates should be more robust than those based on any single barometer and allow assessment of possible disequilibrium in assemblages. A new set of independent oxybarometers for spinel-bearing peridotites is also presented here, including a new reaction 2 magnetite + 3 enstatite = 3 fayalite + 3 forsterite + O 2 . These recalibrations combined with internally consistent PT determinations for published analyses of mantle peridotites with analysed Fe 2 O 3 data for garnets, from both cratonic (Kaapvaal, Siberia and Slave) and circumcratonic (Baikal Rift) regions, provide revised estimates of oxidation state in the lithospheric mantle. Estimates of logfO2 for spinel assemblages are more reduced than those based on earlier calibrations, whereas garnet-bearing assemblages are more oxidized. Importantly, this lessens considerably the difference between garnet and spinel oxybarometry that was observed with previous published calibrations.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2016-08-01
    Description: The Kidnappers [~1200 km 3 dense rock equivalent (DRE)] and Rocky Hill (~200 km 3 DRE) caldera-forming events in the Taupo Volcanic Zone, New Zealand, were erupted in close succession from the Mangakino volcanic centre. They have identical radiometric ages at ~1 Ma, yet erosion along the contact between the two deposits suggests that some years to decades separated the two eruptions. Field constraints and the similarities of crystal textures and compositions and glass chemistries of both eruption deposits demonstrate that they came from one overall magmatic system with a common crystal mush source. However, second-order variations in these parameters confirm that the Kidnappers and Rocky Hill deposits represent distinct events and are not the products of a single zoned magma chamber. The systematically zoned Kidnappers fall deposits provide evidence for the tapping of three discrete magma bodies, whereas the succeeding Kidnappers ignimbrite is compositionally more diverse. The transition from fall to flow deposition marks a change in the style of caldera collapse and the simultaneous evacuation of discrete but compositionally diverse melts, each of which underwent a distinct evolution and was held at slightly different P–T conditions prior to eruption. Contrasting plagioclase and orthopyroxene zonation patterns are present in pumices originating from three discrete magma bodies. Less evolved mafic melts interacted with the system, which mobilized portions of the final erupted melt through heating and volatile or chemical exchange in the mush. The two largest Kidnappers melt-dominant bodies were re-tapped in modified form, or re-established from their common mush source, prior to the Rocky Hill event. Rocky Hill pumices contain common, fluid-affected antecrystic crystal clots derived from chamber wall material. Amphibole compositions from each eruption reflect melt evolution processes and, in particular, the contemporaneous crystallization of biotite and breakdown of orthopyroxene. Plagioclase and orthopyroxene from Rocky Hill pumices share common zonation patterns with those from the two largest magma bodies in the Kidnappers. The rapid production of new melt-dominant bodies and the triggering of the Rocky Hill eruption reflect the ability of the magmatic system to rejuvenate on a geologically short timescale. The Mangakino centre did not follow a typical cycle of decreased activity after the supervolcanic Kidnappers event, instead producing a second caldera-forming eruption, within years to decades from the same system.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2016-08-01
    Description: Ambrym, a basaltic volcano in the Vanuatu Arc, has displayed variable eruptive behaviour throughout the past century, with major eruptions occurring both on the volcano flanks and at multiple vents within its caldera. These have been interspersed with periods of relative quiescence marked by extensive passive degassing at active, intra-caldera lava lakes, which experience occasional Strombolian explosions. Volcanic rocks from all vents and eruptive styles display similar isotope and incompatible trace element compositions, suggesting that all are derived from the same primary melt by fractional crystallization. Major eruptions are commonly responsible for effusion of the least evolved lavas examined (SiO 2 ~ 50 wt %; MgO ~ 5 wt %). Although all are geochemically similar, petrological differences discriminate between lavas erupted during flank and intra-caldera eruptions. Phyric basalts with homogeneous mineral compositions are common to flank eruptions, whereas crystal-rich basalts with variable mineral compositions, many not in equilibrium with their host liquid, are a feature of intra-caldera lavas. Lava lake samples are slightly more evolved than those from effusive eruptions (SiO 2 ~ 51–52 wt %; MgO ~ 4 wt %), as a result of additional crystallization during periods of relative quiescence. The diverse petrology of the intra-caldera lavas can be explained by mixing of replenishment magmas similar to those erupted from the volcano flanks with residual magma from lava lake activity. Flank eruptions exploit dykes that bypass the shallow reservoir involved with lava lake activity, limiting their interaction with this component.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2016-08-01
    Description: The generation and evolution of basaltic magmas at Usu volcano, located at the junction between the NE Japan arc and the Kuril arc, have been investigated. The mafic products, which form the somma edifice of the volcano, consist of basalt (49·6–51·3 wt % SiO 2 ) and basaltic andesite (52·0–54·9 wt % SiO 2 ) lavas. The basaltic lavas show relatively tight compositional trends, and 87 Sr/ 86 Sr ratios tend to decrease with increasing whole-rock SiO 2 content. The water content of the basaltic magmas was determined to be ~4·8 wt % based on plagioclase–melt thermodynamic equilibrium. Using this information and an olivine maximum fractionation model, the water content of the primary Usu magma was estimated to be 3·9 wt %. Multi-component thermodynamic calculations suggest that the primary magma was generated by ~23% melting of the source mantle with ~0·94 wt % H 2 O at ~1300°C and ~1·4 GPa. The 0·94 wt % water content of the source mantle is significantly higher than that beneath volcanoes in the main NE Japan arc (generally 〈0·7 wt % H 2 O); this implies that the wedge mantle at the arc–arc junction is intensively hydrated. The temperature of the wedge mantle of ~1300°C at ~1·4 GPa is also significantly higher than that of the mantle in the main NE Japan arc. Unlike the basaltic lavas, the whole-rock compositions of the basaltic andesite lavas are scattered in Harker variation diagrams. This observation suggests that the compositional diversity was produced by at least two independent processes. To elucidate the processes responsible for this compositional diversity, principal component analysis was applied to the major element compositions of the samples. This suggests that 47% of the diversity of the whole-rock compositions can be explained by mixing with partial melts of lower crustal materials, 25% is explained by redistribution of plagioclase phenocrysts, and 16% is explained by fractionation of accessory minerals.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2016-05-11
    Description: Numerous models have been developed to simulate the reaction of magmas to changes of thermodynamic variables, such as pressure, temperature, oxygen fugacity, and water activity. However, the extensive experimental database still lacks information on the distinct effect of small amounts of H 2 O on olivine + plagioclase + clinopyroxene cotectic crystallization in tholeiitic basalt. We present an experimental study addressing the effects of pressure (at 100, 200, 400, and 700 MPa) and small amounts of H 2 O on phase relations and liquid lines of descent in three tholeiitic basalts representing different evolutionary stages of the Shatsky Rise oceanic plateau magmatic system (compositions AH6, AH3, and AH5 with 8·6, 8·0, and 6·4 wt % MgO, respectively). Two experimental approaches (dry and low H 2 O) are designed to maintain contrasting H 2 O activities during crystallization using (1) graphite–platinum double capsules to perform nearly anhydrous experiments (〈0·15 wt % H 2 O in the melt) and (2) Fe pre-saturated Au 20 Pd 80 capsules to obtain low melt H 2 O contents ranging from 0·4 to 1·1 wt % H 2 O. Under dry conditions, at lower pressures (≤400 MPa), the crystallization in the MgO-rich AH6 and intermediate AH3 basalts follows the typical sequence of tholeiitic differentiation with olivine crystallization at the liquidus followed by olivine + plagioclase and olivine + plagioclase + clinopyroxene. Both basalts are close to multiple saturation at pressures between 400 and 700 MPa. At high pressure (700 MPa) the crystallization sequence is reversed, starting with clinopyroxene at the liquidus. Under low-H 2 O conditions, AH6 and AH3 are very close to multiple saturation, even at the low pressures of 100 and 200 MPa, and the reversed crystallization sequence (clinopyroxene, plagioclase + clinopyroxene, olivine + plagioclase + clinopyroxene) is observed already at 400 MPa. In contrast to the two more MgO-rich basalts, in the most evolved AH5 basalt, clinopyroxene is the liquidus phase at all investigated pressures and under both dry and low-H 2 O conditions, followed by crystallization of plagioclase + clinopyroxene and olivine + plagioclase + clinopyroxene. The most striking observation in our experiments is that the stability of clinopyroxene increases not only with pressure increase but also in the presence of small amounts of H 2 O (when compared with dry counterparts at similar pressures). Small amounts of H 2 O increase the proportion of clinopyroxene in the olivine + plagioclase + clinopyroxene phase assemblage. Our experiments clearly show that the effect of adding 0·4 wt % H 2 O to cotectic melt compositions (e.g. CaO/Al 2 O 3 ratio at a given MgO) is similar to that caused by an increase of pressure from 100 to ~ 300 MPa. This implies that small amounts of H 2 O can lead to significant overestimation of cotectic crystallization pressures (by up to 300 MPa) and that H 2 O contents need to be taken into account in geobarometric models. Our new experiments emphasize the role of low melt H 2 O contents in stabilizing clinopyroxene and provide some new insights into the problem of the ‘pyroxene paradox’. The apparent mantle pressures obtained for some mid-ocean ridge basalts using ‘dry’ geobarometric approaches can actually represent depths within the lower crust, if small amounts of H 2 O are present. The application of our experimental data to natural Shatsky Rise basalts implies that the magmas record partial crystallization processes occurring mainly at low pressure (100 MPa), corresponding to depths of ~3 km beneath the former spreading center, although the more primitive lavas show evidence of differentiation in a deeper reservoir at ~14 km depth (400 MPa).
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2016-05-11
    Description: Mantle-derived xenoliths hosted by melilitite lavas from In Teria (Ahaggar, SE Algeria) include garnet and spinel peridotites, pyroxenite and phlogopite megacrysts. The spinel and garnet peridotites record an early deformation event, which formed porphyroclastic microstructures and olivine crystal preferred orientations, followed by static infiltration of hydrous alkaline melts. This metasomatic stage (stage 1) is characterized by the crystallization of phlogopite in the garnet and spinel peridotites, amphibole in the spinel peridotites and clinopyroxene in the garnet peridotite, which record chemical equilibration with an alkaline silicate melt. These early events were largely overprinted by carbonatitic metasomatism (stage 2), which is observed only in the spinel peridotites. Spinel peridotite major and trace element compositions, as well as the compositions of newly formed minerals, are characteristic of interaction with carbonate melt, associated with strong enrichment in incompatible trace elements in clinopyroxene. This second stage was followed by crystallization of pyroxenites (stage 3) in vein conduits, probably segregated from alkaline melts. We propose a scenario in which the different metasomatic imprints record successive stages of interaction between lithospheric mantle and sublithospheric melts throughout the Cenozoic. In Sr–Nd isotope space, the host melilitites and several xenoliths are clustered and plot close to the HIMU mantle end-member. However, some peridotite xenoliths are shifted towards more radiogenic 87 Sr/ 86 Sr values. In 207 Pb/ 204 Pb– 206 Pb/ 204 Pb and 208 Pb/ 204 Pb– 06 Pb/ 204 Pb space the In Teria samples define a relatively large domain characterized by high 206 Pb/ 204 Pb and 208 Pb/ 204 Pb, consistent with a contribution of an HIMU component, considered to represent a sublithospheric signature. The highest 87 Sr/ 86 Sr values are comparable with those ascribed to the EM1 mantle end-member, representing the signature of the lower continental lithosphere, and are probably inherited from the pre-metasomatic lithospheric mantle beneath In Teria. Numerical modelling of porous percolation of melt of sublithospheric origin through an EM1-like lithospheric mantle protolith reproduces the In Teria peridotite compositions, using moderately sub-chondritic Sr/Nd values for the peridotite (e.g. In Teria garnet peridotite) and moderately super-chondritic Sr/Nd values in the melt (approximately ocean island basalt values). A few spinel peridotites require a component characterized by a 143 Nd/ 144 Nd signature higher than both the EM1 end-member and the local Ahaggar basalts; the 208 Pb/ 204 Pb compositions of several samples point to a component with a depleted mid-ocean ridge basalt (MORB) mantle (DMM) signature. Thus the lithospheric mantle beneath In Teria probably did not have a uniform EM1 signature before the onset of metasomatism; it included a DMM peridotite component as well as some peridotites with elevated 143 Nd/ 144 Nd values recording long-term LREE depletion.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2016-05-11
    Description: Modelled primary magma compositions of Palaeogene basalts from the North Atlantic Igneous Province (NAIP) require melting at mantle potential temperatures ( T P ) in the range 1480–1550°C. Modern lavas from Icelandic rift zones require T P ~ 1500°C and those from the rift flanks T P ~ 1450°C. Secular cooling of the NAIP thermal anomaly was therefore of the order of ~50°C over the past 61 Myr. There were systematic variations in T P of 50–100°C from the centre of the thermal anomaly to its margins at any one time, although limits on the stratigraphical distribution of T P determinations do not rule out thermal pulsing on a timescale of millions of years. Variation in extent of melting at similar T P was controlled by local variability in lithospheric thickness. In the west of the NAIP, lithosphere thickness varied from ~90 km at Disko Island to ~65 km at Baffin Island, with similar thickness variations being evident for magmatism in the Faroe Islands, Faroe–Shetland Basin and the British Palaeogene Igneous Province (BPIP). Mean pressure of melting was greater than or equal to the final pressure of melting; the two values converge for melting columns with a melting interval of 〈1·5 GPa, regardless of T P . The majority of the BPIP magmas were generated in the garnet–spinel transition in the upper mantle. Calculated and observed rare earth element distributions in NAIP lavas are entirely consistent with the melting regimes derived from major element melting models. This allows a calibration of rare earth element fractionation and melting conditions that can be applied to other flood basalt provinces.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-09-16
    Description: The dihedral angle formed at junctions between two plagioclase grains and a grain of augite is only very rarely in textural equilibrium in gabbros from kilometre-scale crustal layered intrusions. The median of a population of these disequilibrium angles, cpp , varies systematically within a single layered intrusion, remaining constant over large stretches of stratigraphy with significant increases and decreases associated with the addition or reduction respectively of the number of phases on the liquidus of the bulk magma. The stepwise changes in cpp are present in the Upper Zone of the Bushveld Complex, the Megacyclic Unit I of the Sept Iles Intrusion, and the Layered Series of the Skaergaard intrusion. The plagioclase-bearing cumulates of Rum have a bimodal distribution of cpp , dependent on whether the cumulus assemblage includes clinopyroxene. The presence of the stepwise changes is independent of the order of arrival of cumulus phases and of the composition of either the cumulus phases or the inferred composition of the interstitial liquid. The only parameter that behaves in an exactly analogous manner to cpp is the rate of change in enthalpy with temperature ( H / T ) during crystallization. Both H / T and cpp increase with the addition of a liquidus phase, and decrease with the removal of a liquidus phase. The replacement of one phase by another has little effect on H / T and no discernible effect on cpp . An increase of H / T results in an increase in the fraction of the total enthalpy budget that is the latent heat of crystallization (the fractional latent heat). It also increases the mass crystallized in each incremental temperature drop (the crystal productivity). These increases of both fractional latent heat and crystal productivity are likely to cause an increase in the time taken to form three-grain junctions in the mush via thermal buffering of a thickened mushy layer. We suggest these are the underlying causes of stepwise increases in cpp . Stepwise changes in the geometry of three-grain junctions in fully solidified gabbros thus provide a clear microstructural marker for the progress of fractionation down the liquid line of descent in layered intrusions.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-09-16
    Description: High-resolution sampling in monogenetic fields has the potential to reveal fine-scale heterogeneity of the mantle, a feature that may be overwhelmed by larger fluxes of magma, or missed by under-sampling. The Quaternary Auckland Volcanic Field (AVF) in northern New Zealand is a basaltic field of 51 small-volume volcanic centres, and is one of the best-sampled examples of a monogenetic volcanic field. We present data for 12 centres in the volcanic field. These show the large compositional variations between volcanoes as well as through single eruptive sequences. Whole-rock compositions range from subalkaline basalt in the larger centres, through alkali basalt to nephelinite in the smallest centres. Fractional crystallization has had a limited effect in many of the centres, but high-pressure clinopyroxene crystallization may have occurred in others. Three end-members are observed in Pb isotope space, indicating that distinct mantle source components are involved in the petrogenesis of the magmas. Whole-rock multi-element patterns show that the larger centres have prominent positive Sr anomalies and lack K anomalies, whereas the smaller centres have prominent negative K anomalies and lack Sr anomalies. The melting parameters and compositions of the sources involved are modelled using trace element ratios and multi-element patterns, and three components are characterized: (1) fertile peridotite with a Pb-isotope composition similar to Pacific mid-ocean ridge basalt; (2) eclogite domains with a HIMU-like isotope composition dispersed within the fertile peridotite; (3) slightly depleted subduction-metasomatized peridotitic lithospheric mantle (containing c . 3% subduction fluids). Modelling shows that melting in the AVF begins in garnet-bearing fertile asthenosphere (with preferential melting of eclogite domains) and that melts are variably diluted by melts of the lithospheric source. The U–Th isotope compositions of the end-members in the AVF show 230 Th excess [( 230 Th/ 232 Th) ratios of 1·11–1·38], with the samples of lower ( 230 Th/ 232 Th) exhibiting higher ( 238 U/ 232 Th), which we attribute to the dilution effect of the melts from the lithospheric mantle source. Modelling reveals a correlation between melting in the asthenosphere, the degree of melting and incorporation of the metasomatized lithospheric mantle source, and the resultant size of the volcanic centre. This suggests that the scale of the eruption may essentially be controlled by asthenospheric mantle dynamics.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-09-16
    Description: The origin of mafic and ultramafic sills exhibiting different whole-rock compositional profiles (e.g. I-, C-, D-, M- and S-shaped profiles) remains controversial. We have addressed this issue by revisiting three ~100 m thick Siberian dolerite sills (Vavukansky, Kuz’movsky and Vilyuysky) that display remarkable internal differentiation. The Vavukansky sill has an M-shaped profile with prominent basal and top reversals showing inward increases in whole-rock MgO, Mg-number [100Mg/(Mg + Fe)] and normative An content [100An/(An + Ab)], followed by the Layered and Upper Border Series with inward decreases in these indices. The Kuz’movsky and Vilyuysky sills both show S-shaped profiles similar to the Vavukansky sill, but lack a top reversal. These whole-rock M- and S-shaped profiles are accompanied by similar profiles in mineral compositions. Plagioclase and, to a lesser extent, olivine show systematic inward increases in An content and Mg-number, respectively, across basal and top reversals. These compositional trends are followed by inward decreases in these ratios in the interiors of the Vavukansky and Kuz’movsky sills. Currently accepted models attribute whole-rock M- and S-shaped compositional profiles to crystal settling, compositional convection or compaction operating in closed systems. Our observations challenge these traditional interpretations because variations in mineral compositions observed in marginal reversals cannot result from closed-system fractionation. We suggest instead that initially the sills evolved as open systems that were slowly inflated by magmas that became gradually more primitive with time. The inflation was accompanied by in situ crystallization that preserved the preceding fractionation history of the injected magmas by forming basal and top reversals with minerals becoming more primitive inwards. This process culminated with rapid inflation of the sills to their current size owing to a major influx of primitive magma. Subsequently, magma flow through the sills ceased and they evolved as closed systems by fractional crystallization. This resulted in the Layered and Upper Border Series with minerals becoming more evolved inwards. This model can be extended to explain other compositional profiles and petrological features in mafic and ultramafic sills.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-09-16
