ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (55,401)
  • Materials  (10,644)
  • International Journal of Advanced Manufacturing Technology  (4,495)
  • 115624
  • 4549
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (55,401)
Collection
  • Articles  (55,401)
Years
Topic
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (55,401)
  • 1
    Publication Date: 2020-08-18
    Print ISSN: 0268-3768
    Electronic ISSN: 1433-3015
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-18
    Print ISSN: 0268-3768
    Electronic ISSN: 1433-3015
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-27
    Description: We compared the catalytic effects of two polymers (soluble starch and apple pectin) on the flocculation of kaolinite suspension. Moreover, the relationship between the zeta potential value and the time when kaolin particle sedimentation occurred was verified, and the mechanism of flocculation was analyzed. Additionally, a constitutive model was proposed to simulate the non-ideal sedimentation of clay particles in an aqueous system under constant gravity. This model not only considers the inhomogeneity of the solute but also simulates the change in clay concentration with time during the deposition process. This model proposes a decay constant (α) and sedimentation coefficient (s). The model can also be used to calculate the instantaneous sedimentation rate of the clay suspensions at any time and any depth for the settling cylinder. These sedimentary characteristics were simulated by adopting the established deposition model. The results show that the model is capable of predicting the time required for the complete sedimentation of particles in the aqueous system, suggesting the feasibility of engineering wastewater treatment, site dredging, etc.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-27
    Description: Dense β-SiC coating with 3C-structure was utilized as a dry cold forging punch and core-die. Pure titanium T328H wires of industrial grade II were employed as a work material. No adhesion or galling of metallic titanium was detected on the contact interface between this β-SiC die and titanium work, even after this continuous forging process, up to a reduction in thickness by 70%. SEM (Scanning Electron Microscopy) and EDX (Electron Dispersive X-ray spectroscopy) were utilized to analyze this contact interface. A very thin titanium oxide layer was in situ formed in the radial direction from the center of the contact interface. Isolated carbon from β-SiC agglomerated and distributed in dots at the center of the initial contact interface. Raman spectroscopy was utilized, yielding the discovery that this carbon is unbound as a free carbon or not bound in SiC or TiC and that intermediate titanium oxides are formed with TiO2 as a tribofilm.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-26
    Description: The manufacturing of parts from nickel-based superalloy Alloy 247LC by laser powder bed fusion (L-PBF) is challenging, primarily owing to the alloy’s susceptibility to cracks. Apart from the cracks, voids created during the L-PBF process should also be minimized to produce dense parts. In this study, samples of Alloy 247LC were manufactured by L-PBF, several of which could be produced with voids and crack density close to zero. A statistical design of experiments was used to evaluate the influence of the process parameters, namely laser power, scanning speed, and hatch distance (inherent to the volumetric energy density) on void formation, crack density, and microhardness of the samples. The window of process parameters, in which minimum voids and/or cracks were present, was predicted. It was shown that the void content increased steeply at a volumetric energy density threshold below 81 J/mm3. The crack density, on the other hand, increased steeply at a volumetric energy density threshold above 163 J/mm3. The microhardness displayed a relatively low value in three samples which displayed the lowest volumetric energy density and highest void content. It was also observed that two samples, which displayed the highest volumetric energy density and crack density, demonstrated a relatively high microhardness; which could be a vital evidence in future investigations to determine the fundamental mechanism of cracking. The laser power was concluded to be the strongest and statistically most significant process parameter that influenced void formation and microhardness. The interaction of laser power and hatch distance was the strongest and most significant factor that influenced the crack density.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-27
    Description: Laser-based technologies are extensively used for polymer surface patterning and/or texturing. Different micro- and nanostructures can be obtained thanks to a wide range of laser types and beam parameters. Cell behavior on various types of materials is an extensively investigated phenomenon in biomedical applications. Polymer topography such as height, diameter, and spacing of the patterning will cause different cell responses, which can also vary depending on the utilized cell types. Structurization can highly improve the biological performance of the material without any need for chemical modification. The aim of the study was to evaluate the effect of CO2 laser irradiation of poly(L-lactide) (PLLA) thin films on the surface microhardness, roughness, wettability, and cytocompatibility. The conducted testing showed that CO2 laser texturing of PLLA provides the ability to adjust the structural and physical properties of the PLLA surface to the requirements of the cells despite significant changes in the mechanical properties of the laser-treated surface polymer.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-08-26
    Description: Highly controlled biomineralization of calcium carbonate is via non-classical mesocrystallization of amorphous precursors. In the present study, a simple in vitro assay was developed to mimic the biological process, which involved stabilized amorphous calcium carbonate and a single crystal substrate of calcite. The microcoating layer formed on the calcite substrate displayed mesocrystalline characteristics, and the layers near the substrate were strongly influenced by the epitaxy to the substrate. This behavior was preserved even when the morphology of the coating layer was modified with poly(acrylic acid), a model anionic macromolecule. Interestingly, the extent of the epitaxy increased substantially with poly(ethylene imine), which barely affected the crystal morphology. The in vitro assay in the present study will be useful in the investigations of the biomineralization and bioinspired crystallization of calcium carbonate in general.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-26
    Description: Ti6Al4V alloy is still attracting great interest because of its application as an implant material for hard tissue repair. This research aims to produce and investigate in-situ chitosan/hydroxyapatite (CS/HA) nanocomposite coatings based on different amounts of HA (10, 50 and 60 wt.%) on alkali-treated Ti6Al4V substrate through the sol-gel process to enhance in vitro bioactivity. The influence of different contents of HA on the morphology, contact angle, roughness, adhesion strength, and in vitro bioactivity of the CS/HA coatings was studied. Results confirmed that, with increasing the HA content, the surface morphology of crack-free CS/HA coatings changed for nucleation modification and HA nanocrystals growth, and consequently, the surface roughness of the coatings increased. Furthermore, the bioactivity of the CS/HA nanocomposite coatings enhanced bone-like apatite layer formation on the material surface with increasing HA content. Moreover, CS/HA nanocomposite coatings were biocompatible and, in particular, CS/10 wt.% HA composition significantly promoted human mesenchymal stem cells (hMSCs) proliferation. In particular, these results demonstrate that the treatment strategy used during the bioprocess was able to improve in vitro properties enough to meet the clinical performance. Indeed, it is predicted that the dense and crack-free CS/HA nanocomposite coatings suggest good potential application as dental implants.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-26
    Description: This paper presents the studies of the development of a high-performance epoxy coating for steel substrates. To this end, it investigated the synergistic effect of incorporating zinc oxide (ZnO) nanoparticles into nanosilica containing epoxy formulations. The mechanical properties of the epoxy coating formulations were improved by modifying the surfaces of the silica nanoparticles (5 wt.%) with 3-glycidoxypropyl trimethoxysilane, which ensured their dispersal through the material. Next, the ZnO nanoparticles (1, 2, or 3 wt.%) were incorporated to improve the corrosion performance of the formulations. The anticorrosive properties of the coatings were examined by electrochemical impedance spectroscopy (EIS) of coated mild steel specimens immersed in 3.5% NaCl solution over different time intervals (1 h to 30 days). Incorporation of the ZnO nanoparticles and the nanosilica into the coating formulation improved the corrosion resistance of the epoxy coating even after long-term exposure to saline test solutions. Finally, to evaluate how the nanoparticles affected the chemical and morphological properties of the prepared coatings, the coatings were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD).
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-08-28
    Description: In the present paper, the identification of the material parameters of a masonry lighthouse is discussed. A fully non-invasive method was selected, in which the material properties were determined via numerical model validation applied to the first pair of natural frequencies and their related mode shapes, determined experimentally. The exact structural model was built by means of the finite element method. To obtain experimental data for the inverse analysis, operational modal analysis was applied to the structure. Three methods were considered: peak picking (PP), eigensystem realization algorithm (ERA) and natural excitation technique with ERA (NExT-ERA). The acceleration’s responses to environmental excitations, enhanced in some periods of time by sheet piling hammering or by sudden interruptions like wind stroke, were assumed within the analysis input. Different combinations of the input were considered in the PP and NExT-ERA analysis to find the most reasonable modal forms. A number of time periods of a free-decay character were considered in the ERA technique to finally calculate the averaged modal forms. Finally, the elastic modulus, Poisson’s ratio and material density of brick, sandstone and granite masonry were determined. The obtained values supplement the state of the art database concerning historic building materials. In addition, the numerical model obtained in the analysis may be used in further cases of structural analysis.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2020-08-30
    Description: Some special conditions are important for chemical syntheses, such as high temperature and the medium used; unfortunately, uncontrollable influences are introduced during the process, resulting in unexpectedly low repeatability. Herein, we report a facile, environmentally friendly, stable, and repeatable methodology for synthesizing silver nanoplates (SNPs) at 0 °C that overcomes these issues and dramatically increases the yield. This method mainly employs sodium dodecyl sulfate (SDS) and sodium alginate (SA) as the surface stabilizer and assistant, respectively. Consequently, we produced hexagonal nanoplates and tailed nanoplates, and the characterization showed that SA dominates the clear and regular profiles of nanoplates at 0 °C. The tailed nanoplates, over time, showed the growth of heads and the dissolving of tails, and inclined to the nanoplates without tails. The synthesis method for SNPs used in this study—0 °C without media—showed high repeatability. We confirmed that these special conditions are not required for the synthesis of silver nanostructures (SNSs). Furthermore, we constructed a new method for preparing noble metal nanostructures and proved the possibility of preparing metal nanostructures at 0 °C.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-08-29
    Description: The objective of our research is to improve the properties of calcium-sulphate hemihydrate parts printed by binder jetting. In this paper, we show the thermal treatment results when using temperature time ramps on binder-jetted ceramic parts without infiltrating. The results show that the mechanical properties of printed parts are improved substantially. Two different thermal cycles were investigated for their effect on the dehydration process of CaSO4·½H2O using infrared analysis. The thermal-treated samples were compared with respect to porosity, surface roughness, compression strength and dimensional and weight variation. The proposed thermal treatment significantly improves the compression strength in a short time, guaranteeing dimensional stability while providing a good surface. This improvement in mechanical properties offers a great chance for using binder-jetted parts as functional components, for example, in the casting field or the medical sector (scaffolds).