    Description: Magma dynamics and time scales during the VEI 5, 2000 bp eruption of El Misti volcano, southern Peru (EM2000BP) are investigated to address cyclic explosive activity at this hazardous volcano. The 1·4 km 3 of pumice falls and flows have abundant mingled pumice of high-K, calc-alkaline rhyolite and andesite composition. Phenocryst zoning and compositions reveal mutual exchange of plagioclase between the two magmas; amphibole in the rhyolite was derived from the andesite. Amphiboles in the andesite are predominantly unrimmed crystals whereas those in the rhyolite mostly exhibit reaction rims. Phase equilibria indicate that the andesite formed at ~900–950°C and 2–3 kbar pressure and was water-saturated with 5·1–6·0 wt % H 2 O, broadly similar to El Misti magmas overall. Amphibole, plagioclase, Ti-magnetite, and two pyroxenes were the crystallizing phases. A separate rhyolite magma existed higher in the crust at a temperature of 816 ± 30°C and ~5% H 2 O in which only plagioclase and Fe–Ti oxides were stable. The lack of cognate amphibole in the rhyolite despite H 2 O saturation requires that it staged above the stability limit of amphibole (〈100 MPa). Exchange reactions in amphibole (dominantly pargasitic) and trace element partitioning in plagioclase indicate that both andesite and rhyolite magmas were broadly constant in temperature and H 2 O content. These constraints suggest that the initially separate rhyolite and deeper andesite magmas interacted by an initial andesite recharge event that resulted in mingling and crystal exchange. A period of 50–60 days is required for amphibole introduced into the rhyolite to develop reaction rims owing to decompression. These rims are dominated by plagioclase, a consequence of the Al-rich nature of the amphibole. The lack of reaction rims on amphibole in the andesite implicates a second, more-forceful and voluminous eruption-triggering recharge event during which andesite rose rapidly from source to surface in ≤5 days at ascent rates of at least 0·023 m s –1 . Further decompression-driven crystallization is recorded in plagioclase rims and microlite growth that may have contributed to a rapid increase in viscosity leading to explosive eruption. This VEI 5 plinian eruption shares characteristics with other explosive events at El Misti on a time scale of 2000–4000 years, suggesting periodic recharge-driven explosive activity.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-09-16
    Description: We report structural evidence of ductile strain localization in mantle pyroxenite from the spinel to plagioclase websterite transition in the Ronda Peridotite (southern Spain). Mapping shows that, in this domain, small-scale shear zones occurring at the base of the lithospheric section are systematically located within thin pyroxenite layers, suggesting that the pyroxenite was locally weaker than the host peridotite. Strain localization is associated with a sudden decrease of grain size and increasing volume fractions of plagioclase and amphibole as a result of a spinel to plagioclase phase transformation reaction during decompression. This reaction also fostered hydrogen extraction (‘dehydroxylation’) from clinopyroxene producing effective fluid saturation that catalyzed the synkinematic net-transfer reaction. This reaction produced fine-grained olivine and plagioclase, allowing the onset of grain-size sensitive creep and further strain localization in these pyroxenite bands. The strain localization in the pyroxenites is thus explained by their more fertile composition, which allowed earlier onset of the phase transition reactions. Geothermobarometry undertaken on compositionally zoned constituent minerals suggests that this positive feedback between reactions and deformation is associated with cooling from at least 1000°C to 700°C and decompression from 1·0 to 0·5 GPa.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-09-16
    Description: The late Miocene and younger mafic back-arc lavas in the southern Puna of the central Andean plateau have been attributed to the aftermath of crustal and mantle lithospheric delamination or foundering. In this paper, we analyze in more detail the nature of the back-arc mafic suite magmas, including the conditions of magma generation in the mantle and of magma evolution during ascent and ponding in the crust, using extensive compositional data for phenocryst minerals and olivine-hosted melt inclusions in combination with published and new whole-rock chemical and isotopic data. We estimate that the primary melts last equilibrated with an enriched mantle source at temperatures near 1375°C and pressures near 2 GPa, which is near the base of the seismically determined ~60 km thick crust. A mantle source geochemically enriched by continental material introduced through delamination and subducted erosion processes is required to explain the coincidence of the high 87 Sr/ 86 Sr ratios (〉0·705) and high Sr concentrations (〉700 ppm) of the most primitive lavas (e.g. 9–10 wt % MgO, olivine Fo 88 ). The crystallization conditions inferred from mineral–melt equilibria indicate that olivine ( T = 1320–1220°C) was followed by clinopyroxene ( T = 1230–1140°C). Clinopyroxene–melt equilibration pressures of 0·7 to near 1 GPa in the most mafic samples indicate that the magmas crystallized at mid-crustal depths of 20–35 km, within a region of inferred partial melt accumulation based on the presence of low seismic velocity zones. Olivine-hosted melt inclusions indicate relatively dry melts (maximum 0·5 wt % H 2 O) with unusual high-Al basaltic compositions, which are attributed to the high-pressure suppression of plagioclase crystallization. A first stage of crustal contamination before mid-crustal accumulation and crystallization of the mafic magmas is suggested by high O-isotope ratios in olivine phenocrysts and negative Eu anomalies in clinopyroxene from the plagioclase-free mafic lavas. Mixing models based on trace elements and radiogenic isotopes suggest assimilation of silicic melt in the lower crust, similar to contemporaneous glassy dacites with steep REE patterns and negative Eu anomalies. A second stage of crustal assimilation at shallower depths is indicated by the mismatch of incompatible elements in clinopyroxene relative to bulk-rock compositions, by strong positive correlations of radiogenic isotopes with wt % SiO 2 , and by petrographic observation of partly resorbed and reacted quartz xenocrysts. Mixing calculations require the erupted magmas to have assimilated in total some 15–25% crust.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-09-16
    Description: Hornblende-bearing basanites and alkali basalts from the Rhön area of Germany (part of the Central European Volcanic Province; CEVP) have high TiO 2 (3–4 wt %), moderately high Mg# (mostly 〉0·50), variable Cr (400–30 ppm) and Ni (160–20 ppm) abundances, and are enriched in incompatible trace elements and rare earth elements (REE). In primitive mantle-normalized multi-element diagrams they show a strong depletion in Ba, Rb, and K relative to trace elements of similar incompatibility. Some alkali basalts and more differentiated rocks have lower Mg# and lower abundances of Ni and Cr, and have undergone fractionation of olivine, clinopyroxene, Fe–Ti oxides and amphibole. The trace element constraints (e.g. low Nb/U and Ce/Pb and the Nd–Sr–Pb isotope compositions of some basalts) indicate that assimilation of lower crustal material has modified the composition of the primary mantle-derived magmas. Most of the basanites and alkali basalts approach the Sr–Nd–Pb isotope compositions inferred for the EAR (European Asthenospheric Reservoir) component. Variations in REE abundances and correlations between REE ratios suggest partial melting of amphibole-bearing spinel peridotite containing a significant portion of non-peridotitic material (i.e. pyroxenite). The presence of residual amphibole, indicated by depletion of K and Rb relative to Ba and Nb, requires melting close to the asthenosphere–lithosphere boundary or within the lithospheric mantle, most probably of a veined mantle source. Temperature and pressure estimates indicate a depth of melting for the most primitive lavas at ~80 km at temperatures of ~1290°C. Based on Sr–Nd isotope and trace element constraints it is proposed that asthenospheric melts similar in composition to EAR melts observed elsewhere in the CEVP froze at the asthenosphere–lithosphere thermal boundary as veins in the lithospheric mantle. These veins were remelted after only short storage times by ascending asthenospheric melts, imposing the prominent amphibole signature upon the basalts. The fairly radiogenic Pb isotope signatures are expected to originate from melting of enriched, low melting temperature components incorporated in the depleted upper (asthenospheric) mantle and therefore do not require upwelling of deep-seated mantle sources for the Rhön or many other continental alkaline lavas with similar Pb isotope signatures.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2014-11-05
    Description: Two mafic eruptive products from Vesuvius, a tephrite and a trachybasalt, have been crystallized in the laboratory to constrain the nature of primitive Vesuvius magmas and their crustal evolution. Experiments were performed at high temperatures (from 1000 to ≥1200°C) and both at 0·1 MPa and at high pressures (from 50 to 200 MPa) under H 2 O-bearing fluid-absent and H 2 O- and CO 2 -bearing fluid-present conditions. Experiments started from glass except for a few that started from glass plus San Carlos olivine crystals to force olivine saturation. Melt H 2 O concentrations reached a maximum of 6·0 wt % and experimental f O 2 ranged from NNO – 0·1 to NNO + 3·4 (where NNO is nickel–nickel oxide buffer). Clinopyroxene (Mg# up to 93) is the liquidus phase for the two investigated samples; it is followed by leucite for H 2 O in melt 〈3 wt %, and by phlogopite (Mg# up to 81) for H 2 O in melt 〉3 wt %. Olivine (Fo 85 ) crystallized spontaneously in only one experimental charge. Plagioclase was not found. Upon progressive crystallization of clinopyroxene, glass K 2 O and Al 2 O 3 contents strongly increase whereas MgO, CaO and CaO/Al 2 O 3 decrease; the residual melts follow the evolution of Vesuvius whole-rocks from trachybasalt to tephrite, phonotephrite and to tephriphonolite. Concentrations of H 2 O and CO 2 in near-liquidus 200 MPa glasses and primitive melt inclusions from the literature overlap. The earliest evolutionary stage, corresponding to the crystallization of Fo-rich olivine, was reconstructed by the olivine-added experiments. They show that the primitive Vesuvius melts are trachybasalts (K 2 O ~ 4·5–5·5 wt %, MgO = 8–9 wt %, Mg# = 75–80, CaO/Al 2 O 3 = 0·9–0·95) that crystallize Fo-rich olivine (90–91) as the liquidus phase between 1150 and 1200°C and from 300 to 〈200 MPa. Primitive Vesuvius melts are volatile-rich (1·5–4·5 wt % H 2 O and 600–4500 ppm CO 2 in primitive melt inclusions) and oxidized (from NNO + 0·4 to NNO + 1·2). Assimilation of carbonate wall-rocks by ascending primitive magmas can account for the disappearance of olivine from crystallization sequences and explains the lack of rocks representative of olivine-crystallizing magmas. A correlation between carbonate assimilation and the type of feeding system is proposed: carbonate assimilation is promoted for primitive magma batches of small volumes. In contrast, for longer-lived, large-volume, less frequently recharged, hence more evolved, cooler reservoirs, magma–carbonate interaction is limited. Primitive magmas from Vesuvius and other Campanian volcanoes have similar redox states. However, the Cr# of Vesuvius spinels is distinctive and therefore the peridotitic component in the mantle source of Vesuvius differs from that of the other Campanian magmas.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2014-11-05
    Description: Peridotite xenoliths exhumed by Quaternary alkaline magmatism in the Tahalgha district, southern Hoggar, represent fragments of the subcontinental lithospheric mantle beneath the boundary between the two major structural domains of the Tuareg Shield: the ‘Polycyclic Central Hoggar’ to the east and the ‘Western Hoggar’, or ‘Pharusian Belt’, to the west. Samples were collected from volcanic centres located on both sides of a major lithospheric shear zone at 4°35' separating these two domains. Although showing substantial variations in their deformation microstructures, equilibrium temperatures and modal and chemical compositions, the studied samples do not display any systematic changes of these features across the 4°35' fault. The observed variations rather record small-scale heterogeneities distributed throughout the study area and reflecting the widespread occurrence of vein conduits and metasomatized wall-rocks related to trans-lithospheric melt circulation during the Cenozoic. These features include partial annealing of pre-existing deformation microstructures, post-deformation metasomatic reactions, and trace-element enrichment, coupled with heating from 750–900°C (low-temperature lherzolites) to 900–1150°C (intermediate- T lherzolites and high- T harzburgites and wehrlites). Trace-element modelling confirms that the range of rare earth element (REE) variations observed in the Tahalgha clinopyroxenes may be accounted for by reactive porous flow involving a single stage of basaltic melt infiltration into a light REE (LREE)-depleted protolith. Whole-rock compositions record the final entrapment of disequilibrium metasomatic melts upon thermal relaxation of the veins–wall-rock system. The striking correlations between equilibrium temperatures and trace-element enrichment favor a scenario in which the high-temperature peridotites record advective heat transport along melt conduits, whereas the intermediate- and low-temperature lherzolites reflect conductive heating of the host Mechanical Boundary Layer. This indicates that the lithosphere did not reach thermal equilibrium, suggesting that the inferred heating event was transient and was rapidly erased by thermal relaxation down to the relatively low-temperature present-day geotherm. The low- T (〈900°C) deformed lherzolites (porphyroclastic to equigranular) are characterized by only incipient annealing and LREE-depleted clinopyroxene compositions. They were only weakly affected by the Cenozoic events and could represent relatively well-preserved samples from rejuvenated Pan-African lithosphere. Extensive lithospheric rejuvenation occurred either regionally during the Pan-African orogeny, as a result of lithospheric delamination or thermomechanical erosion after thickening, or more locally along the meridional shear zones. The low- T Tahalgha lherzolites are comparable with lherzolites from Etang de Lherz, southern France, interpreted as lithospheric mantle rejuvenated by melt-induced refertilization during a late stage of the Variscan orogeny.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2014-11-05
    Description: Hydrothermal experiments were conducted at 200 MPa and 900–1018°C to determine the solubilities, fluid(s)–melt partitioning, and mixing properties of H 2 O, CO 2 , S, Cl, and F in phonolitic–trachytic melts saturated in vapor, vapor plus saline liquid, or saline liquid. The bulk compositions and S, Cl, and F concentrations of the run-product glasses were determined by electron microprobe and the H 2 O and CO 2 contents by Fourier-transform infrared spectroscopy (FTIR). A new parameterization was developed to calculate molar absorption coefficients for FTIR analysis of carbonate in glasses and applied to the run-product glasses. The concentrations of volatiles in the fluid(s) were determined by mass-balance calculations and checked with chloridometer analysis and gravimetry. The range in oxygen fugacity of these experiments is NNO to NNO + 2 (where NNO is nickel–nickel oxide buffer). The phonolitic–trachytic melts dissolved up to 7·5 wt % H 2 O, 0·94 wt % Cl, 0·73 wt % CO 2 , 0·75 wt % F, and 0·16 wt % S, and the integrated bulk fluid(s) contained up to 99 mol % H 2 O, 34 mol % Cl, 82 mol % CO 2 , 1·7 mol % F, and 3·7 mol % S. The mixing relationships of H 2 O, CO 2 , and Cl in melt versus fluid(s) are complex and strongly non-ideal at these pressure–temperature conditions, particularly with two fluid phases stable. The concentrations of H 2 O and CO 2 in melt change with the addition of Cl ± S to the system, and the solubility of Cl in melt varies with S. The reductions in H 2 O and CO 2 solubility in melt exceed those resulting from simple dilution of the coexisting fluid(s) owing to addition of other volatiles. The partitioning of H 2 O and CO 2 between fluid(s) and melt varies as a function of fluid(s) and melt composition. The experimental data are applied to phonolitic and related magmas of Mt. Somma–Vesuvius, Italy, Mt. Erebus, Antarctica, and Cripple Creek, USA, to better interpret processes of fluid(s) exsolution in eruptive and mineralizing systems. Application of the experimental results also provides constraints on eruptive and mineralizing fluid(s) compositions.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2014-12-14
    Description: The early stages of magmatic processes operating at mantle depths beneath continental arcs are poorly known. The chemical compositions of minerals and rocks, mineral Sr–Nd–Hf–O isotopes and zircon U–Pb ages of garnet clinopyroxenite dykes from the Shenglikou peridotite massif (North Qaidam Orogen, NE Tibet, China) were studied to constrain their sources and genesis, and the dynamic processes that controlled pyroxenite formation beneath an early Paleozoic active continental margin. Major-element compositions of bulkrocks suggest that the pyroxenitic protoliths were cumulates segregated from a melt, which was extracted from a peridotite-dominated mantle source. Bulk-rock and mineral trace-element patterns show strong enrichment in fluid-mobile elements (e.g. Cs, Rb, Ba, Th, U, K, Pb and Li) and marked negative anomalies in the high field strength elements relative to rare earth elements, similar to the characteristics of melts derived from a volatile-rich sub-arc mantle. Enriched Sr and Nd initial isotopic compositions at 500 Ma ( 87 Sr/ 86 Sr of 0·70919–0·71774 and Nd of –16·3 to –3·4) are in contrast to the highly radiogenic Hf isotope compositions (similar to those of the depleted-mantle reservoir) and to the uncontaminated upper-mantle 18 O V-SMOW (garnet: 5·6 ± 0·3, 2SD, n = 61; zircon: 5·9 ± 0·3, 2SD, n = 28). These decoupled isotopic signatures suggest that the melt source was located in a convective mantle wedge (controlling the Hf and O isotopes) that had been pervasively metasomatized by fluids from a subducted Proto-Tethys oceanic slab (controlling the Sr–Nd isotopes and highly incompatible elements). Zircons with two groups of U–Pb ages (430 ± 5 Ma and 401 ± 7 Ma) were generated by recrystallization events, corresponding to UHP metamorphism and a major uplift stage during the North Qaidam orogeny, respectively. The combined evidence reveals a picture of continental arc magmatism at mantle depths and subsequent continental collision. The subduction of the Proto-Tethys oceanic slab beneath the southern Qilian margin triggered flux melting of the metasomatized convective mantle wedge and generated hydrous arc magmas. These primitive magmas intruded into the overlying lithospheric mantle and segregated the cumulates parental to the Shenglikou pyroxenites. Subsequent continental subduction incorporated fragments of the mantle-wedge peridotite (containing pyroxenite dykes) at ~430 Ma and carried them to shallow depths during exhumation at ~400 Ma.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2014-12-14
    Description: Using a new high-resolution dataset, this study presents evidence for short length scale 18 O/ 16 O heterogeneity in the mantle source region of young (age 12 ka bp ) Icelandic basalts. The dataset comprises secondary ion mass spectrometry determinations of 18 O/ 16 O in single compositional zones of plagioclase crystals from the primitive Borgarhraun flow in northern Iceland, along with trace and major element data from the same zones. The presence of mantle under Iceland with 18 O below typical mid-ocean ridge basalt (MORB) values of ~5·5 ± 0·3 (VSMOW) has previously been disputed, because variability in 18 O in many Icelandic basalts is also known to be caused by the interaction of basaltic melts with crustal lithologies that have been altered by low- 18 O meteoric water. Primitive basalt flows, such as Borgarhraun, and their macrocrysts are the most likely candidates to retain a mantle 18 O signature. However, the role of crustal processes in generating the low 18 O in olivine crystals from these flows has not unequivocally been ruled out. By making intra-crystal analyses in Borgarhraun plagioclase it has been possible in this study to obtain a detailed record of the chemical and isotopic compositions of the melts that crystallized the plagioclase zones. The variability observed in trace element compositions of the early crystallized anorthitic plagioclase zones (80·9–89·4 mol % anorthite) is firstly shown to arise from melt compositional variability, and equilibrium melt concentrations of Sr, La and Y are then calculated from the crystal concentrations of these elements using carefully selected partition coefficients. The ranges of incompatible trace element ratios (La/Y, Sr/Y) in these equilibrium melts reflect a range of compositions of fractional mantle melts, a result that is in agreement with previous proposals for the cause of variability in trace element indices of Borgarhraun olivine-hosted melt inclusions and clinopyroxene compositional zones. Correlations observed between La/Y and Sr/Y in the melts in equilibrium with the Borgarhraun plagioclase zones and the 18 O of these zones therefore support the hypothesis that the mantle under Iceland is heterogeneous in 18 O/ 16 O. Such correlations have not previously been observed in intra-crystal data from Iceland, and provide strong evidence that mantle material with abnormally low 18 O may exist in the form of readily fusible heterogeneities alongside ambient mantle with MORB-like 18 O (+5·5) on a length scale of 〈100 km. The lowest 18 O of plagioclase that is attributed to a mantle origin in this study is 4·5 ± 0·4, equating to a melt equivalent value of 4·3 ± 0·5 or an olivine equivalent value of 3·8 ± 0·5.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2014-12-14
    Description: Mafic to ultramafic intrusions of the Qullinaaraaluk suite (Q-suite) were emplaced into the Ungava craton of the Northeastern Superior Province during an episode of intense igneous activity and crustal reworking from c. 2·74 to 2·70 Ga. Orthopyroxene-rich Q-suite intrusions from the Hudson Bay Terrane and southwestern Rivière Arnaud Terrane, and orthopyroxene-poor Q-suite intrusions from the north–central Rivière Arnaud Terrane indicate the existence of at least two Q-suite magma types: a subalkaline magma parental to the orthopyroxene-rich intrusions and a transitional magma parental to the orthopyroxene-poor intrusions. Both types of intrusions are characterized by light rare earth element (LREE)-enriched, high field strength element (HFSE)-depleted trace element profiles that reflect, in large part, contamination by the tonalite–trondhjemite–granodiorite-dominated crust. Near-chondritic to strongly sub-chondritic initial Nd (2·72 Ga) values (+2 to –10) of the Q-suite intrusions reflect the combined effects of both the amount of crustal contamination and the age-dependent isotopic composition of the contaminant. The inferred trace element profiles of the uncontaminated Q-suite magmas were probably flat to LREE-depleted. The transitional magmas that produced the least evolved dunitic cumulates of the Q-suite were ferropicrites (MgO ~14 wt %, FeO TOT ~17 wt %). In contrast, the magmas parental to the primitive Q-suite harzburgites were Fe-rich, high-Mg basalts (MgO ~11 wt %; FeO ~14 wt %). The high Fe contents of the Q-suite magmas are incompatible with derivation from a pyrolitic mantle [Mg-number ~0·90, Mg/(Mg + Fe TOT )] and require sources significantly enriched in iron (Mg-number ≤0·79). Both magma types are also characterized by relatively low Ni contents suggesting derivation from source regions depleted in Ni relative to pyrolitic mantle peridotite. Differences in the major element compositions of the subalkaline and transitional parental magmas may reflect compositional diversity among the Fe-rich mantle sources. Comparisons with melting experiments on compositions analogous to the Martian mantle suggest that the Q-suite magmas may rather be generated by different degrees of melting of a common source with an Fe content slightly lower than that of the Homestead L5 ordinary chondrite (Mg-number = 0·77). The Fe-rich picritic to high-Mg basaltic magmas last equilibrated with garnet-free harzburgitic to lherzolitic residues at upper mantle pressures (≤5 GPa). The craton-wide occurrence of c. 2·72–2·70 Ga Q-suite mafic to ultramafic plutons suggests that underplating by Fe-rich mantle melts may have had a key role in the c. 2·74–2·70 Ga cratonization of the Northeastern Superior Province.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2014-12-14
    Description: Arc basalts are more oxidized than mid-ocean ridge basalts, but it is unclear whether this difference is due to differentiation processes in the Earth’s crust or to a fundamental difference in the oxygen fugacity of their mantle sources. Distinguishing between these two hypotheses is important for understanding redox-sensitive processes related to arc magmatism, and thus more broadly how Earth materials cycle globally. We present major, volatile, and trace element concentrations in combination with Fe 3+ /Fe ratios determined in olivine-hosted glass inclusions and submarine glasses from five Mariana arc volcanoes and two regions of the Mariana Trough. For single eruptions, Fe 3+ /Fe ratios vary along liquid lines of descent that are either slightly oxidizing (olivine + clinopyroxene + plagioclase fractionation, CO 2 ± H 2 O degassing) or reducing (olivine + clinopyroxene + plagioclase ± magnetite fractionation, CO 2 + H 2 O + S degassing). Mariana samples are consistent with a global relationship between calc-alkaline affinity and both magmatic H 2 O and magmatic oxygen fugacity, where wetter, higher oxygen fugacity magmas display greater affinity for calc-alkaline differentiation. We find, however, that low-pressure differentiation cannot explain the majority of variations observed in Fe 3+ /Fe ratios for Mariana arc basalts, requiring primary differences in magmatic oxygen fugacity. Calculated oxygen fugacities of primary mantle melts at the pressures and temperatures of melt segregation are significantly oxidized relative to mid-ocean ridge basalts (~QFM, where QFM is quartz–fayalite–magnetite buffer), ranging from QFM + 1·0 to QFM + 1·6 for Mariana arc basalts, whereas back-arc related samples record primary oxygen fugacities that range from QFM + 0·1 to QFM + 0·5. This Mariana arc sample suite includes a diversity of subduction influences, from lesser influence of a homogeneous H 2 O-rich component in the back-arc, to sediment melt- and fluid-dominated influences along the arc. Primary melt oxygen fugacity does not correlate significantly with sediment melt contributions (e.g. Th/La), nor can it be attributed to previous melt extraction in the back-arc. Primary melt oxygen fugacity correlates strongly with indices of slab fluids (e.g. Ba/La) from the Mariana Trough through the Mariana arc, increasing by 1·5 orders of magnitude as Ba/La increases by a factor of 10 relative to mid-ocean ridge basalts. These results suggest that contributions from the slab to the mantle wedge may be responsible for the elevated oxygen fugacity recorded by Mariana arc basalts and that slab fluids are potentially very oxidized.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2014-12-14
    Description: Magma mixing and crystal mush disaggregation are important processes in basaltic magma reservoirs. We carried out a detailed petrological and geochemical study on a highly plagioclase-phyric eruption within the Eastern Volcanic Zone of Iceland—the Skuggafjöll eruption—to investigate crystal storage and transport processes within a single magmatic system. Crystal content and phase proportions vary between samples: the least phyric samples have phase proportions similar to the low-pressure, three-phase gabbro eutectic (plg:cpx:ol ~ 11:6:3), whereas highly phyric samples are strongly enriched in plagioclase (plg:cpx:ol ~ 8:1:1). Statistically significant geochemical variability in 28 whole-rock samples collected across the eruption can be accounted for by variable accumulation of a troctolitic assemblage containing plagioclase and olivine in an approximately 9:1 ratio. Two macrocryst assemblages are defined using compositional and textural information recorded in QEMSCAN® images: a primitive assemblage of high-anorthite plagioclase (An 〉83 ) and high-forsterite olivine (Fo 〉84 ), and an evolved assemblage of low-anorthite plagioclase (An 〈79 ), low-forsterite olivine (Fo 〈82 ) and clinopyroxene (Mg# ~ 82). Plagioclase and olivine have strongly bimodal composition distributions whereas the composition distribution of clinopyroxene is unimodal. The mean trace element composition of melt inclusions hosted within high-forsterite olivine and high-anorthite plagioclase macrocrysts is the same (mean Ce/Y ~ 0·47–0·48), confirming that both primitive macrocryst phases crystallized from the same distribution of melts. Clinopyroxene macrocrysts and matrix glasses are in Ce/Yb equilibrium with each other, indicating that the evolved assemblage crystallized from melts with a more incompatible trace element-enriched composition (mean Ce/Y ~ 0·65–71) than the primitive assemblage. Variability in whole-rock, macrocryst and melt inclusion compositions suggests that the Skuggafjöll magma experienced two stages of crystallization. Primitive macrocrysts crystallized first from incompatible trace element-depleted melts within a shallow crustal magma reservoir. These primitive macrocrysts were subsequently stored in crystal mushes that ultimately disaggregated into an evolved and incompatible trace element-enriched magma from which the evolved assemblage crystallized. On average, ~17% of the erupted magma at Skuggafjöll is composed of accumulated macrocrysts entrained from crystal mushes. The timescale between mush disaggregation and eruption, during which crystal accumulation occurred, was short—of the order of years—according to simple diffusion calculations. Striking petrological similarities between Skuggafjöll and other highly phyric eruptions both in Iceland and along mid-ocean ridges indicate that crystal accumulation by mush disaggregation is likely to be an important mechanism for generating highly phyric magmas in basaltic plumbing systems.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2015-04-25
    Description: The Pussy Cat Group rhyolites of the Mesoproterozoic west Musgrave Province of central Australia, a constituent part of the Bentley Supergroup, were deposited during the c . 1085–1040 Ma Ngaanyatjarra Rift and Giles events, and are related to the Warakurna Large Igneous Province. This study focuses on the two silicic components of the Pussy Cat Group, the Kathleen Ignimbrite and the Rowland Suite. These silicic rocks are A-type, metaluminous (to slightly peraluminous) rhyolites and are enriched in the rare earth elements (REE) relative to average crustal abundances. The rhyolitic Kathleen Ignimbrite records an explosive caldera fill-sequence and contains, amongst others, a thick (≤500 m), initially subaqueously emplaced, rheomorphic, intra-caldera ignimbrite unit, whereas the Rowland Suite consists of a number of mineralogically and geochemically related porphyritic rhyolites that intrude throughout the Pussy Cat Group. Whole-rock geochemistry, Rb–Sr, Sm–Nd and in situ zircon Lu–Hf isotope data are indicative of a dominantly mantle-derived source for the magmas that formed the Pussy Cat Group rhyolites. Secondary ion mass spectrometry U–Pb dating of these units yields ages of 1062 ± 8, 1071 ± 5, 1076 ± 5, and 1078 ± 5 Ma. The magmas that formed these units were formed by extreme fractional crystallization of a mantle-derived basaltic magma, with minimal crustal contamination, during a failed intra-plate extensional rifting event. This involved three main stages of fractional crystallization: early fractionation of plagioclase, olivine, clinopyroxene and magnetite from a basaltic magma to reach an intermediate composition, subsequent fractionation of plagioclase, K-feldspar and quartz to form a proto-Rowland Suite-type magma at mid- to upper-crustal levels that migrated into the shallow upper crust and formed a magma chamber, and final fractionation of quartz, K-feldspar, plagioclase, magnetite and biotite ± minor REE-enriched accessory phases from the Rowland Suite magma resulting in the evolved Kathleen Ignimbrite magmas. This final phase of fractionation generated the most evolved silicic rock suite identified to date within the entire west Musgrave Province. The new petrographic, geochronological, geochemical, and isotopic data presented within this study indicate that these two units are coeval and comagmatic, suggesting a common source for the Kathleen Ignimbrite and the entire Rowland Suite. In addition, these data suggest that the crystal-rich, porphyritic rhyolite intrusions of the Rowland Suite represent a primitive cumulate end-member of the magmatic system, whereas the varying crystal-poor to crystal-rich Kathleen Ignimbrite eruption sequence represents the evolved and highly fractionated end-member of the system that formed thorough the evacuation of a shared or at least partly linked, compositionally zoned and differentiated source magma chamber or chambers.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2015-12-25
    Description: The eruption of the Siberian Traps Large Igneous Province (SLIP) at the Permo-Triassic boundary was synchronous with environmental degradation and the largest known mass extinction in the geological record. The volatile emissions associated with these eruptions have been linked to the environmental change yet we understand little of their source and magnitude and how they varied with time. There are a number of possible sources for the volatiles that were emitted during the eruptions: the mantle (including metasomatized lithosphere), volatile-rich sediments (through metamorphism or direct assimilation) and the crustal basement. To assess the relative importance of these sources (with the exception of the metamorphic outgassing source), we have conducted a geochemical study of melt inclusions hosted by clinopyroxene in Siberian Traps low-Ti tholeiitic lavas and sills of the Khakanchansky, Ayansky and Khonnamakitsky Formations. The magmas were not emplaced into or erupted onto evaporite deposits, in contrast to samples studied previously. The trace element compositions of the melt inclusions are highly variable compared with the uniform whole-rocks, exhibiting a wide range of La/Yb ratios from 0·7 to 9·5. The melt geochemistry is consistent with relatively large degrees of partial melting of a dominantly peridotite mantle source. A negative Nb anomaly indicates a degree of crustal contamination, but there is no evidence for contamination by volatile-rich evaporites. Enrichment of some of the melts in large ion lithophile elements (Ba, Sr) indicates their interaction with a fluid. We suggest that, consistent with the observed depletion in other incompatible trace elements in the melt inclusions, the volatile concentrations in the melts were relatively low, and that subsequently the melts underwent variable degrees of degassing in the crust. Overall, the melts are more volatile-poor than those reported previously from the SLIP and were erupted after the first "pulse" of more volatile-rich magmas described by Sobolev et al. (2015) . These volatile-poor magmas may have been widespread across the region during the Siberian Traps eruptions once a pyroxenite component in the mantle source had been exhausted.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2015-12-25
    Description: Analysis of the 18 O and 13 C values of carbonate rocks from Islay, Scotland reveals structural channelling of metamorphic fluids through the axial region of a major en echelon anticlinal fold system. Metamorphic fluid flow produced axial planar veins with higher vein density in the axial region of the fold. Fluid:rock ratios were more than 30:1 within this axial region, at least four times greater than the regional mean ratio of 7·6 ± 1·5:1 for carbonate rocks on Islay. This supports the interpretation that metamorphic fluids were channelled through the axial region of the Islay Anticline. Fluid:rock ratios were calculated using a model for coupled 18 O and 13 C exchange with a metamorphic fluid. The metamorphic fluid was calculated to have 18 O and 13 C values of 15·3 and –6·1, respectively and X CO2 of 0·2. This is in isotopic and chemical equilibrium with chlorite- and graphite-bearing metamudstones that are structurally below the folded metacarbonate rocks on Islay. Devolatilization of these metamudstones is therefore a likely source mechanism for this metamorphic fluid. Removal of the effects of metamorphic fluid flow on 13 C values recorded by metacarbonate rocks on Islay allows us to re-evaluate evidence used to reconstruct Neoproterozoic climate. This evidence includes a large negative 13 C excursion reported from the Lossit Limestone Formation. This unit underlies the Port Askaig Formation, which is dominated by diamictites that have been interpreted as glacial tillites. This ‘Islay anomaly’ has been correlated with other such anomalies worldwide and together with overlying tillites has been cited as evidence of major (worldwide) glaciation events. In this study, we show that the magnitude of this negative 13 C anomaly can partly be explained by exchange with metamorphic fluids. However, we also show that extremely negative 13 C values in the Bonahaven Dolomite Formation, which overlies the Port Askaig Formation and has been interpreted as a ‘cap carbonate’, cannot be attributed to metamorphic fluid flow.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2015-12-25
    Description: To evaluate compaction and interstitial melt expulsion during cumulate formation, a 20 m cumulate section including the UG2 and UG3 chromitites from a 264 m drill core through the Upper Critical Zone of the Bushveld Complex (South Africa) has been studied. The cumulates in the studied section are as follows: 3 m plagioclase pyroxenite to pyroxenite, pegmatoid footwall pyroxenite at the lower contact to UG2, 0·7 m UG2 chromitite, 6·8 m pyroxenite, 0·24 m UG3 chromitite, 2·0 m plagioclase-rich pyroxenite changing locally to norite, the two 5 cm leader stringers UG3a and UG3b, and 7 m total of olivine pyroxenites grading into plagioclase pyroxenites. All pyroxenites are dominated by orthopyroxene (opx) and the cumulate sequence is topped by mottled anorthosite grading into norite. Stratigraphic concentrations of major and trace elements of 52 bulk-rock samples were determined. Bulk-rock Mg-numbers are 0·79–0·81 throughout the silicate cumulate units, and 0·40–0·46 in the chromitite layers. The stratigraphic distribution of six incompatible trace elements (K, Rb, Ba, Cs, Zr and Th) has been used to determine the amount of trapped liquid ( F TL ) or paleo-porosity in the cumulate rocks. Final porosities (volume fractions), based on averages from the six trace elements, are 0·06–0·33 in the pyroxenites. In chromitite layers, trapped melt fractions of 0·12–0·36 are calculated from incompatible trace element concentrations, but bulk SiO 2 concentrations and X-ray tomography yield 0·04–0·17 higher porosities. Hence, the bulk silicate fraction in the chromitites may not necessarily correspond to the trapped liquid fraction, as poikilitic opx was crystallizing while the silicate melt still equilibrated. Using a previously derived experiment-based model for compaction time scales, gravitationally driven chemical compaction in the UG2–UG3–pyroxenite section is calculated to occur within 1–10 years. This time frame corresponds to the times necessary to cool a 20 m layer by 10–50°C, the temperature interval argued to encompass the liquidus and almost complete solidification. Compaction within a decade can in fact easily develop the paleo-porosities indirectly observed today and is probably stopped by crystallization of the interstitial liquid. Contrary to previous assertions, melt expulsion from the cumulate pile does not hinder compaction; calculated permeabilities would allow for the migration of an order of magnitude higher amount of melt than has to be expelled from the 20 m pile of cumulate. The pegmatoid zones in the chromitite footwalls enriched in incompatible trace elements are consistent with a collection of interstitial melts expelling from the underlying compacting pyroxenites. Their entrapment below the chromitite layers suggests that these act as permeability barriers. This is in part due to their finer grain size compared with the pyroxenites, but is mainly due to the crystallization of large poikilitic opx during compaction.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2015-12-25
    Description: The recent eruptive history on the island of Tenerife is characterized in part by the presence of zoned phonolitic ignimbrites, some of which prominently display two types of juvenile clasts (i.e. light-colored, aphyric pumices alongside darker, more crystal-rich pumices, here dubbed ‘crystal-poor’ and ‘crystal-rich’, respectively). Petrographic observation of the crystal-rich pumices reveals intensely resorbed and intergrown mineral textures, consistent with the system reaching a high crystallinity, followed by perturbation and remobilization prior to eruption. Some trace elements show anomalous concentrations in such crystal-rich pumices (e.g. bulk Ba 〉 2000 ppm alongside low Zr and a positive Eu anomaly) indicative of crystal accumulation (of feldspar ± biotite). Many biotite and feldspar crystals are reversely zoned, with rim concentrations that are high in Ba but low in Sr, implying crystallization from an ‘enriched’ melt, potentially derived from remobilization by partial melting of the aforementioned cumulate zones. Given (1) the presence of cumulates in the eruptive record on Tenerife and a bimodality of pumice textures, (2) the presence of three dominant compositions (basanite, phonotephrite, phonolite, separated by compositional gaps) in the volcanic record, and (3) abundant support for crystal fractionation as the dominant drive for magmatic evolution in Tenerife, it is hypothesized that crystal-poor magmas are extracted from mushy reservoirs in both the lower and upper crust. The thermodynamic software MELTS is used to test a polybaric differentiation model whereby phonolites ( sensu lato ) are generated by extraction of residual liquids from an intermediate-crystallinity phonotephritic mush in the upper crust, which is in turn generated from the residual liquids of an intermediate-crystallinity basanitic mush at deeper levels. Latent heat spikes following crystallization of successive phases in the upper crustal reservoir provide a thermal buffering mechanism to slow down cooling and crystallization, permitting enhanced melt extraction at a particular crystallinity interval (mostly ~40–60 vol. % crystals). MELTS modeling typically fits the observed chemical data adequately, although some major elements (mostly Al 2 O 3 ) also indicate partial ‘cannibalization’ of feldspar along with some magma mixing (and potentially minor crustal contamination).