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-08-29
    Description: As the use of continuous fiber polymer matrix composites expands into new fields, there is a growing need for more sustainable manufacturing processes. An integrated computational material design framework has been developed, which enables the design of tailored manufacturing systems for polymer matrix composite materials as a sustainable alternative to achieving high-quality components in high-rate production. Trapped rubber processing achieves high pressures during polymer matrix composite processing, utilizing the thermally induced volume change of a nearly incompressible material inside a closed cavity mold. In this interdisciplinary study, the structural analysis, material science and manufacturing engineering perspectives are all combined to determine the mold mechanics, and the manufacturing process in a cohesive and iterative design loop. This study performs the coupled thermo-mechanical analysis required to simulate the transients involved in composite manufacturing and the results are compared with a previously developed test method. The internal surface pressure and temperatures are computed, compared with the experimental results, and the resulting design process is simulated. Overall, this approach maintains high-quality consolidation during curing while allowing for the possibility for custom distributions of pressures and temperatures. This can lead to more sustainable manufacturing by reducing energy consumption and improving throughput.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-08-29
    Description: Xenogenic collagen-based matrices represent an alternative to subepithelial palatal connective tissue autografts in periodontal and peri-implant soft tissue reconstructions. In the present study, we aimed to investigate the migratory, adhesive, proliferative, and wound-healing potential of primary human oral fibroblasts (hOF) and periodontal ligament cells (hPDL) in response to four commercially available collagen matrices. Non-crosslinked collagen matrix (NCM), crosslinked collagen matrix (CCM), dried acellular dermal matrix (DADM), and hydrated acellular dermal matrix (HADM) were all able to significantly enhance the ability of hPDL and hOF cells to directionally migrate toward the matrices as well as to efficiently repopulate an artificially generated wound gap covered by the matrices. Compared to NCM and DADM, CCM and HADM triggered stronger migratory response. Cells grown on CCM and HADM demonstrated significantly higher proliferative rates compared to cells grown on cell culture plastic, NCM, or DADM. The pro-proliferative effect of the matrices was supported by expression analysis of proliferative markers regulating cell cycle progression. Upregulated expression of genes encoding the adhesive molecules fibronectin, vinculin, CD44 antigen, and the intracellular adhesive molecule-1 was detected in hPDL and hOF cells cultured on each of the four matrices. This may be considered as a prerequisite for good adhesive properties of the four scaffolds ensuring proper cell–matrix and cell–cell interactions. Upregulated expression of genes encoding TGF-β1 and EGF growth factors as well as MMPs in cells grown on each of the four matrices provided support for their pro-proliferative and pro-migratory abilities. The expression of genes encoding the angiogenic factors FGF-2 and VEGF-A was dramatically increased in cells grown on DADM and HADM only, suggesting a good basis for accelerated vascularization of the latter. Altogether, our results support favorable influence of the investigated collagen matrices on the recruitment, attachment, and growth of cell types implicated in oral soft tissue regeneration. Among the four matrices, HADM has consistently exhibited stronger positive effects on the oral cellular behavior. Our data provide solid basis for future investigations on the clinical application of the collagen-based matrices in surgical periodontal therapy.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-08-29
    Description: Concrete wastewater infrastructures are important to modern society but are susceptible to sulfuric acid attack when exposed to an aggressive environment. Fibre-reinforced mortar has been adopted as a promising coating and lining material for degraded reinforced concrete structures due to its unique crack control and excellent anti-corrosion ability. This paper aims to evaluate the performance of polyethylene (PE) fibre-reinforced calcium aluminate cement (CAC)–ground granulated blast furnace slag (GGBFS) blended strain-hardening mortar after sulfuric acid immersion, which represented the aggressive sewer environment. Specimens were exposed to 3% sulfuric acid solution for up to 112 days. Visual, physical and mechanical performance such as water absorption ability, sorptivity, compressive and direct tensile strength were evaluated before and after sulfuric acid attack. In addition, micro-structure changes to the samples after sulfuric acid attack were also assessed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) to further understand the deterioration mechanism. The results show that overall fibre-reinforced calcium aluminate cement (CAC)-based samples performed significantly better than fibre-reinforced ordinary Portland cement (OPC)-based samples as well as mortar samples in sulfuric acid solution in regard to visual observations, penetration depth, direct tensile strength and compressive reduction. Gypsum generation in the cementitious matrix of both CAC and OPC-based systems was the main reason behind the deterioration mechanism after acid attack exposure. Moreover, laboratory sulfuric acid testing has been proven for successfully screening the cementitious material against an acidic environment. This method can be considered to design the service life of concrete wastewater pipes.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-08-30
    Description: Incorporating various industrial waste materials into concrete has recently gained attention for sustainable construction. This paper, for the first time, studies the effects of silica stone waste (SSW) powder on concrete. The cement of concrete was replaced with 5, 10, 15, and 20% of the SSW powder. The mechanical properties of concrete, such as compressive and tensile strength, were studied. Furthermore, the microstructure of concrete was studied by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy analysis (EDX), Fourier transformed infrared spectroscopy (FTIR), and X-Ray diffraction (XRD) tests. Compressive and tensile strength of samples with 5% SSW powder was improved up to 18.8% and 10.46%, respectively. As can be observed in the SEM images, a reduced number of pores and higher density in the matrix can explain the better compressive strength of samples with 5% SSW powder.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-08-30
    Description: This paper presents a study of the Ti-6Al-4V alloy milling under different lubrication conditions, using the minimum quantity lubrication approach. The chosen material is widely used in the industry due to its properties, although they present difficulties in terms of their machinability. A minimum quantity lubrication (MQL) prototype valve was built for this purpose, and machining followed a previously defined experimental design with three lubrication strategies. Speed, feed rate, and the depth of cut were considered as independent variables. As design-dependent variables, cutting forces, torque, and roughness were considered. The desirability optimization function was used in order to obtain the best input data indications, in order to minimize cutting and roughness efforts. Supervised artificial neural networks of the multilayer perceptron type were created and tested, and their responses were compared statistically to the results of the factorial design. It was noted that the variables that most influenced the machining-dependent variables were the feed rate and the depth of cut. A lower roughness value was achieved with MQL only with the use of cutting fluid with graphite. Statistical analysis demonstrated that artificial neural network and the experimental design predict similar results.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-08-30
    Description: BiFeO3 nanocrystals were applied as the sensing material to isopropanol. The isopropanol sensor based on BiFeO3 nanocrystals shows excellent gas-sensing properties at the optimum working temperature of 240 °C. The sensitivity of as-prepared sensor to 100 ppm isopropanol is 31 and its response and recovery time is as fast as 6 and 17 s. The logarithmic curves of the sensitivity and concentration of BiFeO3 sensors are a very good linear in the low detection range of 2–100 ppm. In addition, the gas sensing mechanism is also discussed. The results suggest that the BiFeO3 nanomaterial can be potentially applied in isopropanol gas detection.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-08-29
    Description: For the first time, an original compound belonging to the heptazine family has been deposited in the form of thin layers, both by thermal evaporation under vacuum and spin-coating techniques. In both cases, smooth and homogeneous layers have been obtained, and their properties evaluated for eventual applications in the field of organic electronics. The layers have been fully characterized by several concordant techniques, namely UV-visible spectroscopy, steady-state and transient fluorescence in the solid-state, as well as topographic and conductive atomic force microscopy (AFM) used in Kelvin probe force mode (KPFM). Consequently, the afferent energy levels, including Fermi level, have been determined, and show that these new heptazines are promising materials for tailoring the electronic properties of interfaces associated with printed electronic devices. A test experiment showing an improved electron transfer rate from a tris-(8-hydroxyquinoline) aluminum (Alq3) photo-active layer in presence of a heptazine interlayer is finally presented.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2020-08-29
    Description: A possible approach for providing new properties for textiles is the insertion of natural ingredients into the textile product during the process of its manufacture. Myrrh has long been used in medicine as an antibacterial and antifungal material. Polylactide (PLA) is a thermoplastic synthetic biopolymer obtained from renewable resources—and due its biodegradability, is also widely used in medicine. In this study, films and multifilament yarns from modified biodegradable PLA granules with ethanolic and aqueous myrrh extracts were developed and characterized. Optical microscopy was used to determine the surface morphology of PLA/myrrh multifilament yarns. Tensile tests, ultraviolet-visible (UV-vis), differential scanning calorimetry (DSC) were applied to determine, consequently, mechanical, optical properties and degree of crystallinity of PLA/myrrh films and multifilament yarns. The chemical composition of PLA/myrrh multifilament yarns was estimated by Fourier-transform infrared (FTIR) spectroscopy method. The results showed that it is possible to form PLA melt-spun multifilament yarns with myrrh extract. The type of myrrh extract (ethanolic or aqueous) has a significant influence on the mechanical and optical properties of the PLA films and melt-spun yarns. The mechanical properties of PLA films and melt-spun multifilament yarns formed from PLA granules with aqueous myrrh extract decreased 19% and 21% more than PLA with ethanolic extract, respectively. Analysis of UV-vis spectra showed that, due to the yellow hue, the reflectance of PLA films and melt-spun PLA multifilament yarns modified with myrrh extracts decreased exponentially. The DSC test showed that multifilament yarns from PLA modified with aqueous extract had the highest degree of crystallization.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2020-08-29
    Description: This paper primarily assesses the scale of adverse changes to the compressive strength of different types of silicates due to the influence of moisture. The study covers three groups of silicate units of different strength classes—15, 20 and 25—obtained from three different manufacturers. It was demonstrated that in all studied groups, moisture significantly decreased the compressive strength by about 30–40%. In addition, microstructural studies were conducted to analyze the relationship between the specific porosity structure of each group of silicate bricks and their compressive strength. On the basis of SEM (Scanning Electron Microscopy) and EDS (Electron Dispersive Spectroscopy) analysis, the elemental composition of individual silicates was determined and the contact zone between the aggregate and the binder was determined, which largely influenced the obtained compressive strength of each silicates. Next, the study referred to the utility of the normative procedure used to determine the strength class of samples with different geometries and at different moisture concentrations. The results of the calculations showed the high accuracy of the normative-based assessment of strength class, regardless of the manufacturer and the moisture values during examination.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2020-08-30