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2015-12-25
    Description: To investigate the nature and origin of across-arc geochemical variations over time in mantle wedge derived magmas, we have carried out a geochemical study of basalts in the NE Japan arc spanning an age range from 35 Ma to the present. Back-arc basalts erupted at 24–18 Ma, 10–8 Ma, 6–3 Ma and 2·5–0 Ma have higher concentrations of both high field strength elements (HFSE) and rare earth elements (REE) [particularly light REE (LREE) and middle REE (MREE)], and higher incompatible trace element ratios compared with frontal-arc basalts at any given time. Geochemical modeling of Nb/Yb versus Nb shows that the frontal-arc and back-arc compositional differences are independent of subduction modification and can, in many cases, be explained by different degrees of melting (higher degrees of melting for frontal-arc magmas and lower degrees of melting for back-arc magmas) of a nearly homogeneous depleted mid-ocean ridge basalt (MORB) mantle (DMM)-like source, although there are several exceptions. These include some Pliocene frontal-arc basalts that may originate from a source that is slightly more depleted than DMM, several 35–32 Ma and 24–18 Ma back-arc basalts derived from a lithospheric mantle source that is enriched in HFSE compared with DMM, and a rare 16–12 Ma basalt that was erupted in the back-arc but was produced by a similar degree of melting to frontal-arc basalts erupted at the same time. Variations in ratios of fluid-mobile and -immobile elements and those of melt-mobile and -immobile elements for the 35–0 Ma NE Japan basalts indicate that the principal subduction component added to the source mantle prior to generation of these basalt magmas is a sediment-derived melt. Comparison of Sr and Nd isotopic compositions for Pacific Ocean MORB, the NE Japan basalts and subducting sediments suggests that the isotopic compositions of most post-16 Ma more depleted back-arc basalts can be explained by the addition of 〈2% bulk sediment; the most enriched isotope compositions of the subcontinental lithosphere-derived magmas can be accounted for by addition of a maximum 5–7% Japan Trench Sediment (JTS), if the original Sr and Nd compositions of the lithosphere approximated that of DMM. The Sr and Nd isotope composition of the frontal-arc basalts can be accounted for by the addition of 1–5% JTS. A depleted asthenospheric mantle (DMM-like) upwelling model with interaction between asthenospheric mantle-derived magmas and overlying lithospheric mantle can account for the geochemical characteristics of the 35–0 Ma NE Japan basalts. The frontal-arc magmas were generally generated by higher degrees of melting of the shallower part of the asthenospheric mantle, whereas the back-arc magmas resulted from lower degrees of melting of the deeper part of asthenospheric mantle. These latter magmas underwent interaction with the lithospheric mantle, resulting in more enriched Sr and Nd isotopic signatures for the pre-18 Ma back-arc basalts and post-22 Ma frontal-arc basalts, but less interaction, resulting in more depleted Sr and Nd isotopic signatures, for most of the back-arc basalts younger than 16 Ma.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2015-12-25
    Description: Mt. Lamington is a composite, dome-forming volcano in Papua New Guinea, sitting on the Papuan Ultramafic Belt (PUB) ophiolite. The 1951 eruption produced andesitic dome lavas with numerous basaltic–andesitic enclaves and a few PUB ultramafic xenoliths. To understand the nature of the 1951 eruption, and to assess the effect of assimilating ophiolitic crust in modifying the geochemistry of arc magmas, we carried out petrological, mineralogical and geochemical studies on andesitic lavas as well as magmatic enclaves and ultramafic inclusions. The mineralogy of the enclaves is dominated by amphibole and plagioclase, similar to the andesitic lava hosts. The textures of the enclaves vary from fine-grained diktytaxitic to coarser-grained plutonic textured. We interpret this variation to result from variable cooling rates in the enclave-forming magma body when it invades the overlying andesite. The diktytaxitic enclaves contain variable proportions of host-derived amph + plag antecrysts and xenocrysts of ol + sp ± cpx ± amph with disequilibrium textures, indicating interaction with host lava and assimilation of foreign materials, respectively. A previous study argued that the olivine xenocrysts with chromian spinel inclusions are derived from the PUB, and thus that the PUB contaminated the Mt. Lamington magmas. We demonstrate that this is highly unlikely on the basis of morphological and compositional discrepancies between PUB ol + sp, sampled in nodules, and the xenocrysts. Mass balance indicates that the high whole-rock Ni contents of enclaves and andesitic hosts can be explained by olivine incorporation and do not require any PUB involvement. The olivines are considered to represent crystal mush fractionated from precursor(s) of andesitic and/or pre-1951 shoshonitic lavas. Their presence in enclaves represents recycling of earlier-fractionated components through magma recharge. We argue that this recycling is an important and underestimated process in shaping arc magmas.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2015-12-25
    Description: Measurements of dihedral angles at three-grain junctions in gabbros, involving two grains of plagioclase and one grain of another mineral, demonstrate that the median dihedral angle is generally the same for all minerals in any sample. The few exceptions to this can be attributed to reaction or to the cessation of growth of plagioclase during the last stages of solidification of highly evolved liquids that do not crystallize volumetrically important amounts of plagioclase. The dihedral angle is therefore primarily controlled by the growth behavior of plagioclase in the last remaining liquid. The final value of the dihedral angle is controlled by the extent to which plagioclase growth is accommodated on the (010) faces: low angles form when growth on the (010) faces is minor compared with that on the other growth faces, and high angles form when the (010) faces accommodate significant growth. The response of dihedral angles to changes in crystallization time is therefore explained by the changing response of plagioclase growth to cooling rate, with limited growth on (010) faces during rapid cooling (leading to a low dihedral angle) and more significant growth at slow cooling (leading to high dihedral angle). The correspondence between dihedral angle and plagioclase grain shape (as quantified by the average apparent aspect ratio observed in thin section) is clearly evident for non-fractionated bodies such as dolerite sills. Although the stratigraphic variation of the overall plagioclase grain shape in the floor cumulates of the Skaergaard Intrusion is broadly similar to that observed in sills, there is no correspondence to observed augite–plagioclase–plagioclase dihedral angles, which show a step-wise stratigraphic variation, corresponding to changes in the liquidus assemblage. This decoupling occurs because plagioclase growth in layered intrusions occurs in two stages, the first at, or close to, the magma–mush interface and the second within the mush. Chemical maps of samples on either side of the augite-in dihedral angle step demonstrate a step-wise change in the aspect ratio of the plagioclase grown during the second stage, with the aspect ratio of this stage corresponding to that predicted from the dihedral angles. Plagioclase shape in layered intrusions thus records two separate thermal regimes, with the overall shape controlled by the global cooling rate of the intrusion, and the second (minor) stage within the mushy layer reflecting local thermal buffering controlled by the liquidus assemblage of the bulk magma. Dihedral angles in layered intrusions record the second thermal regime.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2016-07-01
    Description: The positive correlations between whole-rock concentrations of Cr and Os, Ir and Ru (referred to collectively as iridium-like platinum-group elements, IPGE) in both sulphide-poor plutonic and volcanic rocks suggest that chromite contributes to the collection of these elements during the early stages of sulphide-undersaturated magma differentiation. However, it is not clear whether these correlations are the result of IPGE partitioning into chromite or whether other minerals are involved. Positive correlations between MgO and IPGE have been observed, suggesting that these elements could be incorporated into olivine as well as into chromite. Alternatively, given the siderophile nature of IPGE, they may crystallize as discrete minerals together with chromite, as suggested by the presence of platinum-group minerals in chromite-rich rocks such as mantle podiform and crustal stratiform chromitites. To investigate the effect of chromite crystallization on the distribution of IPGE and Rh in picritic magmas, we have determined the content of these elements in chromites from the Emeishan Large Igneous Province (southwestern China) by in situ laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The time-resolved analysis signals are generally uniform, indicating that the IPGE and Rh are homogeneously distributed within the chromite crystals. The median concentrations are 30 ppb Os, 23 ppb Ir, 248 ppb Ru and 21 ppb Rh. The incorporation of Rh in chromites appears to be influenced by the oxidation state of the magma from which they crystallize because there is a positive correlation between the degree of inversion of the chromite structure [expressed by Fe 3+ /(Cr + Al + Fe 3+ )] and the Rh content of the analyzed crystals. In contrast, the enrichments of Os, Ir and Ru in chromites appear to be controlled by other parameters such as temperature or the S content of the magma. Based on empirical calculations, we determined that partition coefficients between chromite and melt are higher for Ru (127) than for Os (23), Ir (27) and Rh (32). Despite these high partition coefficients, mass-balance calculations show that chromite does not account for all the IPGE and Rh concentrations in the rocks, with chromite accounting for maxima of 84, 49, 22 and 20% of the whole-rock Ru, Rh, Ir and Os budgets, respectively. In situ LA-ICP-MS and scanning electron microscopy analyses reveal the presence of micrometric-sized PGE-rich minerals, including laurite (RuS 2 ), Os–Ir ± Ru alloys, sperrylite (PtAs 2 ) and Pt–Fe (± IPGE and Rh) alloys, in association with chromite crystals. The presence of these minerals may account for the balance of IPGE and Rh. Alternatively, if IPGE and Rh are compatible with olivine, the balance may be accounted for by the large amount of olivine crystals found in the Emeishan picrites. Based on numerical modelling, we conclude that chromite, olivine and platinum-group minerals all contribute to the collection of IPGE and Rh during the early stages of picritic magma differentiation. Also, we establish that the preferential incorporation of Ru into chromite is responsible for the negative Ru anomalies observed in the PGE patterns of the Emeishan flood basalts. On the other hand, the relative importance of olivine and platinum-group minerals in controlling IPGE and Rh remains uncertain and is a key subject for further investigation.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2016-07-01
    Description: Major ± trace element and Sr–Nd–Pb–Hf–He isotope data are presented for more than 300 geochemically diverse basalt samples collected by submersible from the Inflated Central Endeavour Segment of the Juan de Fuca Ridge. Seven chemically distinct basalt types are present, from depleted (D-) to enriched mid-ocean ridge basalt (E-MORB). By combining the geochemical data with high-resolution bathymetry and age determinations, the detailed spatial and temporal scale of on-axis mantle-derived basalt heterogeneity is determined. The basalts define binary mixing arrays in all isotope plots that are usual in their correlations, but unusual in the limited range of Sr–Nd–Hf isotope compositions for D- to E-MORB, and greater range in Pb isotopes. The basalts also define two different styles of enrichment of moderately incompatible elements. Geochemical enrichment began when the currently inflated axial ridge formed 〈10 5 years ago. One enrichment style (the Inflated Ridge Trend) characterizes basalts erupted across the ~5 km wide ridge from 〉10^000 to ~4000 years ago, whereas the other enrichment style (the Graben Trend) characterizes most basalt types erupted within the axial graben after it formed ~2300 years ago. We attribute the Inflated Ridge Trend to a relatively high proportion of pyroxenite (or melt derived therefrom) to enriched peridotite in the mantle during a phase of ridge inflation that lasted at least 6000 years. The Graben Trend reflects the reduced effect of pyroxenite after the axial graben formed. Because at least 14 different samplings of mantle components occurred within 〈1 km of ridge length and width during a time when 〈1 km of upwelling occurred, we infer that the scale of mantle heterogeneity far from a plume is 〈 1 km. The enriched mantle component at Endeavour is young with 206 Pb/ 204 Pb ~19·0; Hf and He isotope ratios trend toward HIMU characteristics. These traits are regionally widespread and are shared with the next two ridge segments to the north (West Valley and Explorer).
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2016-07-01
    Description: Adakites are unusual felsic igneous rocks commonly associated with asthenospheric slab window opening or fast subduction of a young (〈25 Ma) oceanic plate that may allow slab melting at shallow depths. Their genesis has been extensively debated, as they are also observed in other geodynamic settings where thermal models do not predict slab melting in the fore-arc region. Here, we present a new approach that provides new constraints on adakite petrogenesis in hot subduction zones (e.g. the Philippines) and above an asthenospheric window (e.g. Baja California, Mexico). We use amphibole compositions to estimate magma storage depths and the composition of the host melts to test the hypothesis that adakites are pristine slab melts. We find that adakites from the Philippines and Baja California fore-arcs formed in two distinct petrogenetic scenarios: in the Philippines, water-rich mantle melts stalled and crystallized within lower and upper crustal magma storage regions to produce silica-rich melts with an adakitic signature; in Baja California, slab melts that percolated through the mantle wedge mixed or mingled with water-rich mantle melts within a lower crustal (~30 km depth) magma storage region before stalling in the upper arc crust (~7–15 km depth). Alternatively, the Baja California adakites may represent mixing products between high-pressure differentiated mantle melts and mantle melts in a lower crustal magma reservoir, periodically refluxed by mantle melts. Thus, slab melting is not necessarily required to produce an adakitic geochemical fingerprint in hot subduction zones. The hot downgoing plate may cross the ‘adakitic window’ and melt in specific geodynamic settings such as the opening of a slab tear, as beneath Baja California.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2016-07-01
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2016-07-01
    Description: Petrological study of eruptive units in two locations along the Galápagos Spreading Center provides insight into how the rate of magma supply affects mid-ocean ridge magmatic systems. Study areas with lower magma supply (95°W) and higher magma supply (92°W) have similar spreading rates (53 and 55 mm a –1 ), but differ by 30% in the time-averaged rate of magma supply (0·3 x 10 6 and 0·4 x 10 6 m 3 km –1 a –1 ) as a result of varying proximity to the Galápagos hotspot. We use major and trace element compositions of glass and whole-rock samples, chemistry of mineral phases, and petrography to characterize parental magma variability, fractional crystallization and magma mixing in crustal reservoirs, and timescales of magmatic recharge relative to eruption. At the low magma supply study area, eruptible magma appears to be present only intermittently within the crust; magma recharge is probably infrequent, occurring with a periodicity of several hundred to one thousand years. The shallowest magma body in the crust is thought to be at ~3 km below the seafloor, and lavas are restricted to a relatively limited compositional range (6·2–9·1 wt % MgO). Magmatic evolution at this location is probably dominated by processes occurring within a crystal-rich mush, with limited subsequent residence in melt-dominated magma reservoirs. Eruptions here appear to be closely coupled to magmatic recharge events; lower MgO lavas have compositional trends controlled by mixing of low- and high-MgO magmas from compositionally distinct parents, and commonly contain both normally and reversely zoned crystals. In contrast, at the high magma supply study area, where a seismically imaged melt lens is located ~1·7 km below the seafloor, fractional crystallization within a melt-rich magma reservoir results in a larger range in major element compositions of the erupted magmas (2·7–8·2 wt % MgO) with less variation in trace element concentrations or ratios. Temperatures within the melt lens over the last several hundred years have varied by at least 100°C (1070–1170°C); cooling rates within the melt lens are estimated to be greater than 0·5°C per year. Relatively low-MgO lavas have over-enrichments in Cl that are best explained by assimilation of brine associated with hydrothermal circulation within the overlying crust. Between magmatic recharge events, resident magma fractionates and feeds one or more low-volume fissure eruptions. Small bodies of magma may become isolated from the larger magmatic system in the crust, allowing more extreme degrees of fractionation, locally reaching basaltic andesite. This study demonstrates that persistent melt lenses at intermediate rates of magma supply need not be ‘steady state’. The variations in magma composition among eruptive episodes at each location allow us to assess the temporal variability in magma reservoir properties at ridge segments along the Galápagos Spreading Center, in the context of regional variations in magma supply.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2016-07-01
    Description: A combined study of zircon U–Pb ages, whole-rock chemistry, Sr–Nd isotopes and in situ Lu–Hf isotopic ratios in zircons was carried out on Permian monzogranites and mafic microgranular enclaves (MME) and coeval massive gabbros in the northern Alxa block, North China. The data obtained were used to constrain magma sources and petrogenetic processes involved in the generation of this igneous suite. Zircon U–Pb dating yields ages of 271 ± 1 Ma, 270 ± 1 Ma and 276–270 Ma for the monzogranites, MME and massive gabbros, respectively. Two populations of MME, gabbroic (SiO 2 〈49 wt %) and dioritic (SiO 2 〉53 wt %) enclaves, are identified. They represent mafic to intermediate magmas quenched in a partially crystallized granitic ( sensu lato ) host; evidence to support this conclusion includes their fine-grained textures, sinuous margins and diffuse contacts with the host monzogranites. Back-veins and xenocrysts of quartz and plagioclase, as well as various disequilibrium textures and mineral assemblages, indicate mingling or mixing processes. The two magma systems, mafic and felsic, have broadly similar isotopic characteristics with whole-rock initial 87 Sr/ 86 Sr(i) ratios ranging from 0·7075 to 0·7077 in the monzogranite host and from 0·7067 to 0·7069 in the MME, with N d ( t) values ranging from –10·2 to –12·4 in monzogranites and from –8·2 to –9·9 in the MME. Zircon Hf(t) values of the monzogranites, gabbroic enclaves and massive gabbros show a wide range and significant overlap from –1·2 to –15·2, –4 to –13·3 and –5·4 to –19·5, respectively; the maximum frequency value of the Hf model age is almost coincident with the whole-rock Nd model age. Mafic, gabbroic rocks similar in composition to some enclaves form layered synplutonic intrusions several metres in thickness and more than 100 m in lateral extent. A mixing test based on mass balance for whole-rock major element compositions reveals that mixing was an efficient process between two coeval magmas. The fraction of felsic magma involved in the hybrid rocks ranged from 0·19–0·29 in the dioritic enclaves to 0·84 in granodiorite and good linear fits (r 2 〉 0·9) are obtained using the average composition of gabbroic enclaves and the most felsic monzogranite as end-members. Although the monzogranites and enclaves may be derived from distinct magma sources, they share similar isotopic signatures, pointing to interaction processes in the source region. The combination of information from geochronology, petrology, whole-rock geochemistry and isotopic compositions leads us to conclude that the processes of hybridization and magma mixing were effective at both the level of emplacement in the shallow crust and at depth in the magma source region. Hybridization in a source region within the lithospheric mantle, involving mantle and crustal source rocks, produced magma bimodality with strong geochemical affinities between end-members and clear calc-alkaline arc signatures, compatible with a subduction setting. A plausible subduction erosion plus relamination model, which differs from classical models based on mafic magma underplating, is proposed. Accordingly, the Yamatu monzogranites are argued to have been generated from granitic melt segregated and ponded in buoyant silicic diapirs, which formed by melting of subducted mélanges in the lithospheric mantle and eventually relaminated to the lower crust. They represent the melts that metasomatized the mantle region during a pre-Permian subduction event. The massive gabbros were formed by decompression melting of the previously metasomatized mantle. The gabbroic enclaves and gabbro layers of the Yamatu pluton are interpreted as magmas formed by decompression melting of this modified hydrated mantle. The dioritic enclaves represent hybrid liquids generated from reaction between granitic melts, which were derived from subducted mélanges, and the hydrated mantle or melts derived from it.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2016-07-01