    Description: Additive manufacturing (AM) is the term for a number of processes for joining materials to build physical components from a digital 3D model. AM has multiple advantages over other construction techniques, such as freeform, customization, and waste reduction. However, AM components have been evaluated by destructive and non-destructive testing and have shown mechanical issues, such as reduced resistance, anisotropy and voids. The build direction affects the mechanical properties of the built part, including voids of different characteristics. The aim of this work is an extended analysis of void shape by means of X-ray computed tomography (CT) applied to fused deposition modeling (FDM) samples. Furthermore, a relation between the tensile mechanical properties and digital void measurements is established. The results of this work demonstrate that void characteristics such as quantity, size, sphericity and compactness show no obvious variations between the samples. However, the angle between the main void axis and the mechanical load axis α shows a relation for FDM components: when its mean value μ(α) is around 80 (degrees) the yield strength and Young’s modulus are reduced. These results lead to the formulation of a novel criterion that predicts the mechanical behavior of AM components.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2020-08-30
    Description: The objective of this work is to study the geometric properties of surface topographies of hot-work tool steel created by electric discharge machining (EDM) using motif and multiscale analysis. The richness of these analyses is tested through calculating the strengths of the correlations between discharge energies and resulting surface characterization parameters, focusing on the most representative surface features—craters, and how they change with scale. Surfaces were created by EDM using estimated energies from 150 to 9468 µJ and measured by focus variation microscope. The measured topographies consist of overlapping microcraters, of which the geometry was characterized using three different analysis: conventional with ISO parameters, and motif and multiscale curvature tensor analysis. Motif analysis uses watershed segmentation which allows extraction and geometrically characterization of each crater. Curvature tensor analysis focuses on the characterization of principal curvatures and their function and their evolution with scale. Strong correlations (R2 〉 0.9) were observed between craters height, diameter, area and curvature using linear and logarithmic regressions. Conventional areal parameter related to heights dispersion were found to correlate stronger using logarithmic regression. Geometric characterization of process-specific topographic formations is considered to be a natural and intuitive way of analyzing the complexity of studied surfaces. The presented approach allows extraction of information directly relating to the shape and size of topographic features of interest. In the tested conditions, the surface finish is mostly affected and potentially controlled by discharge energy at larger scales which is associated with sizes of fabricated craters.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2020-08-29
    Description: Laser irradiation is a popular method to produce microtextures on metal surfaces. However, the common laser-produced microtextures were hierarchical (multiscale), which may limit their applicability. In this paper, a method of two-step laser irradiation, combining first-step strong ablation and sequentially second-step gentle ablation, was presented to produce micron-rough surface with single-scale microtextures. The effect of laser fluence on the Ti–6Al–4V surface morphology and wettability were investigated in detail. The morphology results revealed that the microtextures produced using this method gradually evolved from multiscale to single-scale meanwhile from microprotrusions to microholes with increasing the second-step laser fluence from 0.0 to 2.4 J/cm2. The wettability and EDS/XPS results indicated that attributing to the rich TiO2 content and micron roughness produced by laser irradiation, all the two-step laser-irradiated surfaces exhibited superhydrophilicity. In addition, after silanization, all these superhydrophilic surfaces immediately turned to be superhydrophobic with close water contact angles of 155–162°. However, due to the absence of nanotextures, the water-rolling angle on the superhydrophobic surfaces with single-scale microtextures distinctly larger than those with multiscale ones. Finally, using the two-step laser-irradiation method and assisted with silanization, multifunctional superhydrophobic Ti–6Al–4V surfaces were achieved, including self-cleaning, guiding of the water-rolling direction and anisotropic water-rolling angles (like the rice-leaf), etc.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2020-08-29
    Description: The ultrasonic modulation technique, developed by inspecting the nonlinearity from the interactions of crack surfaces, has been considered very effective in detecting fatigue cracks in the early stage of the crack development due to its high sensitivity. The wave modulation is the frequency shift of a wave passing through a crack and does not occur in intact specimens. Various parameters affect the modulation of the wave, but quantitative analysis for each variable has not been comprehensively conducted due to the complicated interaction of irregular crack surfaces. In this study, specimens with a constant crack width are manufactured, and the effects of various excitation parameters on modulated wave generation are analyzed. Based on the analysis, an effective crack detection algorithm is proposed and verified by applying the algorithm to fatigue cracks. For the quantitative analysis, tests are repeatedly conducted by varying parameters. As a result, the excitation intensity shows a strong linear relationship with the amount of modulated waves, and the increase of modulated wave is expected as crack length increases. However, the change in the dynamic characteristics of the specimen with the crack length is more dominant in the results. The excitation frequency is the most dominant variable to generate the modulated waves, but a direct correlation is not observed as it is difficult to measure the interaction of crack surfaces. A numerical analysis technique is developed to accurately simulate the movement and interaction of the crack surface. The crack detection algorithm, improved by using the observations from the quantitative analyses, can distinguish the occurrence of modulated waves from the ambient noises, and the state of the specimens is determined by using two nonlinear indexes.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2020-08-29
    Description: This study aimed to develop series analytical solutions based on the Mindlin plate theory for the free vibrations of functionally graded material (FGM) rectangular plates. The material properties of FGM rectangular plates are assumed to vary along their thickness, and the volume fractions of the plate constituents are defined by a simple power-law function. The series solutions consist of the Fourier cosine series and auxiliary functions of polynomials. The series solutions were established by satisfying governing equations and boundary conditions in the expanded space of the Fourier cosine series. The proposed solutions were validated through comprehensive convergence studies on the first six vibration frequencies of square plates under four combinations of boundary conditions and through comparison of the obtained convergent results with those in the literature. The convergence studies indicated that the solutions obtained for different modes could converge from the upper or lower bounds to the exact values or in an oscillatory manner. The present solutions were further employed to determine the first six vibration frequencies of FGM rectangular plates with various aspect ratios, thickness-to-width ratios, distributions of material properties and combinations of boundary conditions.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2020-08-29
    Description: Conventional technologies for ureteral stent fabrication suffer from major inconveniences such as the development of encrustations and bacteria biofilm formation. These drawbacks typically lead to the failure of the device, significant patient discomfort and an additional surgery to remove and replace the stent in the worst cases. This work focuses on the preparation of a new nanocomposite material able to show drug elution properties, biodegradation and eventually potential antibacterial activity. Poly(2-hydroxyethyl methacrylate) or the crosslinked poly(2-hydroxyethyl methacrylate)-co-poly(acrylic acid) hydrogels were prepared by the radical polymerization method and combined with a biodegradable and antibacterial filling agent, i.e., flower-like Zinc Oxide (ZnO) micropowders obtained via the hydrothermal route. The physico-chemical analyses revealed the correct incorporation of ZnO within the hydrogel matrix and its highly mesoporous structure and surface area, ideal for drug incorporation. Two different anti-inflammatory drugs (Ibuprofen and Diclofenac) were loaded within each composite and the release profile was monitored up to two weeks in artificial urine (AU) and even at different pH values in AU to simulate pathological conditions. The addition of mesoporous ZnO micropowders to the hydrogel did not negatively affect the drug loading properties of the hydrogel and it was successfully allowed to mitigate undesirable burst-release effects. Furthermore, the sustained release of the drugs over time was observed at neutral pH, with kinetic constants (k) as low as 0.05 h−1. By exploiting the pH-tunable swelling properties of the hydrogel, an even more sustained release was achieved in acidic and alkaline conditions especially at short release times, with a further reduction of burst effects (k ≈ 0.01–0.02 h−1). The nanocomposite system herein proposed represents a new material formulation for preparing innovative drug eluting stents with intrinsic antibacterial properties.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2020-08-29
    Description: In view of the strong constraint zones of the concrete structure on the pile foundation, there are some differences between the calculation results of the isotropic equivalent pile foundation by the volume replacement ratio method and the actual engineering. In this paper, referring to the relevant algorithm of rock mass with anchor, the anchor and rock mass are, respectively, compared to pile and surrounding soil foundation. Eshelby equivalent inclusion theory is introduced into the equivalent mechanical model of soil foundation with pile, and a new equivalent pile foundation algorithm considering anisotropic elastic constant is compiled by Fortran. Three kinds of calculation methods are used to calculate the stress field of the concrete structure of the large pump station on the pile foundation during the construction period, and the stress in the strong constraint zones of the concrete structure are mainly analyzed. It is found that the calculation accuracy of Algorithm 3 is the highest, and the calculation results of Algorithm 2 can be modified by the coefficients to achieve the calculation accuracy of Algorithm 3 and the calculation efficiency is actually improved. Finally, the accuracy of the proposed method is verified by the engineering measured data.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2020-07-21
    Description: The bimodal-grain-size 7075 aluminium alloys containing varied ratios of large and small 7075 aluminium powders were prepared by spark plasma sintering (SPS). The large powder was 100 ± 15 μm in diameter and the small one was 10 ± 5 μm in diameter. The 7075 aluminium alloys was completely densified under the 500 °C sintering temperature and 60 MPa pressure. The large powders constituted coarse grain zone, and the small powders constituted fine grain zone in sintered 7075 aluminium alloys. The microstructural and microchemical difference between the large and small powders was remained in coarse and fine grain zones in bulk alloys after SPS sintering, which allowed for us to investigate the effects of microstructure and microchemistry on passive properties of oxide film formed on sintered alloys. The average diameter of intermetallic phases was 201.3 nm in coarse grain zone, while its vale was 79.8 nm in fine grain zone. The alloying element content in intermetallic phases in coarse grain zone was 33% to 48% higher than that on fine grain zone. The alloying element depletion zone surrounding intermetallic phases in coarse grain zone showed a bigger width and a more severe element depletion. The coarse grain zone in alloys showed a bigger electrochemical heterogeneity as compared to fine grain zone. The passive film formed on coarse grain zone had a thicker thickness and a point defect density of 2.4 × 1024 m−3, and the film on fine grain zone had a thinner thickness and a point defect density of 4.0 × 1023 m−3. The film resistance was 3.25 × 105 Ωcm2 on coarse grain zone, while it was 6.46 × 105 Ωcm2 on fine grain zone. The passive potential range of sintered alloys increased from 457 mV to 678 mV, while the corrosion current density decreased from 8.59 × 10−7 A/cm2 to 6.78 × 10−7 A/cm2 as fine grain zone increasing from 0% to 100%, which implied that the corrosion resistance of alloys increased with the increasing content of fine grains. The passive film on coarse grain zone exhibited bigger corrosion cavities after pitting initiation compared to that on fine grain zone. The passive film formed on fine grain zone showed a better corrosion resistance. The protectiveness of passive film was mainly determined by defect density rather than the thickness in this work.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2020-07-21