    Description: Garnet pyroxenites, spinel pyroxenites, and eclogites in the Moldanubian Zone of the Bohemian Massif form layers and lenses in mantle-derived peridotites that are enclosed by migmatitic gneisses and granulites. We have analysed major and trace elements, and Sr, Nd and oxygen isotopes for a suite of pyroxenites, which vary in composition and origin, from nine localities (Bečváry, Horní Bory, Drahonín, Níhov, Mohelno, Nové Dvory, Horní Kounice, Karlstetten and Meidling-im-Tal) in the Gföhl Unit and Kutná Hora Complex. Based on conventional geothermobarometry, most pyroxenites yield a restricted range of temperatures (~875–975 °C) over a wide span of pressures (~1·0–3·0 GPa). The pyroxenite suite exhibits large variations in elemental and isotopic compositions, reflecting its complex origin and evolution. Based on the rare earth element (REE) compositions of clinopyroxene (Cpx), three types of pyroxenite can be distinguished: Type A with a light REE (LREE)-depleted patterns, Type B with an LREE-enriched pattern and Type C with a convex-upward REE pattern. Such REE patterns reflect derivation of the melts from depleted (Type A) and enriched (Types B and C) mantle sources. Pyroxenites from eight localities originated as high-pressure crystal cumulates from transient basaltic melts migrating through the lithospheric mantle. In contrast, pyroxenites at the Bečváry locality represent fragments of metamorphosed gabbroic cumulates from oceanic crust. For the pyroxenite suite as a whole, a positive correlation between Sr/Nd and Eu/Eu*, radiogenic 87 Sr/ 86 Sr and negative Nd values in clinopyroxene, and variable 18 O values in coexisting garnet argue for the presence of a crustal component in the parental pyroxenite melts. Variations in compatible elements (Ni, Sc, and Co) indicate that combined assimilation and fractional crystallization was important in the evolution of most of the pyroxenite parental melts, although fractional crystallization alone is recorded by the fragments of oceanic crust, perhaps reflecting their pre-subduction crystallization history.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2016-07-01
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2016-08-30
    Description: The kinetics of the irreversible reaction Ca(OH) 2 + MgCO 3 -〉 CaCO 3 + Mg(OH) 2 were investigated at high pressures and temperatures relevant to metamorphic petrology, using both in situ synchrotron X-ray diffraction and post-mortem analysis of reaction rim growth on recovered samples. Reaction kinetics are found to strongly depend on water content; comparable bulk-reaction kinetics are obtained under water-saturated (excess water, c. 10 wt %) and under intermediate (0·1–1 wt % water) conditions when temperature is increased by c. 300 K. In contrast, similar reaction kinetics were observed at ~673 K and 823 K between intermediate and dry experiments, respectively, where dry refers to a set of experiments with water activity below 1·0 (no free water), as buffered by the CaO–Ca(OH) 2 assemblage. Given the activation energies at play, this gap—corresponding to the loss of no more than 1 wt % of water by the assemblage—leads to a difference of several orders of magnitude in reaction kinetics at a given temperature. Further analysis, at the microscopic scale, of the intermediate and dry condition samples, shows that intergranular transport of calcium controls the reaction progress. Grain boundary diffusivities could be retrieved from the classic treatment of reaction rim growth rate. In turn, once modeled, this rate was used to fit the bulk kinetic data derived from X-ray powder diffraction, offering an alternative means to derive calcium diffusivity data. Based on a comparison with effective grain boundary data for Ca and Mg from the literature, it is inferred that both dry and intermediate datasets are consistent with a water-saturated intergranular medium with different levels of connectivity. The very high diffusivity of Ca in the CaCO 3 + Mg(OH) 2 rims, in comparison with that of Mg in enstatite rims found by earlier workers, emphasizes the prominent role of the interactions between diffusing species and mineral surfaces in diffusion kinetics. Furthermore, we show that the addition of water is likely to change the relative diffusivity of Mg and Ca in carbonate aggregates. From a qualitative point of view, we confirm, in a carbonate-bearing system, that small water content variations within the 0–1 wt % range have tremendous effects on both intergranular transport mechanisms and kinetics. We also propose that the water content dependent diffusivity of major species (Mg, Ca) in low-porosity metamorphic rocks is strongly dependent on the interaction between diffusing species and mineral surfaces. This parameter, which will vary from one rock-type to another, needs also to considered when extrapolating ( P , T , t , x H 2 O) laboratory diffusion data to metamorphic processes.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2016-08-30
    Description: High-Mg andesites (HMAs) and adakitic rocks are purported to occur exclusively in subduction zones in the modern Earth. In the North China Craton, early Cretaceous HMAs and adakitic dacites were erupted in a continental setting, apparently unrelated to subduction given their location distal (〉1000 km) to the trench at that time. Here we report petrological, mineralogical and geochemical data for these rocks with the aim of constraining their petrogenesis and elucidating the role of water in intraplate magmatism and cratonic destruction. The HMAs can be subdivided into olivine (Ol-)HMAs and clinopyroxene (Cpx-)HMAs. The former have high MgO (〉9·8 wt %) and Mg# (〉71), with rare high-Fo (up to 91) olivine phenocrysts, corresponding to (near-)primary magmas that equilibrated with mantle peridotite. The latter have moderate MgO (7·8–8·8 wt %) and Mg# (mostly 〈70) and low-Fo (mostly 〈 83) olivine phenocrysts. The Cpx-HMAs are interpreted as magmas differentiated from the Ol-HMAs by olivine-dominated fractionation at lower-crust levels. P–T–X H2O estimations show that the primary HMAs are melts of shallow (1·1–1·2 GPa), hot (~1250°C) and wet (H 2 O 〉 3 wt %) lithospheric mantle. The coexisting adakitic dacites are hydrous (H 2 O ≥ 5 wt %) magmas with high SiO 2 (〉63 wt %), Sr/Y ratios (≥39) and Yb SN (source-normalized), low (Sm/Yb) SN , and negligible Eu anomalies. They also have unradiogenic whole-rock Nd [ Nd ( t ) = –19 to –9] and zircon Hf [ Hf ( t ) = –23 to –21] isotopic compositions consistent with derivation by melting of ancient lower crust at depths 〈 40 km. Melting may have been induced by heating and addition of H 2 O from underplated HMAs. Mixing between Cpx-HMAs and low-Mg adakitic dacites in magma chambers produced high-Mg adakitic rocks. The petrogenetic model presented here explains the occurrence of intraplate HMAs and adakitic magmas elsewhere in the North China Craton. The P–T–X H2O conditions inferred for HMA generation imply that the subcontinental lithospheric mantle beneath the craton was hot and hydrous in the early Cretaceous, which may have triggered the destruction of the cratonic root. The occurrence of young HMAs and adakitic rocks in an intraplate extensional environment also casts doubts on the common use of a similar igneous rock association as an indicator of subduction processes in Archean time.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2016-06-16
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2016-06-16
    Description: Alkali basalt hosted mantle xenoliths were sampled at four locations within the North Patagonian Massif, Argentina. The subcontinental lithospheric mantle (SCLM) beneath Comallo, Puesto Diaz and Cerro Chenque is mostly represented by spinel-harzburgites, whereas at Prahuaniyeu, spinel–garnet- and garnet-peridotites occur next to spinel-peridotites. Partial melting estimates for the north Patagonian mantle xenoliths determined from clinopyroxene trace element abundances reveal up to 25% melt extraction. Whereas the SCLM beneath Puesto Diaz, Cerro Chenque and Comallo is exclusively represented by highly depleted mantle xenoliths, the Prahuaniyeu sample suite comprises both fertile lherzolites and depleted harzburgites. Elevated trace element contents in all the studied north Patagonian mantle samples indicate that melt–rock interaction took place after an initial melt depletion event. Variable primitive mantle normalized REE patterns of clinopyroxenes from within one sample locality suggest compositional changes attributed to melt percolation, which has not significantly affected the bulk-rock and mineral major element compositions. Melt percolation processes have also been detected in the isotopic compositions of the xenoliths, as well as in their highly siderophile element systematics. Hf isotopic compositions are decoupled from those of Nd and Sr and have been affected by variable degrees of enrichment. Platinum group element (PGE) abundances also reveal indications of melt–rock reaction. In some samples this is reflected in fractionation of the iridium-group PGE and/or enrichment in the palladium-group PGE and/or rhenium, which cannot result merely from partial melting processes. Rhenium depletion ages (T RD ) determined from Os isotopic analyses reveal an at least late Paleoproterozoic (1·7 Ga) stabilization of the Prahuaniyeu SCLM. Mantle xenoliths sampled from beneath Comallo and Puesto Diaz–Cerro Chenque yield distinctly younger T RD of 1·3 Ga and 1·0 Ga, respectively. Distinct differences in the character of mantle xenoliths from Prahuaniyeu and from Puesto Diaz and Cerro Chenque (i.e. SCLM stabilization age and range of fertility) suggest that at least two SCLM domains exist below the North Patagonian Massif.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2016-06-16
    Description: The orogenic Anita Peridotite in Fiordland, SW New Zealand, provides an opportunity to examine the composition of a large block of upper mantle exhumed from beneath a Cretaceous arc. This little-studied 1 km x 20 km massif is dominated by spinel-facies harzburgite and dunite. Olivine Mg# of 92–93, spinel Cr# of ~70, orthopyroxene with low Al 2 O 3 , and extremely depleted whole-rock geochemical characteristics indicate that the peridotite body experienced 〉30% melt extraction, probably within the spinel facies. Mineral compositions show some similarity to those of cratonic peridotitic mantle. Rare Cr-rich amphibole suggests that the peridotite has been subsequently re-enriched. Distinctive, coupled Eu and Sr anomalies in the amphiboles, which can be subdivided into three groups, are interpreted to show that they formed by hydration of metasomatic clinopyroxene–plagioclase aggregates. Measured amphibole 87 Sr/ 86 Sr (~0·705–0·706), Nd (~ +6·3 to + 11·1), 208 Pb/ 204 Pb (~37·8–38·9) and Hf (~ +5·6 to 36·9) indicate that the metasomatic agent, which caused crystallization of clinopyroxene and plagioclase, had an isotopic composition similar to ocean island basalt. On the basis of isotopic data and mineral chemistry, the enriched nature of the peridotite is interpreted to have been caused by percolation of small volumes of a mafic silicate melt. Additional evidence for the passage of such melts is the rare occurrence of hornblendite veins and orthopyroxene hornblendite dykes. This peridotite body therefore preserves evidence of extreme melt depletion and the passage of silicate melts and hydrous fluids within the sub-arc mantle.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2016-06-16
    Description: Dunite bands and dikes in ophiolitic mantle peridotites are interpreted as fossil melt channels within the suboceanic mantle. Concordant dunite bands (i.e. fossil melt channels transposed by outward transportation from the ridge axis via horizontal mantle flow) are particularly important as they possibly represent the melt channels through which the parental melts of mid-ocean ridge basalt (MORB) were transported to shallower depths beneath the paleo-ridge axis. We conducted field observations and sampling of concordant dunite bands (CDB) and their host harzburgite at selected outcrops covering a wide depth range in the mantle section along an inferred paleo-ridge segment in the northern to central part of the Oman ophiolite. The CDB increase in thickness and decrease in frequency upward. They are thicker and more frequent in the centre of the segment than near the segment ends when compared at the same stratigraphic level. The CDB consist mostly of olivine with minor spinel and very rare amounts of pyroxene. Clinopyroxene has a small grain size and an interstitial position relative to olivine. The constituent minerals in the CDB and their host harzburgite were analyzed by electron microprobe for major elements and by laser ablation inductively coupled plasma mass spectrometry for trace elements. Most of the CDB have refractory major element mineral compositions, such as high Fo [100 x Mg/(Mg + Fe)] in olivine (〉90·5), high Cr# [Cr/(Cr + Al)] in chromian spinel (〉0·50), and low Al 2 O 3 (〈3·5 wt %) in clinopyroxene. Chondrite-normalized trace element patterns of clinopyroxene in the host harzburgites consistently show a gentle decrease from heavy REE (HREE) to middle REE (MREE) and a sharp decrease from MREE to light REE (LREE) (= highly depleted), but those in the CDB show weaker LREE depletion, which is more variable depending on the stratigraphic level and position along the paleo-ridge segment. In contrast, the HREE concentrations in clinopyroxene in the CDB are higher than or similar to those of the host harzburgites. Trace element compositions of clinopyroxene in the CDB and their host harzburgites are evaluated with a one-dimensional, steady-state, open-system decompressional melting–reaction model. The modeling results suggest that an LREE-enriched melt generated at high pressure was transported upwards through melt channels to the shallow mantle (up to the Moho transition zone), where it mingled with highly depleted melts accumulated from fractionally melted peridotites to generate normal (N)-MORB-like melts. The mantle started upwelling (= melting) in the garnet stability field in the segment centre, but either in the garnet or in the spinel stability field near the segment ends. This suggests a variation of geothermal gradient along the paleo-ridge segment: higher in the segment centre and lower near the segment ends. This inference is supported by the presence of thicker (up to 250 cm) CDB as well as more frequent occurrence of CDB in the segment centre than near the segment end and by the geochemical evidence for chromatographic N-MORB-like melt percolation into the host peridotite only in the uppermost horizons near the segment ends.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2016-06-16
    Description: Large peridotite massifs are scattered along the 1500 km length of the Yarlung–Zangbo Suture Zone (southern Tibet, China), the major suture between Asia and Greater India. Diamonds occur in the peridotites and chromitites of several massifs, together with an extensive suite of trace phases that indicate extremely low f O 2 (SiC, nitrides, carbides, native elements) and/or ultrahigh pressures (UHP) (diamond, TiO 2 II, coesite, possible stishovite). New physical and isotopic (C, N) studies of the diamonds indicate that they are natural, crystallized in a disequilibrium, high- T environment, and spent only a short time at mantle temperatures before exhumation and cooling. These constraints are difficult to reconcile with previous models for the history of the diamond-bearing rocks. Possible evidence for metamorphism in or near the upper part of the Transition Zone includes the following: (1) chromite (in disseminated, nodular and massive chromitites) containing exsolved pyroxenes and coesite, suggesting inversion from a high- P polymorph of chromite; (2) microstructural studies suggesting that the chromitites recrystallized from fine-grained, highly deformed mixtures of wadsleyite and an octahedral polymorph of chromite; (3) a new cubic Mg-silicate, with the space group of ringwoodite but an inverse-spinel structure (all Si in octahedral coordination); (4) harzburgites with coarsely vermicular symplectites of opx + Cr–Al spinel ± cpx; reconstructions suggest that these are the breakdown products of majoritic garnets, with estimated minimum pressures to 〉 13 GPa. Evidence for a shallow pre-metamorphic origin for the chromitites and peridotites includes the following: (1) trace-element data showing that the chromitites are typical of suprasubduction-zone (SSZ) chromitites formed by magma mixing or mingling, consistent with Hf-isotope data from magmatic (375 Ma) zircons in the chromitites; (2) the composition of the new cubic Mg-silicate, which suggests a low- P origin as antigorite, subsequently dehydrated; (3) the peridotites themselves, which carry the trace element signature of metasomatism in an SSZ environment, a signature that must have been imposed before the incorporation of the UHP and low- f O 2 phases. A proposed P – T – t path involves the original formation of chromitites in mantle-wedge harzburgites, subduction of these harzburgites at c . 375 Ma, residence in the upper Transition Zone for 〉200 Myr, and rapid exhumation at c . 170–150 Ma or 130–120 Ma. Os-isotope data suggest that the subducted mantle consisted of previously depleted subcontinental lithosphere, dragged down by a subducting oceanic slab. Thermomechanical modeling shows that roll-back of a (much later) subducting slab would produce a high-velocity channelized upwelling that could exhume the buoyant harzburgites (and their chromitites) from the Transition Zone in 〈 10 Myr. This rapid upwelling, which may explain some characteristics of the diamonds, appears to have brought some massifs to the surface in forearc or back-arc basins, where they provided a basement for oceanic crust. This model can reconcile many apparently contradictory petrological and geological datasets. It also defines an important, previously unrecognized geodynamic process that may have operated along other large suture zones such as the Urals.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2016-06-16
    Description: This study documents the geochemical heterogeneity introduced into mantle lithosphere at the onset of subduction, where an essentially homogeneous mantle asthenosphere is converted into a compositionally heterogeneous mantle lithosphere as a result of increasingly focused melt ascent at shallower levels. We report field observations and geochemical results from the Red Hills ultramafic massif, part of the Dun Mountain ophiolite belt of New Zealand. In the east, the Red Hills massif contains geochemically homogeneous harzburgites (Two Tarns Harzburgite). On its western and southern edge, the harzburgites are overprinted by a petrologically zoned sequence of foliated plagioclase lherzolite and plagioclase harzburgite on the periphery (Plagioclase Zone), and banded harzburgite and dunite (Plateau Complex) in the interior. The various lithological units of the Red Hills massif are interpreted to have formed as a result of a polygenetic, multi-stage melting and refertilization history. The Two Tarns Harzburgite is interpreted to record c. 10–15% melting in the garnet stability field followed by an additional 10% melting in the spinel stability field. Early garnet field melting is defined as Stage 1, and probably occurred in a mid-ocean ridge setting in a relatively reduced environment of around log f O 2 (FMQ) –1·5 (where FMQ is the fayalite–magnetite–quartz buffer) or lower. Stage 2 is defined as spinel field melting and melt interaction. Melt interaction trends for Stage 2 indicate that Stage 2 melts were relatively oxidized, at around log f O 2 (FMQ) +1, and boninitic in composition, suggesting a forearc subduction initiation setting for Stage 2. In the western massif, later Stage 3 melts petrologically overprinted rocks once part of the Two Tarns Harzburgite. The plagioclase-rich contact (Plagioclase Zone) between the Two Tarns Harzburgite and the Plateau Complex is interpreted to represent a refertilization front between the Two Tarns Harzburgite and an upper mantle melt transport network (Plateau Complex; Stage 3), where melts became focused into kilometer-scale conduits at shallow depths in the plagioclase stability field. Highly anorthitic plagioclase suggests that Stage 3 melts were also associated with a forearc, subduction-zone setting. Within the Stage 3 melt network, pervasive major element and cryptocrystalline metasomatism altered peridotite originally similar to the Two Tarns Harzburgite. Our results indicate that pulses of pervasively migrating melts (Stage 2) rose and were focused into narrower conduits (Stage 3) towards the surface in a forearc suprasubduction-zone setting. Because shallow melt migration is localized into narrow zones, a significant percentage of the mantle lithosphere in forearcs may be relict from earlier pervasive mid-ocean ridge melting or deeper forearc melting, as seen in the Red Hills.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2016-06-16
    Description: Pyroxenite layers embedded within peridotite represent widespread lithological mantle heterogeneities and are potential components in the mantle source of many oceanic basalts. They can be generated by a variety of magmatic and metamorphic processes. However, in most natural samples (especially in ultramafic massifs), their primary characteristics are partially or completely erased by later processes (e.g. metamorphism, metasomatism or partial melting). Here we investigate a suite of pyroxenites from the External Liguride Jurassic ophiolites (Northern Apennines, Italy). These are spinel-bearing websterites and clinopyroxenites, partially recrystallized under plagioclase-facies conditions, and occur as centimetre-scale layers parallel to the tectonite foliation of their host peridotites. The pyroxenites have bulk-rock Mg-numbers from 74 to 88 and display rather constant light rare earth element (LREE) depletion relative to middle REE (MREE) (La N /Sm N = 0·15–0·35), but variable MREE–heavy REE (HREE) fractionation, with some having markedly positive HREE slopes (Sm N /Yb N = 0·30–0·96). The HREE enrichment, coupled with high Zr and Sc contents in clinopyroxene porphyroclasts from spinel-bearing domains, provides strong evidence that garnet was present in the precursor mineral assemblages. Mass-balance calculations suggest that the pyroxenites originally contained up to about 40 vol. % garnet, indicating that they originated by segregation of melts at relatively high pressure ( P 〉 1·5 GPa). The parental melts of the pyroxenites have reacted to some extent with the host peridotite during mantle infiltration. Lack of olivine in the primary mineral assemblage and the presence of orthopyroxene-rich rims along the contact with the wall-rock peridotites suggest that the pyroxenites crystallized from silica-rich melts. These probably had REE patterns and Sr–Nd isotope compositions similar to those of enriched mid-ocean ridge basalt. We propose that the pyroxenites originated from melts derived from a hybrid eclogite-bearing peridotite source, which subsequently reacted with their host peridotite to form ‘secondary pyroxenites’. The existence of such pyroxenites has been invoked in current models of basalt petrogenesis. During later decompression, the pyroxenites experienced recrystallization at spinel-facies conditions, at 1·2–1·5 GPa and minimum temperatures of 950–1000°C, and partial re-equilibration in the low-pressure plagioclase facies. The latter event is dated by internal Sm–Nd isochrons at 178 (±8) Ma and is associated with Mesozoic exhumation during extension of the Tethys lithosphere.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2016-06-16