    Description: Joint sealant is affected by various environmental factors in service, such as different temperatures, water soaking, ultraviolet and so on. In this paper, the VAE emulsion–cement compositejoint sealant was pretreated under multiple simulation environments. Thereafter, the degradation rules of fixed elongation and tensile properties of joint sealants at different mix proportions were systemically investigated under the action of external environments (temperature, water soaking and ultraviolet), and the influence mechanisms of diverse environmental factors were analyzed. The research results suggested that, under the action of external environments, the VAE emulsion–cement composite joint sealants exhibited degradation effects to varying degrees. After the addition of plasticizer, the joint sealants had reduced cohesion strength in low temperature environment and enhanced flexible deformability. The addition of water repellent improved the water resistance of joint sealants. Meanwhile, adding ultraviolet shield agent partially improved the ultraviolet radiation aging resistance. A greater powder–liquid ratio led to the lower flexibility of joint sealants, but superior water resistance and ultraviolet radiation aging resistance.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2020-07-21
    Description: Plasticity and functional diversity of macrophages play an important role in resisting pathogens invasion, tumor progression and tissue repair. At present, nanodrug formulations are becoming increasingly important to induce and control the functional diversity of macrophages. In this framework, the internalization process of nanodrugs is co-regulated by a complex interplay of biochemistry, cell physiology and cell mechanics. From a biophysical perspective, little is known about cellular mechanics’ modulation induced by the nanodrug carrier’s internalization. In this study, we used the polylactic-co-glycolic acid (PLGA)–polyethylene glycol (PEG) nanofibers as a model drug carrier, and we investigated their influence on macrophage mechanics. Interestingly, the nanofibers internalized in macrophages induced a local increase of stiffness detected by atomic force microscopy (AFM) nanomechanical investigation. Confocal laser scanning microscopy revealed a thickening of actin filaments around nanofibers during the internalization process. Following geometry and mechanical properties by AFM, indentation experiments are virtualized in a finite element model simulation. It turned out that it is necessary to include an additional actin wrapping layer around nanofiber in order to achieve similar reaction force of AFM experiments, consistent with confocal observation. The quantitative investigation of actin reconfiguration around internalized nanofibers can be exploited to develop novel strategies for drug delivery.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2020-07-20
    Description: Exsolved perovskites can be obtained from lanthanum ferrites, such as La0.6Sr0.4Fe0.8Co0.2O3, as result of Ni doping and thermal treatments. Ni can be simply added to the perovskite by an incipient wetness method. Thermal treatments that favor the exsolution process include calcination in air (e.g., 500 °C) and subsequent reduction in diluted H2 at 800 °C. These processes allow producing a two-phase material consisting of a Ruddlesden–Popper-type structure and a solid oxide solution e.g., α-Fe100-y-zCoyNizOx oxide. The formed electrocatalyst shows sufficient electronic conductivity under reducing environment at the Solid Oxide Fuel Cell (SOFC) anode. Outstanding catalytic properties are observed for the direct oxidation of dry fuels in SOFCs, including H2, methane, syngas, methanol, glycerol, and propane. This anode electrocatalyst can be combined with a full density electrolyte based on Gadolinia-doped ceria or with La0.8Sr0.2Ga0.8Mg0.2O3 (LSGM) or BaCe0.9Y0.1O3-δ (BYCO) to form a complete perovskite structure-based cell. Moreover, the exsolved perovskite can be used as a coating layer or catalytic pre-layer of a conventional Ni-YSZ anode. Beside the excellent catalytic activity, this material also shows proper durability and tolerance to sulfur poisoning. Research challenges and future directions are discussed. A new approach combining an exsolved perovskite and an NiCu alloy to further enhance the fuel flexibility of the composite catalyst is also considered. In this review, the preparation methods, physicochemical characteristics, and surface properties of exsoluted fine nanoparticles encapsulated on the metal-depleted perovskite, electrochemical properties for the direct oxidation of dry fuels, and related electrooxidation mechanisms are examined and discussed.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2020-07-20
    Description: The drilling of holes in CFRP/Ti (Carbon Fiber-Reinforced Plastic/Titanium alloy) alloy stacks is one of the frequently used mechanical operations during the manufacturing of fastening assemblies in temporary civil aircraft. A combination of inhomogeneous behavior and poor machinability of CFRP/Ti alloy stacks in one short drilling brought challenges to the manufacturing community. The impact of the drilling temperature and time delay factor under various cutting conditions on hole accuracy when machining CFRP/Ti alloy stacks is poorly studied. In this paper, the drilling temperature, the phenomenon of thermal expansion of the drill tool, and hole accuracy are investigated. An experimental study was carried out using thermocouples, the coordinate measuring machine method, and finite element analysis. The results showed that the time delay factor varied from 5 (s) to 120 (s), influences the thermal-dependent properties of CFRP, and leads to an increase in hole roundness. Additionally, the thermal expansion of the drill significantly contributes to the deviation of the hole diameter in Ti alloy.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2020-07-01
    Print ISSN: 0268-3768
    Electronic ISSN: 1433-3015
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2020-07-01
    Print ISSN: 0268-3768
    Electronic ISSN: 1433-3015
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2020-07-01
    Print ISSN: 0268-3768
    Electronic ISSN: 1433-3015
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2020-07-01
    Print ISSN: 0268-3768
    Electronic ISSN: 1433-3015
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2020-07-17
    Description: In this work, piezoelectric (PZT) actuators were surface bonded on or embedded in a composite laminate and subjected to an electric voltage across the thickness, resulting in a bending effect on the composite laminate. An analytical expression of the deflection of a simply supported cross-ply composite laminate induced by distributed piezoelectric actuators was derived on the basis of classical plate theory and composite mechanics. The theoretical solution can be used to predict the deformation of the composite laminate. Series of parametric studies were performed to investigate the effects of location, size, and embedded depth of PZT actuators on the composite laminate deformation. The analytical predictions were verified with finite element results. A close agreement was achieved. It demonstrated that the present approach provided a simple solution to predict and control the deformed shape of a composite laminate induced by distributed PZT actuators.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2020-07-18
    Description: To optimize the mechanical performance of fused deposition modelling (FDM) fabricated parts, it is necessary to evaluate the influence of process parameters on the resulting mechanical performance. The main focus of the study was to characterize the influence of the initial process parameters on the mechanical performance of thermoplastic polyurethane under a quasi-static and high strain rate (~2500 s−1). The effects of infill percentage, layer height, and raster orientation on the mechanical properties of an FDM-fabricated part were evaluated. At a quasi-static rate of loading, layer height was found to be the most significant factor (36.5% enhancement in tensile strength). As the layer height of the sample increased from 0.1 to 0.4 mm, the resulting tensile strength sample was decreased by 36.5%. At a high-strain rate of loading, infill percentage was found to be the most critical factor influencing the mechanical strength of the sample (12.4% enhancement of compressive strength at 100% as compared to 80% infill). Furthermore, statistical analysis revealed the presence of significant interactions between the input parameters. Finally, using an artificial neural networking approach, we evaluated a regression model that related the process parameters (input factors) to the resulting strength of the samples.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2020-07-20
    Description: The complex failure mechanisms of glass laminates under in-plane loading conditions is modelled within the framework of phase-field strategy. Laminated glass is widely used for structural purposes due to its safe post-glass-breakage response. In fact, the combination of several glass plies bonded together with polymeric interlayers allows overcoming the brittleness of the glass and to reach a pseudo-ductile response. Moreover, the post-breakage behaviour of the laminate is strictly correlated by the mechanical properties of the constituents. Ruptures may appear as cracks within the layers or delamination of the bonding interface. The global response of a glass laminate, validated against experimental results taken from the literature, is carried out by investigating a simplified layup of two glass plies connected by cohesive interfaces through an interlayer. Delamination of the adhesive interface is described, and crack patterns within the materials are fully described. Finally, the proposed approach put the basis for future comparisons with results of experimental campaign and real-life applications.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2020-07-18
    Description: The size of the fracture process zone (FPZ) has significance for studying the fracture mechanism and fracture characteristics of concrete. This paper presents the method of assessing the FPZ of Mixed-Mode I-II for quasi-static four-point shearing concrete beams with pre-notched by Lagrangian strain profiles from digital image correlation (DIC). Additionally, it explores the influences of volume rates of the coarse aggregate of 0%, 28%, 48%, and 68%, and the specific surface areas of 0.12 m2/kg, 0.15 m2/kg, and 0.26 m2/kg on the size of the FPZ. It shows that the size of FPZ in four-point shearing concrete beam can be characterized by the displacement field and strain field using DIC. The size of FPZ conforms to linear positive correlation with the volume rate of coarse aggregate, and linear negative correlation with the specific surface area of coarse aggregate. It presents that the crack initiation of the four-point shearing beam with the pre notch is dominated by mode I load, and the propagation and fracture of Mixed-Mode I-II cracks are caused by the combined effect of Mode I and Mode II loading.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2020-07-19
    Description: The structural, mechanical, and electronic properties, as well as stability, elastic anisotropy and effective mass of AlN/GaN/InN in the Pmn21 phase were determined using density functional theory (DFT). The phonon dispersion spectra and elastic constants certify the dynamic and mechanical stability at ambient pressure, and the relative enthalpies were lower than those of most proposed III-nitride polymorphs. The mechanical properties reveal that Pmn21-AlN and Pmn21-GaN possess a high Vickers hardness of 16.3 GPa and 12.8 GPa. Pmn21-AlN, Pmn21-GaN and Pmn21-InN are all direct semiconductor materials within the HSE06 hybrid functional, and their calculated energy band gaps are 5.17 eV, 2.77 eV and 0.47 eV, respectively. The calculated direct energy band gaps and mechanical properties of AlN/GaN/InN in the Pmn21 phase reveal that these three polymorphs may possess great potential for industrial applications in the future.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2020-07-18
    Description: Mesenchymal stem cells (MSCs) have been isolated from a variety of tissues using different methods. Active research have confirmed that the most accessible site to collect them is the adipose tissue; which has a significantly higher concentration of MSCs. Moreover; harvesting from adipose tissue is less invasive; there are no ethical limitations and a lower risk of severe complications. These adipose-derived stem cells (ASCs) are also able to increase at higher rates and showing telomerase activity, which acts by maintaining the DNA stability during cell divisions. Adipose-derived stem cells secret molecules that show important function in other cells vitality and mechanisms associated with the immune system, central nervous system, the heart and several muscles. They release cytokines involved in pro/anti-inflammatory, angiogenic and hematopoietic processes. Adipose-derived stem cells also have immunosuppressive properties and have been reported to be “immune privileged” since they show negative or low expression of human leukocyte antigens. Translational medicine and basic research projects can take advantage of bioprinting. This technology allows precise control for both scaffolds and cells. The properties of cell adhesion, migration, maturation, proliferation, mimicry of cell microenvironment, and differentiation should be promoted by the printed biomaterial used in tissue engineering. Self-renewal and potency are presented by MSCs, which implies in an open-source for 3D bioprinting and regenerative medicine. Considering these features and necessities, ASCs can be applied in the designing of tissue engineering products. Understanding the heterogeneity of ASCs and optimizing their properties can contribute to making the best therapeutic use of these cells and opening new paths to make tissue engineering even more useful.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2020-07-01
    Description: In this paper, interactions of double parallel cracks were studied by performing experiments and numerical simulations. Fatigue crack propagation tests were carried out to measure crack growth rates in the specimens with double parallel cracks or a single crack. Finite element method was adopted to calculate stress intensity factors at the crack tips. Results show that the double parallel cracks at different positions present a shielding effect or enhancement effect on crack growth rates and stress intensity factors. When the double parallel cracks are offset, crack interactions mostly behave as enhancement effects. Empirical formulas were obtained to calculate the stress intensity factor at the “dangerous” crack tip of the double parallel cracks. By modifying the material parameters in Paris equation of the single crack, the double parallel cracks are simplified into a single crack with the same crack growth rates.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2020-07-01
    Description: The following article introduces technologies that build three dimensional (3D) objects by adding layer-upon-layer of material, also called additive manufacturing technologies. Furthermore, most important features supporting the conscious choice of 3D printing methods for applications in micro and nanomanufacturing are covered. The micromanufacturing method covers photopolymerization-based methods such as stereolithography (SLA), digital light processing (DLP), the liquid crystal display–DLP coupled method, two-photon polymerization (TPP), and inkjet-based methods. Functional photocurable materials, with magnetic, conductive, or specific optical applications in the 3D printing processes are also reviewed.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2020-07-01
    Description: One of the major issues faced when constructing various materials incorporating inorganic nanoparticles (NPs) is aggregation leading to loss of their final activity. In our work, cellulose acetate (CA) has been used to serve as matrix for the synthesis of UV-shielding and transparent films containing various amounts (1–5 wt.%) of cerium oxide (CeO2) NPs. In order to attain an improved dispersion and a better connectivity between NPs and the cellulose matrix, the surface of CeO2 NPs have been previously functionalized by the reaction with 3-aminopropyl(diethoxy)methylsilane (APDMS). The uniform dispersion of the NPs in the homogeneous thin films has been evidenced by using Transmission Electron Microscopy (TEM) and Fourier Transformation Infrared Spectroscopy (FTIR) characterization. The investigation of the optical properties for the hybrid films through UV-Vis spectroscopy revealed that the presence of CeO2 NPs in the CA matrix determined the appearance of strong UV absorption bands in the region 312–317 nm, which supports their use as efficient UV absorbers. This study has shown that UV shielding ability of the nanocomposites can be easily tuned by adjusting the numberof inorganic NPs in the CA template.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2020-07-01
    Description: The aspects regarding the stiffness of the connections between the beams that support the storage pallets and the uprights is very important in the analysis of the displacements and stresses in the storage racking systems. The main purpose of this paper is to study the effects of both upright thickness and tab connector type on the rotational stiffness and on the capable bending moment of the connection. For this purpose, a number of 18 different groups of beam-connector-upright assemblies are prepared by combining three types of beams (different sizes of the box cross section), three kinds of uprights profiles (with a different thickness of the section walls), and two types of connectors (four-tab connectors and five-tab connectors). Flexural tests were carried out on 101 assemblies. For the assemblies containing the uprights having the thickness of 1.5 mm, the five-tab connector leads to a higher value of the capable moment and higher rotational stiffness than similar assemblies with four-tab connectors. A contrary phenomenon happens in case of the assemblies containing the upright profiles having a thickness of 2.0 mm regarding the capable design moment. It is shown how the safety coefficient of connection depends on both the rotational stiffness and capable bending moment.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2020-07-01
    Description: This study investigated the heat-induced acceleration of cement hydration and pozzolanic reaction focusing on mechanical performance and structural modification at the meso- and micro-scale. The pozzolanic reaction was implemented by substituting 20 wt.% of cement with silica fume, considered the typical dosage of silica fume in ultra-high performance concrete. By actively consuming a limited amount of water and outer-formed portlandite on the unreacted cement grains, it was confirmed that high-temperature curing greatly enhances the pozzolanic reaction when compared with cement hydration under the same environment. The rate of strength development from the dual reactions of cement hydration and pozzolanic reaction was increased. After the high-temperature curing, further strength development was negligible because of the limited space availability and preconsumption of water under a low water-to-cement environment. Since the pozzolanic reaction does not directly require the anhydrous cement, the reaction can be more easily accelerated under restrained conditions because it does not heavily rely on the diffusion of the limited amount of water. Therefore, it significantly increases the mean chain length of the C–S–H, the size of C–S–H globules with a higher surface fractal dimension. This finding will be helpful in understanding the complicated hydration mechanism of high-strength concrete or ultra-high performance concrete, which has a very low water-to-cement ratio.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2020-08-30
    Description: Micro-arc oxidation (MAO) treatment is a simple and effective technique to improve the corrosion resistance for magnesium alloys. However, the presence of micro-pores and cracks on the coatings provides paths for corrosive ions to penetrate into and react with the substrate, limiting the long-term corrosion resistance. In this paper, we designed a composite coating with which GelMA hydrogel coatings with varying thicknesses were prepared on the surface of MAO-coated magnesium alloys via a dip-coating method, aiming to improve the biocorrosion resistance and biocompatibility. The surface morphology, the chemical composition of GelMA hydrogels, and the crystallographic structure of magnesium alloys were characterized by scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD), respectively. The corrosion resistance and biocompatibility of all samples were evaluated through electrochemical and biological experiments. The results demonstrated that the addition of GelMA hydrogel could effectively seal the pores and improve the corrosion resistance and biocompatibility of MAO-coated magnesium alloys, especially for the sample with one layer of GelMA hydrogel, showing high cell proliferation rate, and its current density (Icorr) was two orders of magnitude lower than that of the MAO coating. Besides, the balance mechanism between corrosion and protection was proposed. As a result, the GelMA hydrogel coatings are beneficial to the application of MAO-coated magnesium alloys in bone tissue engineering and other fields.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2020-08-31
    Print ISSN: 0268-3768
    Electronic ISSN: 1433-3015
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2020-08-31
    Description: This study investigated the recovery stress and bond resistance of cold drawn crimped SMA fiber using two different initial diameters of 1.0 and 0.7 mm. These characteristics are important to the active prestressing effect and crack-closing of the fiber. NiTi SMA fiber was used for the cold drawing, and then crimped shapes were manufactured with various wave heights. After that, tensile, recovery, and pullout tests were conducted. The cold drawn crimped fiber showed softening tensile behavior more clearly than the cold drawn straight fiber when not subjected to heating, whereas they had the same tensile behavior under heating. The recovery stress and the residual stress of the crimped fibers were less than those of the straight fiber with the same diameter. Moreover, crimped fibers with a large diameter and higher wave height would induce more recovery stress and residual stress. The maximum pullout resistance of the crimped fiber was a function of the wave depth, embedded length, yield strength, and flexural rigidity of the fiber.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2020-08-31
    Description: This paper presents the modification of the antibiotic rifampicin by an anionic polyelectrolyte using a simplified electrochemically mediated atom transfer radical polymerization (seATRP) technique to receive stimuli-responsive polymer materials. Initially, a supramolecular ATRP initiator was prepared by an esterification reaction of rifampicin hydroxyl groups with α-bromoisobutyryl bromide (BriBBr). The structure of the initiator was successfully proved by nuclear magnetic resonance (1H and 13C NMR), Fourier-transform infrared (FT-IR) and ultraviolet–visible (UV-vis) spectroscopy. The prepared rifampicin-based macroinitiator was electrochemically investigated among various ATRP catalytic complexes, by a series of cyclic voltammetry (CV) measurements, determining the rate constants of electrochemical catalytic (EC’) process. Macromolecules with rifampicin core and hydrophobic poly (n-butyl acrylate) (PnBA) and poly(tert-butyl acrylate) (PtBA) side chains were synthesized in a controlled manner, receiving polymers with narrow molecular weight distribution (Mw/Mn = 1.29 and 1.58, respectively). “Smart” polymer materials sensitive to pH changes were provided by transformation of tBA into acrylic acid (AA) moieties in a facile route by acidic hydrolysis. The pH-dependent behavior of prepared macromolecules was investigated by dynamic light scattering (DLS) determining a hydrodynamic radius of polymers upon pH changes, followed by a control release of quercetin as a model active substance upon pH changes.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2020-07-02
    Description: This study investigates the effect of eccentric compressive load on the stability, critical states and load-carrying capacity of thin-walled composite Z-profiles. Short thin-walled columns made of carbon fiber-reinforced plastic composite material fabricated by the autoclave technique are examined. In experimental tests, the thin-walled structures were compressed until a loss of their load-carrying capacity was obtained. The test parameters were measured to describe the structure’s behavior, including the phenomenon of composite material failure. The post-critical load-displacement equilibrium paths and the acoustic emission signal enabling analysis of the composite material condition during the loading process were measured. The scope of the study also included performing numerical simulations by finite element method to solve the problem of non-linear stability and to describe the phenomenon of composite material damage based on the progressive failure model. The obtained numerical results showed a good agreement with the experimental characteristics of real structures. The numerical results are compared with the experimental findings to validate the developed numerical model.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2020-07-02
    Description: Chemo-mechanical phenomena, including oscillations and peristaltic motions, are widespread in nature—just think of heartbeats—thanks to the ability of living organisms to convert directly chemical energy into mechanical work. Their imitation with artificial systems is still an open challenge. Chemical clocks and oscillators (such as the popular Belousov–Zhabotinsky (BZ) reaction) are reaction networks characterized by the emergence of peculiar spatiotemporal dynamics. Their application to polymers at interfaces (grafted chains, layer-by-layer assemblies, and polymer brushes) offers great opportunities for developing novel smart biomimetic materials. Despite the wide field of potential applications, limited research has been carried out so far. Here, we aim to showcase the state-of-the-art of this fascinating field of investigation, highlighting the potential for future developments and providing a personal outlook.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2020-08-31
    Description: The presence of one-dimensional (1D) nodal lines, which are formed by band crossing points along a line in the momentum space of materials, is accompanied by several interesting features. However, in order to facilitate experimental detection of the band crossing point signatures, the materials must possess a large linear energy range around the band crossing points. In this work, we focused on a topological metal, YB2, with phase stability and a P6/mmm space group, and studied the phonon dispersion, electronic structure, and topological nodal line signatures via first principles. The computed results show that YB2 is a metallic material with one pair of closed nodal lines in the kz = 0 plane. Importantly, around the band crossing points, a large linear energy range in excess of 2 eV was observed, which was rarely reported in previous reports that focus on linear-crossing materials. Furthermore, YB2 has the following advantages: (1) An absence of a virtual frequency for phonon dispersion, (2) an obvious nontrivial surface state around the band crossing point, and (3) small spin–orbit coupling-induced gaps for the band crossing points.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2020-08-31