    Description: Tabular dunite bodies are thought to represent remnants of high-porosity pathways for efficient melt extraction from the mantle. They form by melt–rock reaction, an important physical process that affects the compositions of dunite-hosted basaltic melts and the mantle they originate from. To better understand melt–rock interactions in dunite channels, we analyzed clinopyroxene and orthopyroxene in samples collected across an ~20 m wide dunite–harzburgite–lherzolite–plagioclase lherzolite sequence in the previously well-studied Trinity ophiolite. We found spatial variation and fractionation in minor and trace elements in the constituent minerals. Rare earth element (REE) and high field strength element concentrations increase in unison about 9 m from the dunite–harzburgite contact. Minor elements in clinopyroxene also increase ~9 m from the dunite–harzburgite contact, and NiO contents in olivine increase ~3 m from the dunite–harzburgite contact. Clinopyroxene grains in plagioclase lherzolite samples farthest from the dunite–harzburgite contact exhibit core-to-rim variations in minor and trace elements that mimic the outcrop-scale chemical trends. Collectively, the lithological sequence and major and trace element concentration gradients suggest that a two-stage history of evolution is preserved at Trinity. In the first stage, a cooling melt infiltrated a harzburgitic residue of partial melting, precipitating plagioclase and pyroxene and forming plagioclase lherzolite. In the second stage, a trace element depleted, pyroxene- and plagioclase-undersaturated melt migrated from the dunite channel into the plagioclase lherzolite, forming a hybridized composition by reaction with the plagioclase lherzolite. Because Ni is relatively fast diffusing and compatible in olivine, it was chromatographically fractionated from other trace elements during the infiltration event. Orthopyroxene-saturated melt precipitated new clinopyroxene with depleted major and trace element compositions as it cooled in the dunite, harzburgite, and lherzolite. The REE abundances of the melts in equilibrium with dunite, harzburgite, and lherzolite are similar to those of boninitic dikes that cut crustal units at Trinity, and the infiltrating melts may be genetically related to the dikes. Dunite–harzburgite–lherzolite–plagioclase lherzolite sequences from Trinity and other peridotites probably formed by similar processes. The infiltration of dunite-hosted melts into peridotitic host-rock may be common, providing an explanation for the wide array of melt–peridotite interactions observed in abyssal peridotites and some ophiolites. This outcrop demonstrates that dunite channels can be sources of melt infiltration as well as melt extraction pathways.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2016-06-02
    Description: Improved geochronological methods and in situ isotopic (O, Hf) and trace element studies of zircon require a new physical model that explains its behaviour during crustal melting. We present results of numerical modeling of zircon dissolution in melts of variable composition, water content, temperature, and thermal history. The model is implemented in spherical coordinates with two moving boundaries (for the crystal and the surrounding melt cell outer edge) using simplified mineral phase relationships, and accounting for melt proportion histories as a function of melting and crystallization of major minerals. We explore in detail the dissolution of variably sized zircons and zircon growth inside rock cells of different size, held at different temperatures and undersaturations, and provide an equation for zircon survivability. Similar modeling is performed for other accessory minerals: apatite and monazite. We observe the critical role of rock cell size surrounding zircons in their survivability. Diffusive fill away from a dissolving 100 μm zircon into a large 〉3 mm cell takes 10 2 –10 4 years at 750–950°C, but zircon cores may survive infinitely in smaller than 1 mm cells. Heating followed by cooling for a similar amount of time leads to dissolution followed by nucleation and growth, but new zircon growth remains smaller than the original within the cell. The final zircon size is also investigated as a function of microzircons crystallizing on a front of major minerals, leading to shrinking cell sizes and bulldozing of Zr onto the growing zircon surface. We explore in detail the survivability and regrowth of zircon inside and outside dikes and sills of different sizes and temperatures, and in different rock compositions, on timescales of their conductive cooling and heating, respectively. For zircon-rich rocks, only the largest 〉200 m igneous bodies are capable of complete dissolution–reprecipitation of typically sized zircons at significant distances from the intrusion. Smaller intrusions result in partial dissolution and rim overgrowth. Zircons captured near the contact of conductively cooling sills undergo more overgrowth than dissolution. In contrast, heat wave propagation from the sill will completely dissolve and reprecipitate zircons in Zr-poorer rocks many diameters of the sill away and often 10 3 –10 4 years after the sill intrusion. A single thermal spike and melting episode is capable of generating the observed complexity of isotopically diverse and geochronologically zoned zircons. A MATLAB program is presented for users to apply in their specific situations.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2016-06-02
    Description: Santorini caldera has had a long history of plinian eruptions and caldera collapses, separated by 20–40 kyr interplinian periods. We have carried out a study to constrain magma storage/extraction depths beneath the caldera. We analysed H 2 O in 138 olivine-, pyroxene- and plagioclase-hosted melt inclusions from plinian and interplinian products from the last 200 kyr, and CO 2 , S, Cl, F and D in various subsets of these. The dataset includes 64 inclusions in products of the Minoan plinian eruption of the late 17th century BCE. All the melt inclusions were ellipsoidal and isolated, with no textural evidence for volatile leakage. Mafic melt inclusions contain 1–4 wt % H 2 O and up to 1200 ppm CO 2 , 1200 ppm S, 2000 ppm Cl and 400 ppm F; silicic inclusions contain 2–7 wt % H 2 O, up to 150 ppm CO 2 , up to 400 ppm S, 2000–6000 ppm Cl and 600–1000 ppm F. The D values of 27 representative inclusions (–37 to –104) are intermediate between mantle and slab values and rule out significant H 2 O loss by hydrogen diffusion from olivine-hosted inclusions. H 2 O, S and Cl behave compatibly in melt inclusion suites varying from mafic to silicic in composition, showing that entrapment of many melt inclusions took place under volatile-saturated conditions. Most Santorini melts are saturated in a free COHSCl vapour phase at depths of less than ~10 km; the only exceptions are basaltic melts from a single interplinian eruption, which were volatile-undersaturated up to K 2 O contents of ~1 wt %. The rhyolitic melt of the Minoan eruption probably contained a free hypersaline liquid phase. H 2 O + CO 2 saturation pressures were calculated using suitably calibrated solubility models to estimate pre-eruptive magma storage depths. Magmas feeding plinian eruptions were stored at 〉4 km (〉100 MPa) and extracted over depth intervals of several kilometres. Plagioclase phenocrysts in rhyodacitic pumice from the Minoan eruption have cores containing melt inclusions trapped at depths up to 10–12 km (320 MPa), and rims (also orthopyroxene and clinopyroxene) containing inclusions trapped at 4–6 km (100–160 MPa). This records late-stage silicic replenishment of a 〈2 km thick shallow magma chamber, rather than extraction of melts syn-eruptively over the entire depth range. The plagioclase cores were carried from depth in the ascending melt, then overgrown by the rims in the shallow chamber. Exsolution of volatiles during ascent may have caused the replenishment melt to inject as a bubbly plume, causing mixing prior to eruption. This would explain (1) the homogeneity of the Minoan rhyodacitic magma, and (2) extraction of melt inclusions from the entire pressure spectrum during the first eruptive phase. Most silicic magmas feeding eruptions of the interplinian periods were stored in reservoirs at shallow depths (2–3 km) compared with those feeding the plinian eruptions (〉4 km). Melt inclusions from the ad 726 eruption of Kameni Volcano yield a pre-eruptive storage depth of ~4 km, which is similar to that estimated from geodetic data for the inflation source during the 2011–2012 period of caldera unrest; this supports a magmatic origin of the unrest. The level of pre- ad 726 magma storage beneath Kameni was deeper than that of earlier silicic interplinian eruptions, perhaps owing to changes in crustal stress caused by the Minoan eruption. Combined with previously published results, the melt inclusion data provide a time-integrated image of the crustal plumbing system. Mantle-derived basalts are injected into the lower crust, where they fractionate to produce evolved melts in bodies of hot crystal mush. Evolved residual melts separate from their parent mushes in the 8 to 〉15 km depth interval, then ascend rapidly into the upper crust, where they either crystallize or accumulate as bodies of eruptible, crystal-poor magma.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2016-06-02
    Description: Mount Merapi is one of Indonesia’s and the world’s most hazardous volcanoes. Existing constraints on the location and the crystallization conditions of its pre-eruptive magma reservoir based on mineral and glass thermobarometry and geophysical surveys are inconclusive, yet of immediate importance for future hazard mitigation. Here, we use two series of phase equilibrium experiments to quantify the conditions of pre-eruptive magma storage and magma recharge in Merapi’s upper-crustal reservoir: (1) to characterize crystallization at total equilibrium conditions; (2) to characterize crystallization at local equilibrium conditions between crystal rims and host melt. We demonstrate that this experimental approach can constrain pre-eruptive crystallization conditions and their variation in crystal-rich, mixed magma systems, such as that of Merapi, for which standard crystallization experiments and mineral thermobarometry fail. In agreement with geophysical estimates, we infer that Mount Merapi’s pre-eruptive reservoir partially crystallizes at ≥100–200 ± 75 MPa and thus at relatively shallow depths of c. ≥4·5 to ~9 km. Magmas are stored at ≥925–950 ± 25°C with a melt H 2 O content of ~3–4 wt % and a vapour phase with an X H 2 O [H 2 O/(H 2 O + CO 2 )] of ~0·5–0·6 ± 0·1. Pre-eruptive recharge magmas, in contrast, have a temperature 〉950 to 〈1000°C, a higher melt H 2 O content of ~4–5 wt % and a vapour phase with a higher X H 2 O of ~0·8 ± 0·1. We hypothesize that these variations in melt H 2 O content and vapour X H 2 O between resident and pre-eruptive recharge magmas relate to variable degrees of open-system degassing of magma parcels en route into the reservoir rather than to variations in volatile fluxing of the stored magmas.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2016-06-02
    Description: Cretaceous plutonic and volcanic rocks of the c . 126–112 Ma Western Fiordland Orthogneiss (WFO) and related Separation Point Suite (SPS), New Zealand, reflect a major flux of arc magmatism along the Late Cretaceous Gondwana margin and provide an opportunity to evaluate processes controlling magmatic differentiation in thickened arc crustal settings. Trace element mineral fractionation models are evaluated for key parts of the WFO based on relict crystal chemistry and cumulate material in garnet-bearing monzodioritic plutons. Garnet pyroxenite (garnet–diopside) adcumulate formed in the Malaspina Pluton at 1·2 GPa, together with two-pyroxene, garnet-absent monzodioritic components and xenoliths of hornblendite. Adcumulate garnet–omphacite (eclogite), garnetite and clinopyroxenite material crystallized in the Breaksea Orthogneiss protoliths at 1·8 GPa. Mineral rare earth element (REE) characteristics of garnet and clinopyroxene are remarkably similar between all cumulate layers and both host-rock plutonic bodies, despite distinctions of inferred emplacement depth and clinopyroxene type. Fractionation of magmatic garnet pyroxenite and/or eclogite can account for a diverse (40–75% SiO 2 ) majority of WFO and SPS rocks, and control crustal differentiation in overthickened continental arcs ( P 〉1·2 GPa, 〉40 km). However, the natural REE data do not clearly discriminate between fractionation controlled by garnet pyroxenite or eclogite in thickened arc settings. The structural level of differentiation is dependent on the lower limit of plagioclase stability, which acts as a buffer forcing most accumulation towards the arc base.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2016-06-02
    Description: Upper Cretaceous volcano-sedimentary successions in the Central Pontides of Turkey, related to the closure of the Tethys Ocean, include a variety of alkaline ultrapotassic igneous rocks that have been classified as leucititic, lamprophyric and trachytic based on their mineral paragenesis. Although the ultrapotassic rocks display a range of K 2 O contents (0·9–8·4 wt %) that may partly reflect alteration processes, they display subduction-related trace element signatures characterized by significant enrichment of large ion lithophile elements and light rare earth elements relative to high field strength elements and heavy rare earth elements and depletion of Nb and Ta. However, their initial Nd–Sr isotope compositions plot within the mantle array. The nature of the mantle source of their parental magmas is inferred to be highly complex, involving contributions from several different components based on contrasting geochemical and isotopic features: (1) a depleted mantle source, which is indicated by unradiogenic 87 Sr/ 86 Sr i (0·70449–0·70609) and radiogenic 143 Nd/ 144 Nd i (0·51252–0·51269); (2) an obvious requirement of mantle phlogopite to explain the high potassium contents; (3) slab-derived fluids, which are indicated by ultra-low 18 O cpx ratios regardless of the ultrapotassic rock type (2·4–5), with high Ba/La and Nb/Ta, low Th/La and the most radiogenic 143 Nd/ 144 Nd i ; (4) a contribution from subducted sediments giving rise to low Ce/Pb ratios and high Th contents; (5) the introduction of convective mantle into the source region with an asthenospheric Pb isotope signature. Whereas the differentiation of silica-undersaturated leucititic and lamprophyric magmas was driven by heteromorphic reactions, owing to the absence of major and trace element variations between the resultant rock types, the formation of silica-saturated trachytic rocks was the result of assimilation–fractional crystallization processes. We propose that a complex sequence of subduction events, starting from at least the Middle Triassic, caused metasomatism of the depleted mantle source and the generation of the Late Cretaceous ultrapotassic parental magmas, facilitated by slab roll-back followed by slab tearing.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2016-06-02
    Description: Determining the primary compositions of arc magmas is fundamental in retracing the chemical differentiation processes responsible for the formation of juvenile arc crust and the thermal structure of the mantle wedge. We have investigated a series of post-plutonic dykes that intruded the gabbroic to tonalitic southern part of the Tertiary Adamello Batholith in the Alps. The dyke rocks range in composition from primary, hydrous high-Mg basalts to basalts, basaltic andesites, andesites and dacites. Field relationships and high-precision U–Pb dating of titanite and zircon show that the dyke suite ranges in age from 41·67 ± 0·06 Ma for the high-Mg basalt to 38·62 ± 0·12 Ma for the youngest dacitic dykes, closely associated with plutonic activity from 42·5 to 39·0 Ma. Andesites and dacites have primitive 87 Sr/ 86 Sr i (0·7032–0·7038) and 143 Nd/ 144 Nd i (Nd CHUR +3·5–3·2) isotopic signatures strongly limiting the extent of crustal assimilation, whereas some of the high-Mg basalts have selectively assimilated pelitic metasedimentary rocks as shown by high Cs/Rb, Rb/Sr and Rb/Zr ratios, and isotopically more enriched compositions ( 87 Sr/ 86 Sr i 0·7039–0·7046; Nd CHUR +1·6–0·0). Primitive high-Mg basaltic dykes that escaped assimilation processes are primary mantle partial melts that were extracted from their source at pressures of 2·7 ± 0·2 GPa and temperatures of 1390 ± 30 °C, conditions corresponding to the spinel–garnet transition in mantle peridotite. Major element modelling constrains the degree of melting to 20 ± 2% leaving a harzburgite residue, consistent with the trace element chemistry of the high-Mg basalts, which have moderate [Gd/Yb] N ratios of 1–1·2. Differentiated basaltic andesites and dacites follow experimentally constrained liquid lines of descent for fractional crystallization at mid- to deep crustal levels. The trace element chemistry of amphiboles from basaltic andesite and andesite dykes reveals the coexistence of amphibole with primitive melts, indicating elevated pressures and H 2 O contents in their parental magmas. Thermobarometric constraints for amphibole phenocrysts result in pressures from 0·65 to 0·78 GPa and temperatures ranging from 930 to 〉 1000 °C. The absence of any significant Eu-anomaly in the rare earth element patterns in these amphiboles indicates the late appearance of plagioclase in the crystallization sequence. The crystallization of amphibole drives the differentiated magmas to slightly peraluminous, corundum-normative compositions that are common for tonalites building the major part of the Adamello Batholith. Fractionation models at mid- to lower crustal conditions result in the cumulative crystallization of 17% olivine, 2% Cr-rich spinel, 18% clinopyroxene, 41% amphibole, 4% plagioclase and 0·1% magnetite to obtain an andesitic composition from a primary, hydrous high-Mg continental arc basalt. Cumulates formed during fractional crystallization at mid- to deep crustal levels are dunites and wehrlites followed by hornblendites and hornblende-gabbros. The trace element signatures of basaltic andesites and dacites display low Rb/Zr and Rb/Sr, and are consistent with fractionation-dominated processes within the crust in an active continental margin. Significant crustal assimilation is not required to obtain the trace element signatures of the evolved andesitic magmas.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2016-06-02
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2016-08-30
    Description: Anatectic granites from the Fosdick migmatite–granite complex yield U–Pb zircon crystallization ages that range from 115 to 100 Ma, with a dominant grouping at 107–100 Ma, which corresponds to the timing of dome formation during the regional oblique extension that facilitated exhumation of the complex. The occurrence of leucosome-bearing normal-sense shear zones in migmatitic gneisses indicates that suprasolidus conditions in the crust continued into the early stages of doming and exhumation of the complex. The structure allows access to variably oriented granites in networks of dykes at deeper structural levels and subhorizontal sheeted granites at shallower structural levels within the complex. This feature allows an evaluation of the mechanisms that modify the composition of granite melts in their source and of granite magmas during their ascent and emplacement using whole-rock major, trace element and Sr and Nd isotope compositions, zircon Hf and O isotope compositions, and phase equilibria modelling of potential source rocks. Geochemical variability within the granites is attributed to source heterogeneity and blending of melts, which themselves are consistent with derivation from regional metasedimentary and metaplutonic source materials. The granites typically contain coarse blocky K-feldspar and/or plagioclase grains within interstitial quartz, and have low Rb/Sr ratios and large positive Eu anomalies. These features are inconsistent with the composition of primary crustal melts derived from metasedimentary and metaplutonic source materials, but consistent with early fractional crystallization of feldspar and subsequent drainage of the fractionated melt. Processes such as peritectic mineral entrainment and accessory mineral dissolution, entrainment and crystallization did not have any significant influence on the major and trace element composition of the granites. The granites in the networks of dykes are interpreted to represent choking of magma transport channels through the middle crust as the rate of magma flow declined during doming and exhumation, whereas the sheeted granites record collapse of subhorizontal, partially crystallized layers of magma by filter pressing and melt exfiltration during vertical shortening associated with doming and exhumation. These processes separated feldspar-rich residues from evolved melt. Based on the results of this study, caution is urged in estimating melt proportion from the volume of granite retained in migmatitic gneiss domes, as the granites may not represent liquid compositions.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2016-08-30
    Description: The Late Jurassic English Peak plutonic complex was emplaced in an upper crustal retro-arc setting in the central Klamath Mountains province, northern California. Emplacement of the main, central pluton was preceded by intrusion of two satellite bodies: the Uncles Creek pluton crystallized from H 2 O-rich quartz dioritic magma with hornblende as the liquidus mafic phase; in contrast, the Heiney Bar pluton is a c. 2·5 km diameter body zoned from gabbro to granodiorite. Al-in-hornblende barometry from these two plutons indicates a stage of magma storage at c. 600–500 MPa. The central English Peak pluton is a c. 15 km diameter body composed of early and late stages. Early stage rocks range from gabbro to tonalite, with variable proportions of augite, orthopyroxene, hornblende and biotite. The early stage lacks discernible zoning and rock types vary at the outcrop scale. This diversity is reflected in bulk-rock compositions, which do not form a compositional array. The late-stage intrusion consists of three concentric units that are zoned from outer, more mafic rocks (quartz diorite, tonalite, quartz monzodiorite) to inner, compositionally evolved rocks (granodiorite and granite). Late-stage samples plot in smooth, typically linear arrays for most major and trace elements. Al-in-hornblende pressures indicate that late-stage hornblende cores grew in a reservoir at c. 400 MPa and that rims grew at the level of final emplacement (c. 250 MPa). The mid-crustal reservoir was the site of late-stage magma evolution, including episodic magma mixing. Oxygen and Sr isotopes indicate initial evolution of English Peak pluton magmas in a deep crustal region of mixing, assimilation, storage, and homogenization (MASH zone), where they were contaminated by metasedimentary rocks. Thus, the English Peak pluton represents a crustal-scale system, with mantle-derived magmas that differentiated near the Moho, storage and crystallization of satellite-pluton magmas in the middle crust (c. 600–500 MPa), development of a large, episodically recharged, magma chamber in the upper middle crust (c. 400 MPa) and final emplacement in the upper crust.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2016-08-30