    Description: Carbon dioxide (CO2) laser cutting finds one of its most relevant applications in the processing of a wide variety of polymeric materials like thermoplastics and thermosetting plastics. Different types of polymeric materials like polypropylene (PP), polymethyl methacrylate (PMMA), low- and high-density polyethylene (LDPE, HDPE), are processed by laser for different household as well as commercial products in the industry. The reason is their easy availability and economical aspect in the market. The problems associated with laser cutting include heat-affected zone (HAZ) generated on the cut surface, kerf width (KW), surface roughness (SR), dross formation, and striations formation. Furthermore, other related problems include taper cutting for deep parts and high-power consumption. The primary purpose of this work is a comprehensive literature review in CO2 laser cutting of polymeric materials. The influence of parametric variation on the cut quality is also explained. Cut quality in terms of KW, SR, HAZ, dross formation, and striations formation is analyzed by optimizing cutting variables like laser power (PL), cutting speed (CS), assist gas pressure (Pg), pulse frequency, nozzle type and its diameter, and stand-off distance (SOD). The effects of the laser cutting on the properties of different thermoplastics/thermosetting materials are also reported. However, this topic requires further studies on exploring the range of polymeric materials, and their optimal parameters selection to improve the cut quality. Therefore, the research gaps and future research directions are also highlighted in the context of CO2 laser cutting for polymeric materials.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2020-08-31
    Description: III-nitride semiconductors have wide bandgap and high carrier mobility, making them suitable candidates for light-emitting diodes (LEDs), laser diodes (LDs), high electron mobility transistors (HEMTs) and other optoelectronics. Compared with conventional epitaxy technique, van der Waals epitaxy (vdWE) has been proven to be a useful route to relax the requirements of lattice mismatch and thermal mismatch between the nitride epilayers and the substrates. By using vdWE, the stress in the epilayer can be sufficiently relaxed, and the epilayer can be easily exfoliated and transferred, which provides opportunities for novel device design and fabrication. In this paper, we review and discuss the important progress on the researches of nitrides vdWE. The potential applications of nitride vdWE are also prospected.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2020-07-16
    Description: Purpose: Copolyamide 6,10 (coPA) electrospun mats were covered with multilayered (ML) and single-layered (SL) MXene (Ti3C2Tx) as a membrane for the separation of water/vegetable oil emulsions. Methods: Prepared membranes were characterized by atomic force microscopy (AFM), profilometry, the contact angle measurements of various liquids in air, and the underwater contact angle of vegetable oil. The separation efficiency was evaluated by measuring the UV transmittance of stock solutions compared to the UV transmittance of the filtrate. Results: The MXene coating onto coPA mats led to changes in the permeability, hydrophilicity, and roughness of the membranes and enhanced the separation efficiency of the water/vegetable oil emulsions containing 10, 100, and 1000 ppm of sunflower vegetable oil. It was found that membranes were highly oleophobic (〉124°) under water, unlike in air, where the membranes showed high oleophobicity (
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2020-07-15
    Description: In this study, a facile and low-cost method for biochar (CLB) preparation from vegetable waste (cauliflower leaves) was developed at a low temperature (120 °C) in the air atmosphere. The prepared mechanism, adsorption mechanism, and performance of CLB for Cu(II) and Pb(II) sorption were investigated using Scanning electron microscopy- energy dispersive X-ray spectroscopy(SEM-EDS), X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), and a series of sorption experiments. Then the CLB was subjected to single and double element sorption studies to examine the effect of pH value on the Cu(II)/Pb(II) sorption capacities and then competitive sorption priority. There are both more hydroxyl (–OH) and carboxyl (–COOH) functional groups on the surface of CLB compared to those from control (without H3PO4 impregnation), resulting in more ion exchanges and complexation reaction for CLB with Cu(II) and Pb(II). Besides, the phosphorus-containing groups (e.g., P = OOH, P = O.), which newly formed with H3PO4 impregnation, could also enhance sorption, especially for Pb(II), this way leaded to its adsorption and precipitation as Pb5(PO4)3OH crystals. The performance of maximum adsorption capacities of CLB toward Cu(II) and Pb(II) were 81.43 and 224.60 mg/g, respectively. This sorption was slightly pH-dependent, except that the sorption capacity improved significantly as the pH value of the solution increased from 2 to 4. Competitive sorption experiment confirmed that Pb(II) had a higher sorption priority than Cu(II).
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2020-07-16
    Description: Experimental tests were performed on a stack of cuboidal steel elements and its mathematical model was developed. Each cuboidal element was made of rolled profiles. Such stacks are the part of temporary supports that can be used to eliminate deflections of buildings. Stacks were loaded eccentrically through the inaccurate position of a jack. Moreover, two types of geometrical imperfections could be noticed. They included inaccurate contact between the stack elements and initial relative displacements of profiles that formed cuboidal elements. A mathematical model was developed to describe deformations of the stack and its parameters were determined by analysing test results. The eccentricity of the applied force had a slight impact on the stack stiffness, which was considerably reduced by geometrical imperfections. The imperfection covering initial relative displacements of rolled profiles inside cuboidal elements had the greatest impact on the stiffness. It could cause even a 10-fold drop in the stack stiffness when compared with the theoretical stiffness resulting from the stiffness of the stack section, and the stiffness dropped by ca. 3.5 times when the imperfection included the inaccurate contact between the cuboidal elements. Finally, the occurrence of both types of geometrical imperfections generated the real stiffness more than ten times lower than the theoretical stiffness that did not take into account imperfections.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2020-07-16
    Description: Casein is often used as an eco-friendly wood adhesive. In this study, we used casein for soil cementation by mixing it with Jumunjin sand, sodium hydroxide (SH), and calcium hydroxide (CH) as a standard casein formula. The modified casein binder with different proportions of SH and CH was applied to improve water resistance. Furthermore, a blast furnace slag (BFS) was additionally mixed and reacted with alkalinity of modified casein binder. Thus, three types (standard, modified, and modified + BFS, referred to as STD, MOD, and MBS, hereafter) of casein binders were tested for durability and strength of casein-cemented sand. A piezoelectric sensor was installed within each sample to determine the curing time of the casein-cemented samples. The samples were air-cured at room temperature for seven days and some were repeatedly immersed in water thrice. Unconfined compression and jar slake tests were carried out to evaluate the strength and durability of the casein-cemented sand. Also, the microstructure was analyzed using a scanning electron microscope (SEM). We observed variations of peak conductance and corresponding frequency converged as the curing time increased. It was most significant for the MBS samples, which developed strength early. The unconfined compressive strength (UCS) of the air-cured samples was higher than those repeatedly immersed in water due to wash-off of the casein binder. The UCS of the dry MBS sample was 9900 kPa while that of the immersed sample was 430 kPa, which gradually decreased to 60 kPa upon repeated immersion. The samples with STD and MOD had no resistance to durability and showed cracks on the surface, while the MBS sample exhibited significantly improved durability and no cracks. We found that the MBS binder had a positively significant effect on the durability and strength of casein-cemented sand.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2020-07-16
    Description: Cu-Ni-Si alloys are widely used in lead frames and vacuum devices due to their high electrical conductivity and strength. In this paper, a Cu-Ni-Co-Si-Cr-(Ce) alloy was prepared by vacuum induction melting. Hot compression tests of the Cu-Ni-Co-Si-Cr and Cu-Ni-Co-Si-Cr-Ce alloys were carried out using a Gleeble-1500 simulator at 500–900 °C deformation temperatures and 0.001–10 s−1 strain rates. The texture change was analyzed by electron backscatter diffraction. The fiber component dominated the texture after compression, and the texture intensity was reduced during recrystallization. Moreover, the average misorientation angle φ for Cu-Ni-Co-Si-Cr-Ce (11°) was lower than that of Cu-Ni-Co-Si-Cr (16°) under the same conditions. Processing maps were developed to determine the optimal processing window. The microstructure and precipitates of the Cu-Ni-Co-Si-Cr and Cu-Ni-Co-Si-Cr-Ce alloys were also analyzed. The average grain size of the Cu-Ni-Co-Si-Cr-Ce alloy (48 μm) was finer than that of the Cu-Ni-Co-Si-Cr alloy (80 μm). The average size of precipitates in the Cu-Ni-Co-Si-Cr alloy was 73 nm, while that of the Cu-Ni-Co-Si-Cr-Ce alloy was 27 nm. The addition of Ce delayed the occurrence of dynamic recrystallization.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2020-07-16
    Description: A growing number of severe infections are related to antibiotic-resistant bacteria, therefore, in recent years, alternative antimicrobial materials based on silver nanoparticles (NPs) attracted a lot of attention. In the current research, we present a medical patch prototype containing diamond-like carbon nanocomposite thin films doped with silver nanoparticles (DLC:Ag), as a source of silver ions, and an aqueous mass of the gelatin/agar mixture as a silver ion accumulation layer. The DLC:Ag thin films with 3.4 at.% of silver were deposited on synthetic silk employing reactive unbalanced DC magnetron sputtering of the silver target with argon ions performed in the acetylene gas atmosphere. The average size of the silver nanoparticles as defined by scanning electron microscope was 24 nm. After the film deposition, the samples were etched with RF oxygen plasma, aiming at efficient silver ion release in aqueous media from the nanocomposite film. In the patch prototype, a mixture of agar and gelatin was applied in silicone carrier with cavities, acting as a silver ion accumulation layer that further enhanced the antimicrobial efficiency. It was found that the DLC:Ag thin film on the silk after soaking in water for 24 h was able to release up to 4 ppm of Ag. The microbiological experiments using S. aureus bacteria were performed with the patch prototype and the silver ion saturated water, demonstrated the inactivation of 99% and 79% of bacteria, respectively. Scanning electron microscopy analysis showed that silver NPs destroyed the bacteria cell and the bacteria affected by Ag ions had spots and perforated cell wall areas with cytoplasm leakage out was obtained. A preliminary preclinical study using the laboratory animals demonstrated that using the patch prototype, the methicillin-resistant S. aureus (MRSA)-infected wound on skin surface healed faster compared with control and was able to kill all MRSA bacteria strains in the wound’s bed after 72 h of treatment.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2020-07-16
    Description: A new, double hydroxide based on Co and Fe was elaborated on by forced hydrolysis in a polyol medium. Complementary characterization techniques show that this new phase belongs to the layered double hydroxide family (LDH) with Co2+ and Fe3+ ions located in the octahedral sites of the bucite-like structure. The acetate anions occupy interlayer space with an interlamellar distance of 12.70 Å. This large distance likely facilitates the exchange reaction. Acetates were exchanged by carbonates. The as-obtained compound Co-Fe-Ac/Ex shows an interlamellar distance of 7.67 Å. The adsorption of direct red 2 by Co-Fe-Ac-LDH has been examined in order to measure the capability of this new LDH to eliminate highly toxic azoic anionic dyes from waste water and was compared with that of Co-Fe-Ac/Ex and Co-Fe-CO3/A (synthesized in an aqueous medium). The adsorption capacity was found to depend on contact time, pH, initial dye concentration, and heating temperature. Concerning CoFeAc-LDH, the dye uptake reaches a high level (588 mg/g) due to the occurrence of both adsorption processes: physisorption on the external surface and chemical sorption due to the intercalation of dye by exchange with an acetate anion. The study enables us to quantify the uptake amount of each effect in which the intercalation has the most important amount (418 mg/g).
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2020-07-16
    Description: It is well known that the traditional synthetic polymers, such as Polyurethane foams, require raw materials that are not fully sustainable and are based on oil-feedstocks. For this reason, renewable resources such as biomass, polysaccharides and proteins are still recognized as one of the most promising approaches for substituting oil-based raw materials (mainly polyols). However, polyurethanes from renewable sources exhibit poor physical and functional performances. For this reason, the best technological solution is the production of polyurethane materials obtained through a partial replacement of the oil-based polyurethane precursors. This approach enables a good balance between the need to improve the sustainability of the polymer and the need to achieve suitable performances, to fulfill the technological requirements for specific applications. In this paper, a succinic-based polyol sample (obtained from biomass source) was synthesized, characterized and blended with cardanol-based polyol (Mannich-based polyol) to produce sustainable rigid polyurethane foams in which the oil-based polyol is totally replaced. A suitable amount of catalysts and surfactant, water as blowing reagent and poly-methylene diphenyl di-isocyanate as isocyanate source were used for the polyurethane synthesis. The resulting foams were characterized by means of infrared spectroscopy (FTIR) to control the cross-linking reactions, scanning electron microscopy (SEM) to evaluate the morphological structure and thermal gravimetric analysis (TGA) and thermal conductivity to evaluate thermal degradation behavior and thermal insulation properties.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2020-07-16
    Description: In the machine, metallurgical, and shipbuilding industries, steel products with alloy and composite coatings based on nickel may be used. It is expedient to improve the physicochemical properties of the surface layer of products as they have a significant roughness value after thermal spraying. It is therefore important to finish the layers applied by flame spraying, where machining is used for this purpose. However, it causes a loss of coating material, which is quite expensive. Therefore, in order to reduce costs and improve the quality of the surface layer, the finishing treatment of nickel-based coatings by means of plastic working is used. Two types of plastic working were proposed: rolling and burnishing. Numerical and experimental tests of the plastic processing of alloy coatings were carried out. The roughness of the coatings after rolling decreased to 1/25 and 30% strengthening of the alloy coating matrix was determined. After burnishing, roughness was reduced to 1/12 and the alloy coatings were strengthened by 25%. Plastic working by rolling and burnishing has a beneficial effect on the surface quality of the workpiece, not only by significantly improving the roughness, but also by increasing the strength properties of the surface layers.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2020-07-15
    Description: The targeted separation of oil/water mixtures is a rapidly growing field of research, mainly due to contaminated water becoming an increasingly important environmental issue. Superhydrophobic materials are highly suited to this application; however, growing efforts are being devoted to developing applicable technologies within a range of research communities. The optimal technical solution is one that combines a high separation efficiency with a straightforward fabrication procedure at a low cost. In this report, micronized polyethylene powder has been utilized as a low-cost hydrophobic material to manufacture easy-to-fabricate filters. The effect of heating and solvent addition on the water repellence behaviour has been investigated, according to which the optimum fabrication conditions were determined. The filters show high water repellence (WCA = 154°) and efficient oil/water separation (~99%). The filters are designed to provide a readily achievable approach for the separation of oils (hydrophobic solvents) from water in a range of potential applications.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2020-07-16
    Description: Arsenic poisoning in the environment can cause severe effects on human health, hence detection is crucial. An electrochemical-based portable assessment of arsenic contamination is the ability to identify arsenite (As(III)). To achieve this, a low-cost electroanalytical assay for the detection of As(III) utilizing a silica nanoparticles (SiNPs)-modified screen-printed carbon electrode (SPCE) was developed. The morphological and elemental analysis of functionalized SiNPs and a SiNPs/SPCE-modified sensor was studied using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR). The electrochemical responses towards arsenic detection were measured using the cyclic voltammetry (CV) and linear sweep anodic stripping voltammetry (LSASV) techniques. Under optimized conditions, the anodic peak current was proportional to the As(III) concentration over a wide linear range of 5 to 30 µg/L, with a detection limit of 6.2 µg/L. The suggested approach was effectively valid for the testing of As(III) found within the real water samples with good reproducibility and stability.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2020-07-16
    Description: Gadolinium-Doped Ceria (GDC) is a prospective material for application in electrochemical devices. Free sintering in air of GDC powder usually requires temperatures in the range of 1400 to 1600 °C and dwell time of several hours. Recently, it was demonstrated that sintering temperature can be significantly decreased, when sintering was performed in reducing atmosphere. Following re-oxidation at elevated temperatures was found to be a helpful measure to avoid sample failure. Sintering temperature and dwell time can be also decreased by use of Spark Plasma Sintering, also known as Field-Assisted Sintering Technique (FAST/SPS). In the present work, we combined for the first time the advantages of FAST/SPS technology and re-oxidation for sintering of GDC parts. However, GDC samples sintered by FAST/SPS were highly sensitive to fragmentation. Therefore, we investigated the factors responsible for this effect. Based on understanding of these factors, a special tool was designed enabling pressureless FAST/SPS sintering in controlled atmosphere. For proof of concept, a commercial GDC powder was sintered in this tool in reducing atmosphere (Ar-2.9%H2), followed by re-oxidation. The fragmentation of GDC samples was avoided and the number of micro-cracks was reduced to a minimum. Prospects of GDC sintering by FAST/SPS were discussed.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2020-07-01
    Print ISSN: 0268-3768
    Electronic ISSN: 1433-3015
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
  • 72
    Publication Date: 2020-07-15
    Description: Over the past decades, extensive studies on municipal solid waste incineration (MSWI) ashes have been performed to develop more effective recycling and waste management programs. Despite the large amount of research activities and the resulting improvements to MSWI ashes, the recycling programs for MSWI ashes are limited. For instance, although the U.S. generates more MSWI ashes than any other country in the world, its reuse/recycle programs are limited; bottom ash and fly ash are combined and disposed of in landfills. Reuse of MSWI ashes in the construction sectors (i.e., geomaterials, asphalt paving, and concrete products) as replacements for raw materials is one of most promising options because of the large consumption and relatively lenient environmental criteria. The main objective of this study was to comprehensively review MSWI ashes with regard to specific engineering properties and their performance as construction materials. The focus was on (1) the current practices of MSWI ash management (in particular, a comparison between European countries and the U.S.), (2) the engineering properties and performance of ashes when they are used as substitutes of construction materials and for field applications, and (3) the environmental properties and criteria for the use of MSWI ashes. Overall, the asphalt and concrete applications are the most promising, from both the mechanical and leachate viewpoints. However, cons were also observed: high absorption of MSWI ash requires a high asphalt binder content in hot-mix asphalt, and metallic elements in the ash may generate H2 gas in the high-pH environment of the concrete. These side effects can be predicted via material characterization (i.e., chemical and physical), and accordingly, proper treatment and/or modified mix proportioning can be performed prior to use.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2020-07-15
    Description: Fungal prosthetic-joint infections are rare but devastating complications following arthroplasty. These infections are highly recurrent and expose the patient to the development of candidemia, which has high mortality rates. Patients with this condition are often immunocompromised and present several comorbidities, and thus pose a challenge for diagnosis and treatment. The most frequently isolated organisms in these infections are Candida albicans and Candida parapsilosis, pathogens that initiate the infection by developing a biofilm on the implant surface. In this study, a novel hybrid organo–inorganic sol–gel coating was developed from a mixture of organopolysiloxanes and organophosphite, to which different concentrations of fluconazole or anidulafungin were added. Then, the capacity of these coatings to prevent biofilm formation and treat mature biofilms produced by reference and clinical strains of C. albicans and C. Parapsilosis was evaluated. Anidulafungin-loaded sol–gel coatings were more effective in preventing C. albicans biofilm formation, while fluconazole-loaded sol–gel prevented C. parapsilosis biofilm formation more effectively. Treatment with unloaded sol–gel was sufficient to reduce C. albicans biofilms, and the sol–gels loaded with fluconazole or anidulafungin slightly enhanced this effect. In contrast, unloaded coatings stimulated C. parapsilosis biofilm formation, and loading with fluconazole reduced these biofilms by up to 99%. In conclusion, these coatings represent a novel therapeutic approach with potential clinical use to prevent and treat fungal prosthetic-joint infections.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2020-07-15
    Description: Concentrated collagen hydrolysate (HC10CC), rabbit collagen glue (RCG), and keratin hydrolysate (KH) were investigated in terms of their extraction from mammalian by-products and processing by electrospinning. The electrospun nanofibers were characterized by scanning electron microscopy coupled with the energy dispersive X-ray spectroscopy (SEM/EDS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), and indentation tests. The cytotoxicity of the electrospun nanofibers was conducted on L929 fibroblast cells using MTT and LDH assays and cell morphology observations. The electrospun RCG and KH nanofibers morphology showed an average size of nanofibers ranging between 44 and 410 nm, while the electrospun HC10CC nanofibers exhibited higher sizes. The ATR-FTIR spectra performed both on extracted proteins and electrospun nanofibers showed that the triple helix structure of collagen is partially preserved. The results were in agreement with the circular dichroism analysis for protein extracts. Furthermore, the viscoelastic properties of electrospun KH nanofibers were superior to those of electrospun RCG nanofibers. Based on both in vitro quantitative and qualitative analysis, the electrospun nanofibers were not cytotoxic, inducing a healthy cellular response. The results of new electrospun protein-based nanofibers may be useful for further research on bioactive properties of these nanofibers for tissue engineering.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2020-07-15