    Description: Little is known about the effects that subducting an oceanic large igneous province (LIP) has on the petrogenesis of submarine arc volcanoes and their geochemical composition. The southern Kermadec arc represents a rare example where an LIP—the Hikurangi Plateau—is currently subducting and where its effect on mantle composition, element recycling and arc volcanism can be studied. We present mineral chemistry and whole-rock major and trace element, and Sr–Nd–Pb isotope data from samples recovered from the southern Kermadec arc volcanoes Rumble II East and Rumble II West, together with shipboard gravity and magnetic measurements. The Rumble II volcanoes (including a volcanic cone ~10 km further west) form an ~23 km long arc–backarc transect located ~250 km north of New Zealand above the subducting Hikurangi Plateau. Although only a short distance apart, rocks from the two volcanoes have different mineral and whole-rock geochemical compositions. Lavas from Rumble II East are predominantly basaltic and contain primitive olivine phenocrysts (≤Fo 91 ), high-Mg# clinopyroxene (≤96) and anorthitic plagioclase (≤An 97 ). Geochemically these lavas are very diverse and cover a spectrum from low Th/Yb (〈0·15) at high Ba/Th (〉1014) to higher Th/Yb (〉0·15) at lower Ba/Th (〈844). This spectrum, together with 206 Pb/ 204 Pb and 143 Nd/ 144 Nd in the range of 18·74–18·83 and 0·51309–0·51298 respectively (at similar to slightly elevated 87 Sr/ 86 Sr), suggests a mantle wedge that has undergone previous melt extraction and significant fluid addition from the subducting Pacific Plate and that contains sediment and HIMU-type Hikurangi Plateau components. The geochemistry of the sediment–HIMU-type components is exemplified in an olivine pyroxenite (e.g. 206 Pb/ 204 Pb = 20·02; 87 Sr/ 86 Sr = 0·70516; 143 Nd/ 144 Nd = 0·5126). We propose that the olivine pyroxenite formed through melt or fluid–rock metasomatism and represents the first direct evidence of a near Moho arc mantle rock that shows the imprint from a subducting HIMU-type (Hikurangi) seamount. Conversely, lavas from Rumble II West and the cone ~10 km to the west are generally more silica rich than Rumble II East lavas and mainly contain plagioclase with less ortho- and clinopyroxene + olivine phenocrysts. The low Ba/Th (〈470) and 206 Pb/ 204 Pb (〈18·74), a range of 143 Nd/ 144 Nd (0·51297–0·51307) and elevated Th/Yb (0·13–0·39) in these lavas can best be explained by minor sediment input into a less depleted mantle wedge. In addition, the geochemical composition of the Rumble II West lavas does not require involvement of a Hikurangi component, placing a spatial limit on Hikurangi material influencing regional melt generation beneath the backarc. Supported by a gravity model requiring two distinct magma chambers, the different geochemical compositions of Rumble II East and West lavas are inconsistent with a shared magma plumbing system. The different geochemical compositions of lavas from the two Rumble II volcanoes furthermore demonstrate that across-arc geochemical heterogeneities can occur within a few kilometres and may originate from both a geochemically heterogeneous mantle wedge and Moho transition layer, recording inherited geochemical heterogeneities beneath the volcanoes.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2016-08-30
    Description: Lying atop the relatively motionless Antarctic plate (velocity ~6·46 mm a –1 ), the Crozet archipelago, midway between Madagascar and Antarctica, is a region of unusually shallow (1543–1756 m) and thickened oceanic crust (10–16·5 km), high geoid height, and deep low-velocity zone, which may represent the surface expression of a mantle plume. Here, new major and trace element data are presented for Quaternary alkali basalts of the subaerial eruptive stage of East Island, the most easterly and oldest island (~9 Ma) of the Crozet archipelago. Crystallization at uppermost mantle depths and phenocryst accumulation have strongly affected the parental magma compositions. Trace element patterns show a large negative K anomaly relative to Ta–La, moderate depletions in Rb and Ba with respect to Th–U, and heavy rare earth element depletions relative to light rare earth elements. These characteristics allow limits to be placed upon the composition and mineralogy of the mantle source of the magmas. The average trace element pattern of the East Island basalts can be matched by ~1·7% melting of a garnet–phlogopite-bearing peridotite source. The stability field of phlogopite restricts melting depths to lithospheric levels. The modelled source composition requires a multistage evolution in which the mantle has been depleted by melt extraction before being metasomatized by alkali-rich plume-derived melts. The depleted mantle component is inferred to be sourced from residual mantle plume remnants that stagnated at the melting locus owing to a weak lateral flow velocity inside the melting region, whose accumulation progressively forms a depleted lithospheric root above the plume core. Low-degree, alkali-rich melts are probably derived from the plume source. Such a mantle source evolution may be general to both terrestrial and extraterrestrial environments in which the lateral component velocity of the mantle flow field is extremely slow.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2016-08-30
    Description: In this study we examined Meso- to Neoarchean granitoids from the North Caribou Terrane within the Western Superior Province, Canada. Petrology, whole-rock geochemistry, zircon and titanite geochronology, and zircon trace element concentrations were analyzed. U–Pb ages from zircon and titanite are between 2·62 and 3·13 Ga. Although most of the granitoids in this study appear to record a complex magmatic history, about a third contain features that we interpret to be a result of hydrothermal alteration. Notable traits in rocks that contain altered zircons include K-feldspar overgrowths on plagioclase and compositional zoning in titanite. The altered zircon material itself occurs as CL-bright resorption shadows showing distinct chemical changes, including lower Th/U values and elevated LREE concentrations. The isotopic ages of the rims on the altered zircons (2835 Ma, 2760–2678 Ma) are similar to coexisting U–Pb titanite ages and regional U–Pb titanite and zircon ages. We propose that during the hydrothermal event, the affected areas of zircon re-equilibrated with fluid, which promoted Pb loss, resetting the isotopic clock. These results suggest that zircon rims might be useful for dating hydrothermal fluid flow episodes in addition to magmatic events and that a multi-element approach is useful for distinguishing ages that are magmatic from those that have been isotopically disturbed owing to alteration.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2011-06-17
    Description: We present experimental data on the partitioning of Li, Be, B, K, Mg, Sr, Ga, Rb, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U, Hf, Zr, Nb and Ta between lawsonite and fluid, and zoisite and fluid at 3·0–3·5 GPa and 650–850°C. The aim is to provide data bearing on the trace element contents of fluids released during dehydration of subducting oceanic crust. Experimental trace element partition coefficients for lawsonite indicate a preference for the light rare earth elements (LREE) over the heavy REE (HREE) and for Be. These characteristics are consistent with the chemical composition of lawsonite in natural rocks. Experimental trace element partition coefficients for zoisite indicate a preference for HREE relative to LREE. This observation, consistent with earlier experimental data, is the reverse of the observed trace element compositions of natural zoisites, indicating the influence of other factors on the trace element contents of this phase. Lattice strain theory explains well the experimentally derived partitioning of divalent cations in the Ca-site between lawsonite and fluid. However, the weak relative fractionation of REE between lawsonite and fluid cannot be explained by lattice strain theory, as previously observed for zoisite–fluid REE partitioning. We combine our experimental data with thermodynamic models of mineral stability to model the compositions of fluids released during subduction of altered normal mid-ocean ridge basalt. The low La/Sm ratio associated with very high Ba/Th in arc magmas can be explained only if allanite is stable in the subducting oceanic crust. This suggests that the crustal fluid component involved in arc magma petrogenesis results from processes occurring in the warm, top part of the subducting slab. Decreasing lawsonite modal proportion with depth is associated with a large release of fluid characterized by low B/Be ratios that could explain the decreasing B/Be ratios in arc magmas with increasing distance from the trench. This implies that an important Be input in arc magma originates from the fluid generated during oceanic crust dehydration.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2011-06-17
    Description: To contribute to our understanding of the mechanisms and pathways of fluid movement through deeply subducted crust, we investigate high-pressure veins cutting eclogite-facies (~2·0 GPa and ~600°C) metagabbros of the Monviso Ophiolite, Italian Western Alps. The veins consist mainly of omphacite with minor garnet, rutile, talc and accessory zircon. Most of the vein minerals have major and trace element compositions that are comparable with the host-rock minerals, and vein and host-rock zircons have similar Hf isotopic compositions. These observations support the conclusions of previous studies that these veins largely formed from a locally sourced hydrous fluid during prograde or peak metamorphism. However, the bulk-rock Cr and Ni contents of the veins are significantly higher than those of the surrounding host eclogites. We also document distinct Cr-rich (up to weight per cent levels) zones in omphacite, garnet and rutile in some vein samples. Vein garnet and talc also have relatively high MgO and Ni contents. X-ray maps of vein garnet and rutile grains reveal complex internal zoning features, which are largely defined by micrometre-scale variations in Cr content. Some grains have concentric and oscillatory zoning in Cr, whereas others feature a chaotic fracture-like pattern. These Cr-rich zones are associated with high concentrations of Ni, B, As, Sb, Nb, Zr and high ratios of light rare earth elements (LREE) to middle REE (MREE) compared with low-Cr vein and host-rock minerals. Petrological and mass-balance constraints verify that the Cr-rich zones in the veins were not derived from internally sourced fluids, but represent precipitates from an external fluid. The external source that is consistent with the distinctive trace element characteristics of the vein components is antigorite serpentinite, which forms the structural basement of the high-pressure metagabbros. We propose at least two separate growth mechanisms for the Monviso veins. Most vein infillings were formed during progressive prograde metamorphism from locally derived fluid. Influx of the serpentinite-derived or other external fluid was transient and episodic and was probably achieved via brittle fractures, which preferentially formed along the pre-existing vein structures. The dehydration of serpentinite at high pressures in subduction zones may provide crucial volatiles and trace elements for arc magmas. Our results indicate that the movement of these fluids through subducted oceanic crust is likely to be highly channeled and transient so the progressive development of vein systems in mafic rocks may also be crucial for forming channelways for long-distance fluid flow at depth in subduction zones.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2011-06-17
    Description: Siwi caldera, in the Vanuatu arc (Tanna island), is a rare volcanic complex where both persistent eruptive activity (Yasur volcano) and rapid block resurgence (Yenkahe horst) can be investigated simultaneously during a post-caldera stage. Here we provide new constraints on the feeding system of this volcanic complex, based on a detailed study of the petrology, geochemistry and volatile content of Yasur–Siwi bulk-rocks and melt inclusions, combined with measurements of the chemical composition and mass fluxes of Yasur volcanic gases. Major and trace element analyses of Yasur–Siwi volcanic rocks, together with literature data for other volcanic centers, point to a single magmatic series and possibly long-lived feeding of Tanna volcanism by a homogeneous arc basalt. Olivine-hosted melt inclusions show that the parental basaltic magma, which produces basaltic-trachyandesites to trachyandesites by ~50–70% crystal fractionation, is moderately enriched in volatiles (~1 wt % H 2 O, 0·1 wt % S and 0·055 wt % Cl). The basaltic-trachyandesite magma, emplaced at between 4–5 km depth and the surface, preserves a high temperature (1107 ± 15°C) and constant H 2 O content (~1 wt %) until very shallow depths, where it degasses extensively and crystallizes. These conditions, maintained over the past 1400 years of Yasur activity, require early water loss during basalt differentiation, prevalent open-system degassing, and a relatively high heat flow (~10 9 W). Yasur volcano releases on average ≥ 13·4 x 10 3 tons d –1 of H 2 O and 680 tons d –1 of SO 2 , but moderate amounts of CO 2 (840 tons d –1 ), HCl (165 tons d –1 ), and HF (23 tons d –1 ). Combined with melt inclusion data, these gas outputs constrain a bulk magma degassing rate of ~5 x 10 7 m 3 a –1 , about a half of which is due to degassing of the basaltic-trachyandesite. We compute that 25 km 3 of this magma have degassed without erupting and have accumulated beneath Siwi caldera over the past 1000 years, which is one order of magnitude larger than the accumulated volume uplift of the Yenkahe resurgent block. Hence, basalt supply and gradual storage of unerupted degassed basaltic-trachyandesite could easily account for (or contribute to) the Yenkahe block resurgence.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2011-06-17
    Description: Primitive basalts are rarely found in arcs. The active NW Rota-1 volcano in the Mariana arc has erupted near-primitive lavas, which we have sampled with ROV Hyper-Dolphin (HPD). Samples from the summit (HPD480) and eastern flank (HPD488) include 17 magnesian basalts (51–52 wt % SiO 2 ) with 7·5–9·5 wt % MgO and Mg-number of 61–67, indicating little fractionation. Olivine phenocrysts are as magnesian as Fo 93 and contain 0·4 wt % NiO; the Cr/(Cr + Al) values of spinels are mostly 0·5–0·8, indicating equilibrium with depleted mantle. There are three petrographic groups, based on phenocryst populations: (1) cpx–olivine basalt (COB); (2) plagioclase–olivine basalt (POB); (3) porphyritic basalt. Zr/Y and Nb/Yb are higher in POB (3·1–3·2 and 1·2–1·5, respectively) than in COB (Zr/Y = 2·8–3·0 and Nb/Yb = 0·7–0·9), suggesting that POB formed from lower degrees of mantle melting, or that the COB mantle source was more depleted. On the other hand, COB have Ba/Nb (70–80) and Th/Nb (0·4–0·5) that are higher than for POB (Ba/Nb = 30–35 and Th/Nb = 0·1–0·2), and also have steeper light rare earth element (LREE)-enriched patterns. Moreover, COB have enriched 87 Sr/ 86 Sr and 143 Nd/ 144 Nd, and higher Pb isotope values, suggesting that COB has a greater subduction component than POB. 176 Hf/ 177 Hf between COB and POB are similar and Hf behavior in COB and POB is similar to that of Zr, Y and HREE, suggesting that Hf is not included in the subduction component, which produced the differences between COB and POB. The calculated primary basaltic magmas of NW Rota-1 volcano (primary COB and POB magmas) indicate segregation pressures of 2–1·5 GPa (equivalent to 65–50 km depth). These magmas formed by 24–18% melting of mantle peridotite having Mg-number ~89·5. Diapiric ascent of hydrous peridotite mixed heterogeneously with sediment melts may be responsible for the NW Rota-1 basalts. These two basalt magma types are similar to those found at Sumisu and Torishima volcanoes in the Izu–Bonin arc, with COB representing wetter and POB representing drier magmas, where subduction zone-derived melt components are coupled with the water contents.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2011-06-17
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2011-06-17
    Description: The origin of andesite is an important issue in petrology because andesite is the main eruptive product at convergent margins, corresponds to the average crustal composition and is often associated with major Cu–Au mineralization. In this study we present petrographic, mineralogical, geochemical and isotopic data for basaltic andesites of the latest Pleistocene Pilavo volcano, one of the most frontal volcanoes of the Ecuadorian Quaternary arc, situated upon thick (30–50 km) mafic crust composed of accreted Cretaceous oceanic plateau rocks and overlying mafic to intermediate Late Cretaceous–Late Tertiary magmatic arcs. The Pilavo rocks are basaltic andesites (54–57·5 wt % SiO 2 ) with a tholeiitic affinity as opposed to the typical calc-alkaline high-silica andesites and dacites (SiO 2 59–66 wt %) of other frontal arc volcanoes of Ecuador (e.g. Pichincha, Pululahua). They have much higher incompatible element contents (e.g. Sr 650–1350 ppm, Ba 650–1800 ppm, Zr 100–225 ppm, Th 5–25 ppm, La 15–65 ppm) and Th/La ratios (0·28–0·36) than Pichincha and Pululahua, and more primitive Sr ( 87 Sr/ 86 Sr ~0·7038–0·7039) and Nd ( Nd ~ +5·5 to +6·1) isotopic signatures. Pilavo andesites have geochemical affinities with modern and recent high-MgO andesites (e.g. low-silica adakites, Setouchi sanukites) and, especially, with Archean sanukitoids, for both of which incompatible element enrichments are believed to result from interactions of slab melts with peridotitic mantle. Petrographic, mineral chemistry, bulk-rock geochemical and isotopic data indicate that the Pilavo magmatic rocks have evolved through three main stages: (1) generation of a basaltic magma in the mantle wedge region by flux melting induced by slab-derived fluids (aqueous, supercritical or melts); (2) high-pressure differentiation of the basaltic melt (at the mantle–crust boundary or at lower crustal levels) through sustained fractionation of olivine and clinopyroxene, leading to hydrous, high-alumina basaltic andesite melts with a tholeiitic affinity, enriched in incompatible elements and strongly impoverished in Ni and Cr; (3) establishment of one or more mid-crustal magma storage reservoirs in which the magmas evolved through dominant amphibole and clinopyroxene (but no plagioclase) fractionation accompanied by assimilation of the modified plutonic roots of the arc and recharge by incoming batches of more primitive magma from depth. The latter process has resulted in strongly increasing incompatible element concentrations in the Pilavo basaltic andesites, coupled with slightly increasing crustal isotopic signatures and a shift towards a more calc-alkaline affinity. Our data show that, although ultimately originating from the slab, incompatible element abundances in arc andesites with primitive isotopic signatures can be significantly enhanced by intra-crustal processes within a thick juvenile mafic crust, thus providing an additional process for the generation of enriched andesites.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2011-06-17
    Description: Mid-ocean ridge basalts (MORB) from the Arctic Ocean have been significantly less studied than those from other oceans. The Arctic ridges (Gakkel Ridge and Lena Trough) are ultraslow-spreading ridges with low melt productivity and are thus the best locations to investigate mantle heterogeneity. We report the major and trace element and Sr–Nd–Pb–Hf isotope compositions of basalts generated along the Lena Trough and the westernmost part of the Gakkel Ridge in the Arctic Ocean. Basalts from the northern Lena Trough and westernmost Gakkel Ridge (NLT–WGR) have compositions close to normal MORB. The geochemical composition of the NLT–WGR lavas confirms a binary mixing model involving melts from a depleted MORB mantle source and a Spitsbergen amphibole-bearing subcontinental lithospheric mantle (SCLM) source. In contrast, in the central part of the Lena Trough (CLT), the basalts are alkalic with relatively high Mg-number (60–65), high SiO 2 (51·0–51·6 wt %), Al 2 O 3 (18·1–18·4 wt %), Na 2 O (4·0–4·2 wt %), K 2 O (1·0–1·6 wt %), K 2 O/TiO 2 (0·6–0·9) and (La/Sm) PM (1·4–1·8), and low FeO (6·5–6·8 wt %) contents. These basalts display isotope variations with 87 Sr/ 86 Sr ranging from 0·70361 to 0·70390, 143 Nd/ 144 Nd from 0·51283 to 0·51290 ( Nd + 3·7 to +5·2), 176 Hf/ 177 Hf from 0·28313 to 0·28322 ( Hf + 11·6 to +14·9) and 206 Pb/ 204 Pb from 17·752 to 17·884, 207 Pb/ 204 Pb from 15·410 to 15·423 and 208 Pb/ 204 Pb from 37·544 to 37·670. These isotope compositions clearly distinguish the CLT lavas from those generated along the Gakkel Ridge. For the CLT lavas, involvement of a phlogopite- or amphibole- and (possibly garnet)-bearing SCLM source component is proposed. Owing to SCLM contamination along the entire length of the Lena Trough, we classify the Lena Trough as an ocean–continent transition boundary. Magmatism similar to that observed in the Lena Trough would be expected to occur wherever ocean spreading initiates.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2015-05-20
    Description: The genesis of Cenozoic continental basalts in Eastern China is highly debated. Subducted oceanic crust (most probably the Pacific oceanic slab) has been increasingly suggested to be involved in their mantle source. The Taihang Mountains are located at a surface position corresponding to the western edge of a stagnant subducted Pacific slab revealed by geophysical investigations, and thus provide an opportunity to study the spatial extent of the effect of Pacific subduction on the mantle characteristics of Eastern China. In previous studies, alkali basalts from the Taihang Mountains were considered to be the products of interaction between asthenosphere-derived melts and the old, enriched lithospheric mantle; their magnesium isotope signature suggested the contribution of oceanic carbonate. To explore the possible contribution from recycled oceanic crust in the genesis of the Taihang basalts we estimated the water contents of the magmas by a phenocryst-based approach ( $${\hbox{ C }}_{water}^{melt}={\hbox{ C }}_{water}^{mineral}/{\hbox{ D }}_{water}^{mineral/melt}$$ ) and measured the oxygen isotope compositions of clinopyroxene phenocrysts by secondary ion mass spectrometry for the same sample suite as used in previous studies. The calculated water contents (H 2 O by weight) of the parental magmas range from 0·20 to 1·07 wt %, and the corresponding H 2 O/Ce ratios correlate well with (Nb/La) n (where n represents primitive mantle normalization), (Ba/Th) n and Nd. The oxygen isotope ratios ( 18 O SMOW ) range from 5·8 to 7·4, and the average value for each sample ranges from 6·6 to 7·0. These new data indicate a large contribution from extremely dehydrated recycled oceanic crust together with entrained sediments. The minor element compositions (Ca, Mn and Ni contents) of olivine phenocrysts in the Taihang basalts suggest a pyroxenite source that was probably formed by the interaction between oceanic crust-derived melt and ambient mantle peridotite.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2015-05-20
    Description: The Hideaway Park tuff is the only preserved extrusive volcanic unit related to the Red Mountain intrusive complex, which produced the world-class Henderson porphyry Mo deposit. Located within the Colorado Mineral Belt, USA, Henderson is the second largest Climax-type Mo deposit in the world, and is therefore an excellent location to investigate magmatic processes leading to Climax-type Mo mineralization. We combine an extensive dataset of major element, volatile, and trace element abundances in quartz-hosted melt inclusions and pumice matrix glass with major element geochemistry from phenocrysts to reconstruct the pre-eruptive conditions and the source and evolution of metals within the magma. Melt inclusions are slightly peraluminous topaz rhyolitic in composition and are volatile-charged (≤6 wt % H 2 O, ≤600 ppm CO 2 , ~0·3–1·0 wt % F, ~2300–3500 ppm Cl) and metal-rich (~7–24 ppm Mo, ~4–14 ppm W, ~21–52 ppm Pb, ~28–2700 ppm Zn, 〈0·1–29 ppm Cu, ~0·3–1·8 ppm Bi, ~40–760 ppb Ag, ~690–1400 ppm Mn). Melt inclusion and pumice matrix glass chemistry reveal that the Hideaway Park magma evolved by large degrees of fractional crystallization (≤60–70%) during quartz crystallization and melt inclusion entrapment at pressures of ≤300 MPa (≤8 km depth), with little to no crystallization upon shallow ascent and eruption. Filter pressing, crystal settling, magma recharge and mixing of less evolved rhyolite melt, and volatile exsolution were important processes during magma evolution; the low estimated viscosities (~10 5 –10 10 Pa s) of these H 2 O- and F-rich melts probably enhanced these processes. A noteworthy discrepancy between the metal contents in the pumice matrix glass and in the melt inclusions suggests that after quartz crystallization ceased upon shallow magma ascent and eruption, the Hideaway Park magma exsolved an aqueous fluid into which Mo, Bi, Ag, Zn, Mn, Cs, and Y strongly partitioned. Given that the Henderson deposit contains anomalous abundances of not only Mo, but also W, Pb, Zn, Cu, Bi, Ag, and Mn, we suggest that these metals were sourced from similar fluids exsolved from unerupted portions of the same magmatic system. Trace element ratios imply that Mo was sourced deep, from either the lower crust or metasomatized mantle. The origin of sulfur remains unresolved; however, given the extremely low S solubility of rhyolite melts in the shallow crust we favor the possibility that another source of S might supplement or account for that present in the ore deposit, probably the comagmatic, mantle-derived lamprophyres that occur in minor quantities with the voluminous topaz rhyolites in the area. To account for the 437 Mt of MoS 2 (~1·0 x 10 6 t Mo) present in the Henderson ore deposit, a volume of ~45 km 3 of Hideaway Park rhyolite magma would have been necessary to supply the Mo (a cylindrical pluton measuring 3·1 km x 6·0 km) along with sparging of ~6·8 x 10 5 t of S from ~0·05 km 3 of lamprophyre magma. Based on a weighted mean 40 Ar/ 39 Ar age of 27·58 ± 0·24 Ma, similar melt geochemistry, and characteristically F-rich biotite phenocrysts, we conclude that the Hideaway Park tuff was cogenetic with the intrusions at Red Mountain that formed the Henderson deposit.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2015-05-20
    Description: The Talbot Sub-basin is one of several bimodal volcanic depositional centres of the Mesoproterozoic Bentley Basin in central Australia. It is dominated by rocks of rhyolitic composition and includes ignimbrites, some forming large to super-eruption size deposits. Ferroan, incompatible trace element enriched, A-type compositions, anhydrous mineralogy and clear evidence for local rheomorphism indicate high eruption temperatures, with apparent zircon-saturation temperatures suggesting crystallization at 〉900°C. Comagmatic basalt is of mantle origin with minor Proterozoic basement contamination. The rhyolites cover the same range of Nd isotope compositions ( Nd(1070) +1·24 to –0·96) and La/Nb ratios (1·2–2·1) as the basalts ( Nd(1070) +2·1 to –1·1: La/Nb 1·2–2·3) and are compositionally far removed from all older basement and country-rock components (average Nd(1070) = –4, La/Nb = 10). The rhyolites and basalts are cogenetic through a process probably involving both fractional crystallization of mafic magmas and partial melting of recently crystallized mafic rock in a lower crustal intraplate, extraction of dacitic magmas to a voluminous upper crustal chamber system, and separation of rhyolite by processes involving rejuvenation and cannibalization of earlier chamber material. More than 230 000 km 3 of parental basalt is required to form the 〉22 000 km 3 of preserved juvenile rhyolite in the Talbot Sub-basin alone, which represents one of the most voluminous known felsic juvenile additions to intracontinental crust. Zircon U–Pb age components are complex and distinct from those of basement and country rock and contain antecrystic components reflecting dissolution–regrowth processes during periodic rejuvenation of earlier-emplaced chamber material without any significant interaction with country rock. The overall duration of magmatism was 〉30 Myr but can be divided into between two and four separate intervals, each probably of a few hundred thousand years’ duration and each probably reflecting one of the distinct lithostratigraphic groups defined in the sub-basin. Neither the composition nor style of felsic and mafic volcanism changes in any significant way from one volcanic event to the next and the range of zircon U–Pb ages indicates that each period utilized and cannibalized the same magma chamber. This volcanism forms a component of the 1090–1040 Ma Giles Event in central Australia, associated with magma-dominated extension at the nexus of the cratonic elements of Proterozoic Australia. This event cannot be reasonably reconciled with any putative plume activity but rather reflects the 〉200 Myr legacy of enhanced crustal geotherms that followed the final cratonic amalgamation of central Australia.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2015-05-20
    Description: Assessing the impact of crustal assimilation on the composition of oceanic arc lavas is important if source composition is to be correctly interpreted. This is particularly the case in the Lesser Antilles where lavas encompass a very large range in radiogenic isotope compositions. Here we present new 176 Hf/ 177 Hf and trace element data for a suite of samples from St Lucia in the southern Lesser Antilles arc where assimilation of sediments located within the arc crust has been shown to influence significantly Sr–Nd–Pb isotope compositions. We show that a high rate of assimilation (r = 0·8) of sediment is responsible for the co-variation of Th/Th*, La/Sm, 87 Sr/ 86 Sr, 206/207/208 Pb/ 204 Pb, 143 Nd/ 144 Nd and 176 Hf/ 177 Hf towards extreme ‘continental’ compositions. Lavas that escaped sediment assimilation have a typical oceanic arc signature and provide the best indication of mantle source characteristics beneath St Lucia. They display similar Ba/Th, La/Sm and Nd isotopic compositions to lavas further north in the arc, but with slightly more radiogenic Sr and Pb. Addition of less than 2% of local bulk subducting sediment, or less than 3·5% of sediment partial melt or fluid, to the mantle wedge can explain these compositions; these estimates are similar to those previously proposed for the northern arc. After correction for the effects of sediment assimilation, the St Lucia lavas have only slightly more radiogenic Pb and Sr isotope signatures compared with the northern islands; this can be attributed to differences in the isotopic composition of the local subducting sediment rather than to greater sediment input, as has been previously proposed. Comparison of St Lucia with the other southern Lesser Antilles islands suggests that similar mantle source compositions exist beneath Martinique, St Vincent and perhaps Bequia, whereas a more ‘continental’ source might characterize Ile de Caille, Kick ’em Jenny and Grenada.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2015-05-20
    Description: Arc magmas erupted at the Earth’s surface are commonly more oxidized than those produced at mid-ocean ridges. Possible explanations for this high oxidation state are that the transfer of fluids during the subduction process results in direct oxidation of the sub-arc mantle wedge, or that oxidation is caused by the effect of later crustal processes, including protracted fractionation and degassing of volatile-rich magmas. This study sets out to investigate the effect of disequilibrium crustal processes that may involve coupled changes in H 2 O content and Fe oxidation state, by examining the degassing and hydration of sulphur-free rhyolites. We show that experimentally hydrated melts record strong increases in Fe 3+ /Fe with increasing H 2 O concentration as a result of changes in water activity. This is relevant for the passage of H 2 O-undersaturated melts from the deep crust towards shallow crustal storage regions, and raises the possibility that vertical variations in f O 2 might develop within arc crust. Conversely, degassing experiments produce an increase in Fe 3+ /Fe with decreasing H 2 O concentration. In this case the oxidation is explained by loss of H 2 as well as H 2 O into bubbles during decompression, consistent with thermodynamic modelling, and is relevant for magmas undergoing shallow degassing en route to the surface. We discuss these results in the context of the possible controls on f O 2 during the generation, storage and ascent of magmas in arc settings, in particular considering the timescales of equilibration relative to observation as this affects the quality of the petrological record of magmatic f O 2 .
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2015-05-20
    Description: Peridotites exhumed in the footwall of axial detachment faults at slow-spreading ridges are highly serpentinized. Most mid-ocean ridge detachment settings are magmatically active and hydrous fluid circulation in and near the fault has been shown to be influenced by the presence of melt or magmatic lithologies. Our working area along the Southwest Indian Ridge (62–65°E) is nearly amagmatic and represents an end-member to study the hydrous alteration of exhumed peridotites without these magmatic influences. We use an integrated petrological approach combining microstructural, mineralogical and chemical observations to unravel the sequence of serpentinization in 272 dredged samples of variably serpentinized peridotites and to document the circulation of serpentinizing fluids in and near the exhumation faults. We find that serpentine recrystallization and veins overprint the initial serpentinite mesh texture in ~25% of the samples. Oxygen isotope data suggest that this sequence developed at relatively high temperatures (271–336°C) and under increasing fluid–rock ratios, from near stoichiometry for mesh texture formation to 〉10 during recrystallization. Increasing fluid supersaturation relative to serpentine favors the replacement of mesh texture lizardite by chrysotile and polygonal or polyhedral serpentine. We attribute local recrystallization into antigorite to moderate Si-metasomatism, possibly following pyroxene serpentinization. We do not observe the more pronounced Si-metasomatism leading to talc replacing serpentine that is reported for the more magmatically active Mid-Atlantic Ridge detachment settings and is attributed to prior leaching of magmatic rocks. Scales of preferential fluid pathways in our samples evolved from pervasive and close-spaced (〈500 µm) microfractures during the formation of the initial serpentine mesh texture, to centimeter-thick planar domains of enhanced fluid flux, spaced at ~10 cm intervals and probably grouped in corridors that may be up to ~100 m across. Serpentine minerals are enriched in some fluid-mobile elements (Cl, B, U) relative to the peridotite protolith, and several elements (Al, Fe, Si, Cu, As, Sb, REE) are redistributed at the millimeter to decimeter scale. Serpentinizing fluids were seawater-derived, probably mildly alkaline (small to no europium anomalies), reducing and H 2 -enriched (formation of magnetite). These fluids may have been similar to, though warmer than, those venting at the ultramafic-hosted Lost City hydrothermal fluid (30°N, Mid-Atlantic Ridge).
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2015-05-20
    Description: Santorini volcano in the Aegean region (Greece) is characterized by andesitic- to silicic-dominated explosive activity and caldera-forming eruptions, sourced from magmatic reservoirs located at various structural levels beneath the volcano. There is a good understanding of the silica-rich magmatism of the island whereas the andesite-dominated volcanism and the petrogenesis of the parental mafic magmas are still poorly understood. To fill this gap we have performed crystallization experiments on a representative basalt from Santorini with the aim of determining the conditions of differentiation (pressure, temperature, volatile fugacities) and the parental magma relationship with the andesitic eruptive rocks. Experiments were carried out between 975 and 1040°C, in the pressure range 100–400 MPa, f O 2 from QFM to NNO + 3·5 (where QFM is quartz–fayalite–magnetite and NNO is nickel–nickel oxide), with H 2 O melt contents varying from saturation to nominally dry conditions. The results show that basalt phenocrysts within the basalt crystallized at around 1040°C in a magma storage reservoir located at a depth equivalent to 200–400 MPa pressure, with 3–5 wt % dissolved H 2 O, and f O 2 around QFM. Comparison with the xenocryst and phenocryst assemblages of the Upper Scoria 1 andesite shows that andesitic liquids are produced by fractionation of a similar basalt at 1000°C and 400 MPa, following 60–80 wt % crystallization of an ol + cpx + plag + Ti-mag + opx ± pig–ilm assemblage, with melt water contents around 4–6 wt %. At Santorini, the andesitic low-viscosity and water-rich residual liquids produced at these depths segregate from the parent basaltic mush and feed the shallow magma reservoirs, eventually erupting upon mixing with resident magma. Changes in prevailing oxygen fugacity may control the tholeiitic–calc-alkaline character of Santorini magmas, explaining the compositional and mineralogical differences observed between the recent Thyra and old eruptive products from Akrotiri.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2015-04-25
    Description: Discovery of seafloor volcanism west of Buldir Volcano, the westernmost emergent volcano in the Aleutian arc, demonstrates that surface expression of active Aleutian volcanism falls below sea level just west of 175·9°E longitude, but is otherwise continuous from mainland Alaska to Kamchatka. Lavas dredged from newly discovered seafloor volcanoes up to 300 km west of Buldir have end-member geochemical characteristics that provide new insights into the role of subducted basalt as a source component in Aleutian magmas. Western Aleutian seafloor lavas define a highly calc-alkaline series with 50–70% SiO 2 . Most samples have Mg-numbers [Mg# = Mg/(Mg + Fe)] greater than 0·60, with higher MgO and lower FeO* compared with average Aleutian volcanic rocks at all silica contents. Common basalts and basaltic andesites in the series are primitive, with average Mg# values of 0·67 (±0·02, n = 99, 1SD), and have Sr concentrations (423 ± 29 ppm, n = 99) and La/Yb ratios (4·5 ± 0·4, n = 29) that are typical of island arc basaltic lavas. A smaller group of basaltic samples is more evolved and geochemically more enriched, with higher and more variable Sr and La/Yb (average Mg# = 0·61 ± 0·1, n = 31; Sr = 882 ± 333 ppm, n = 31; La/Yb = 9·1 ± 0·9, n = 16). None of the geochemically enriched basalts or basaltic andesites has low Y (〈15 ppm) or Yb (〈1·5 ppm), so none show the influence of residual or cumulate garnet. In contrast, most western seafloor andesites, dacites and rhyodacites have higher Sr (〉1000 ppm) and are adakitic, with strongly fractionated trace element patterns (Sr/Y = 50–350, La/Yb = 8–35, Dy/Yb = 2·0–3·5) with low relative abundances of Nb and Ta (La/Ta 〉 100), consistent with an enhanced role for residual or cumulate garnet + rutile. All western seafloor lavas have uniformly radiogenic Hf and Nd isotopes, with Nd = 9·1 ± 0·3 ( n = 31) and Hf = 14·5 ± 0·6 ( n = 27). Lead isotopes are variable and decrease with increasing SiO 2 from basalts with 206 Pb/ 204 Pb = 18·51 ± 0·05 ( n = 11) to dacites and rhyodacites with 206 Pb/ 204 Pb = 18·43 ± 0·04 ( n = 18). Western seafloor lavas form a steep trend in 207 Pb/ 204 Pb– 206 Pb/ 204 Pb space, and are collinear with lavas from emergent Aleutian volcanoes, which mostly have 206 Pb/ 204 Pb 〉 18·6 and 207 Pb/ 204 Pb 〉 15·52. High MgO and Mg# relative to silica, flat to decreasing abundances of incompatible elements, and decreasing Pb isotope ratios with increasing SiO 2 rule out an origin for the dacites and rhyodacites by fractional crystallization. The physical setting of some samples (erupted through Bering Sea oceanic lithosphere) rules out an origin for their garnet + rutile trace element signature by melting in the deep crust. Adakitic trace element patterns in the dacites and rhyodacites are therefore interpreted as the product of melting of mid-ocean ridge basalt (MORB) eclogite in the subducting oceanic crust. Western seafloor andesites, dacites and rhyodacites define a geochemical end-member that is isotopically like MORB, with strongly fractionated Ta/Hf, Ta/Nd, Ce/Pb, Yb/Nd and Sr/Y. This eclogite component appears to be present in lavas throughout the arc. Mass-balance modeling indicates that it may contribute 36–50% of the light rare earth elements and 18% of the Hf that is present in Aleutian volcanic rocks. Close juxtaposition of high-Mg# basalt, andesite and dacite implies widely variable temperatures in the western Aleutian mantle wedge. A conceptual model explaining this shows interaction of hydrous eclogite melts with mantle peridotite to produce buoyant diapirs of pyroxenite and pyroxenite melt. These diapirs reach the base of the crust and feed surface volcanism in the western Aleutians, but are diluted by extensive melting in a hotter mantle wedge in the eastern part of the arc.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2015-04-25
    Description: The Middle Miocene Afyon alkaline volcanic complex (western Anatolia) erupted lavas of highly variable geochemistry, ranging from silica-undersaturated to silica-oversaturated and from ultrapotassic to Na-alkaline compositions. There are two major volcanic groups showing substantial differences in K-enrichment and different Sr, Nd and Pb isotopic compositions: plagioclase–amphibole-bearing lavas and sanidine- and/or leucite-bearing lavas. The most remarkable feature of Afyon volcanism is the close relationship in time and space of these two lava types. There is clear stratigraphic evidence for a switch from early Si-oversaturated sanidine- and/or leucite-bearing lavas, towards Si-undersaturated sanidine- and/or leucite-bearing lavas, which eventually change to slightly Si-undersaturated to -saturated plagioclase–amphibole-bearing lavas that make up the youngest formations. This change in composition is coupled with a decrease in 87 Sr/ 86 Sr (whole-rock and in situ apatite, perovskite, melilite and clinopyroxene), 207 Pb/ 204 Pb, Zr/Nb and Th/Nb, and an increase in 143 Nd/ 144 Nd, 206 Pb/ 204 Pb, 208 Pb/ 204 Pb and Ce/Pb, thus delineating a systematic change from orogenic (crust-like) to anorogenic (within-plate) signatures. Magma genesis in the Afyon volcanic complex has been controlled by roll-back of a subducted lithospheric slab since the Early Tertiary and post-collisional extensional events in Miocene times. It is associated with the upwelling of asthenospheric mantle through a gap in the subducted slab under western Anatolia. Magmatism is concurrent with the collapse of the orogenic belt and the development of extension-related horst and graben structures. We interpret the geochemical transition from orogenic to anorogenic affinity as being due to the increasing role of lithosphere–asthenosphere interaction that is most strongly reflected in the geochemistry of the Afyon lavas. Melting of peridotite in the convecting mantle (asthenosphere) may be a viable model for the origin of the plagioclase–amphibole-bearing lavas. Their ubiquitous high K 2 O contents, orogenic trace element signatures and isotopic compositions imply that the asthenosphere-derived primary melts were contaminated by melts derived from lithospheric mantle containing an orogenic chemical signature. Conversely, the ultrapotassic sanidine- and/or leucite-bearing lavas are derived from at least two types of metasomatized lithospheric mantle. The dominant source is a phlogopite–pyroxene-rich metasome, which was generated by recycling of continental sediments during previous subduction episodes. This is responsible for the orogenic geochemical signature dominantly seen in lamproites and shoshonites. On the other hand, melting of recently generated phlogopite-wehrlite metasomes resulted in the parental melts of melilite-leucitites, which should be of proto-kamafugitic composition. The wehrlitic metasomes were generated when convecting mantle-derived precursor melts reacted with lithospheric mantle peridotite along the solidus ledge in the system lherzolite + CO 2 (〈22 kbar).
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2015-04-25
    Description: New in situ major and trace element analytical data are presented for crystals (sanidine, plagioclase, biotite, orthopyroxene, clinopyroxene) and matrix glasses from juvenile materials representing the full Bishop Tuff sequence from the earliest fall unit (F1) to the latest ignimbrite package (Ig2Nc). These data are combined with published information to investigate the nature and zonation of the pre-eruptive Bishop magma chamber. Our data confirm that this magma chamber was a single unitary body that was thermally and compositionally zoned. The zonation was largely established prior to the growth of crystals, and also prior to mixing in the lower parts of the chamber induced by late-stage intrusion of a magma of contrasting composition and slightly higher temperature (the ‘bright-rim’ magma). Sparse mixed swirly and dacitic pumices show enrichments in Ba, Sr and Ti that identify these pumices as possible representatives of the ‘bright-rim’ magma. A model (revised from previously published work) for the pre-eruptive magma chamber comprises three main parts: (1) an upper, volumetrically dominant (~2/3), relatively unzoned region that was the source of the earlier, eastern-erupted ignimbrite units and their coeval fall units; (2) a volumetrically minor transition zone that shows evidence for minor degrees of mixing and was the dominant source for the latest, eastern-erupted part of Ig1Eb (Sherwin subunit) and the earlier part of the northern-erupted ignimbrite (Ig 2Na); (3) a lower, volumetrically subordinate (~1/3) region that was affected by mixing with the ‘bright-rim’ invasive magma in the lead-up to the eruption, and fed later northern-erupted units. Ingress of the ‘bright-rim’ magma introduced orthopyroxene and bright-rimmed zircon crystals, and induced partial resorption then overgrowth of rims enriched in Ti, Sr and Ba on sanidine and quartz, and development of zoning in clinopyroxene. Based on pumice proportions and associated crystal and glass chemistries through the eruptive sequence, we infer that the roof and floor of the magma chamber were stepped down to the north, such that the transition zone magma formed the floor of the southern part of the melt-dominant chamber and the roof of the northern part. Our data reinforce the previous concept of a single compositionally and thermally zoned Bishop magma chamber and additionally support a temporally constrained role for pre-eruptive magma mixing and the introduction of melts and minerals with contrasting compositions to the resident Bishop magma.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...