    Description: At the stage of designing a special machine tool, it is necessary to analyze many variants of structural solutions of frames and load-bearing systems and to choose the best solution in terms of dynamic properties, in particular considering its resistance to chatter. For this reason, it is preferred to adopt a low-dimensional calculation model, which allows the user to reduce the necessary calculation time while maintaining a high accuracy. The paper presents the methodology of modeling the natural frequencies, mode shapes, and receptance functions of machine tool steel welded frames filled with strongly heterogenous polymer concrete, using low-dimensional models developed by the rigid finite elements method (RigFEM). In the presented study, a RigFEM model of a simple steel beam filled with polymer concrete and a frame composed of such beams were built. Then, the dynamic properties obtained on the basis of the developed RigFEM models were compared with the experimental results and the 1D and 3D finite element models (FEM) in terms of accuracy and dimensionality. As a result of the experimental verification, the full structural compliance of the RigFEM models (for beam and frame) was obtained, which was manifested by the agreement of the mode shapes. Additionally, experimental verification showed a high accuracy of the RigFEM models, obtaining for the beam model a relative error for natural frequencies of less than 4% and on average 2.2%, and for the frame model at a level not exceeding 11% and on average 5.5%. Comparing the RigFEM and FEM models, it was found that the RigFEM models have a slightly worse accuracy, with a dimensionality significantly reduced by 95% for the beam and 99.8% for the frame.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2020-07-15
    Description: Cement composites prepared with nanoparticles have been widely studied in order to achieve superior performance structures. The incorporation of carbon nanotubes (CNTs) is an excellent alternative due to their mechanical, electrical, and thermal properties. However, effective dispersion is essential to ensure strength gains. In the present work, cement pastes were prepared incorporating CNTs in proportions up to 0.10% by weight of cement, dispersed on the surface of anhydrous cement particles in isopropanol suspension and using ultrasonic agitation. Digital image correlation was employed to obtain basic mechanical parameters of three-point bending tests. The results indicated a 34% gain in compressive strength and 12% in flexural tensile strength gains, respectively, as well as a 70% gain in fracture energy and 14% in fracture toughness in the presence of 0.05% CNTs were recorded. These results suggest that CNTs act as crack propagation controllers. Moreover, CNT presence contributes to pore volume reduction, increases the density of cement pastes, and suggests that CNTs additionally act as nucleation sites of the cement hydration products. Scanning electron microscopy images indicate effective dispersion as a result of the methodology adopted, plus strong bonding between CNTs and the cement hydration product. Therefore, CNTs can be used to obtain more resistant and durable cement-based composites.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2020-07-16
    Description: Microelectromechanical systems (MEMS) are increasingly playing a significant role in the aviation industry and space exploration. Moreover, there is a need to study the neutron radiation effect on the MEMS structural members and the MEMS devices reliability in general. Experiments with MEMS structural members showed changes in their operation after exposure to neutron radiation. In this study, the neutron irradiation effect on the flexible MEMS resonators’ stability in the form of shallow rectangular shells is investigated. The theory of flexible rectangular shallow shells under the influence of both neutron irradiation and temperature field is developed. It consists of three components. First, the theory of flexible rectangular shallow shells under neutron radiation in temperature field was considered based on the Kirchhoff hypothesis and energetic Hamilton principle. Second, the theory of plasticity relaxation and cyclic loading were taken into account. Third, the Birger method of variable parameters was employed. The derived mathematical model was solved using both the finite difference method and the Bubnov–Galerkin method of higher approximations. It was established based on a few numeric examples that the irradiation direction of the MEMS structural members significantly affects the magnitude and shape of the plastic deformations’ distribution, as well as the forces magnitude in the shell middle surface, although qualitatively with the same deflection the diagrams of the main investigated functions were similar.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2020-07-16
    Description: The sports industry is an ever-growing sector worldwide. With technological advancements in information technologies, the sports industry has merged with the entertainment industry, reaching and influencing billions of people globally. However, to ensure and advance the safety, security, and sustainability of the sports industry, technological innovations are always needed in several manufacturing and materials processes to achieve cost-effectiveness, efficiency, durability, reusability, and recyclability of products used in this industry. For example, 90% of the field hockey equipment produced in the world comes from Sialkot, Pakistan. Most export quality field hockey equipment is currently produced via reinforcement of glass/carbon fibers in epoxy resin. The current study aimed to introduce new materials for field hockey equipment to reduce manufacturing costs and the environmental impact of synthetic materials, without comprising the quality of the final product. Our literature review on natural fibers revealed that they offer excellent and compatible mechanical properties. Based on extensive experimental studies, we concluded that banana fiber reinforced hybrid composites could be an alternative to pure glass fiber reinforced composites, with comparable and even higher load withstanding capabilities. Using banana fiber reinforced hybrid composites for the fabrication of hockey products would cut costs and lower the environmental impact stemming from the uses of biodegradable organic materials. It will also lead to the development of a domestic economy based on domestic resources.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2020-07-15
    Description: In this paper, we have investigated the deposition of thin films from natural carvacrol extract using dielectric barrier discharge (DBD) plasma polymerization, aiming at the inhibition of bacteria adhesion and proliferation. The films deposited on stainless steel samples have been characterized by scanning electron microscopy, infrared reflectance-absorbance spectroscopy, profilometry, and contact angle measurements. Films with thicknesses ranging from 1.5 μm to 3.5 μm presented a chemical structure similar to that of carvacrol. While the formation of biofilm was observed on untreated samples, the coating completely inhibited the adhesion of E. coli and reduced the adhesion of S. aureus biofilm in more than 90%.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2020-07-15
    Description: Incorporating reclaimed asphalt pavement (RAP) into asphalt mixtures achieves astonishingly environmental and economic benefits. However, there is hesitation to use higher RAP content due to the concern regarding the deterioration in pavement performance, especially the cracking resistance. Basalt fiber has been considered an effective additive to reinforce the performance of asphalt mixtures and, subsequently, the reinforcement effect is also expected for high-RAP content mixtures. Therefore, this study investigated the effect of basalt fiber on the pavement performance of asphalt mixtures with 0%, 30%, 40%, and 50% RAP contents against high-temperature performance, moisture susceptibility, low-temperature and intermediate-temperature cracking resistance, based on the wheel-tracking test, the uniaxial penetration test, the freeze-thaw splitting test, the low-temperature bending beam test, the semicircular bend fracture test and the indirect tensile asphalt cracking test, respectively. In addition, a performance-space diagram was developed to determine the mixture performance shift caused by basalt fiber. The results showed that adding basalt fiber compensated for the detrimental effect caused by RAP, leading to significant enhancement in moisture susceptibility and low- and intermediate-temperature cracking resistance of mixtures with high RAP content, along with the enhancement in high-temperature performance, indicating that basalt fiber can contribute to the use of high RAP content.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2020-07-15
    Description: A high positive magnetoresistance (MR), 78%, is observed at 2 K on the ab plane of the diamagnetic RuSb2+ semiconductor. On the ac plane, MR is 44% at 2 K, and about 7% at 300 K. MR at different temperatures do not follow the Kohler’s rule. It suggests that the multiband effect plays a role on the carrier transportation. RuSb2+ is a semiconductor with both positive and negative carriers. The quantum interference effect with the weak localization correction lies behind the high positive MR at low temperature. Judged from the ultraviolet–visible spectra, it has a direct band gap of 1.29 eV. The valence band is 0.39 eV below the Fermi energy. The schematic energy band structure is proposed based on experimental results.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2020-07-15
    Description: The fused filament fabrication (FFF) of ceramics enables the additive manufacturing of components with complex geometries for many applications like tooling or prototyping. Nevertheless, due to the many factors involved in the process, it is difficult to separate the effect of the different parameters on the final properties of the FFF parts, which hinders the expansion of the technology. In this paper, the effect of the fill pattern used during FFF on the defects and the mechanical properties of zirconia components is evaluated. The zirconia-filled filaments were produced from scratch, characterized by different methods and used in the FFF of bending bars with infill orientations of 0°, ±45° and 90° with respect to the longest dimension of the specimens. Three-point bending tests were conducted on the specimens with the side in contact with the build platform under tensile loads. Next, the defects were identified with cuts in different sections. During the shaping by FFF, pores appeared inside the extruded roads due to binder degradation and or moisture evaporation. The changes in the fill pattern resulted in different types of porosity and defects in the first layer, with the latter leading to earlier fracture of the components. Due to these variations, the specimens with the 0° infill orientation had the lowest porosity and the highest bending strength, followed by the specimens with ±45° infill orientation and finally by those with 90° infill orientation.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2020-07-15
    Description: Using the data of a quantum chemical modeling of molecular structures obtained by the density functional theory (DFT), the possibility of the existence of a copper macrocyclic complexes with 3,7,11,15-tetraazaaporphine, trans-di[benzo] 3,7,11,15-tetraazaaporphine or tetra[benzo] 3,7,11,15-tetraazaaporphine and oxide anion where oxidation state of copper is IV, was shown. The values of the parameters of molecular structures and NBO analysis for such complexes were presented, too.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2020-07-15
    Description: In this paper, a weight function method based on the first four terms of a Taylor’s series expansion is proposed to determine the stress intensity factors of functionally graded plates with semi-elliptical surface cracks. Cracked surfaces that are subjected to constant, linear, parabolic and cubic stress fields are considered. The weight functions for the surface, deepest and general points on the crack faces of long and deep cracked functionally graded plates are derived, which has never been done before in the literature. The accuracy of the method in this study is then validated by comparing the results with those of finite element modeling. The numerical results indicate that the derived weight functions are highly accurate and robust enough to predict the stress intensity factors for cracked functionally graded plates subjected to non-uniform stress distributions. The weight function method is therefore a time-saving technique and suitable for handling non-uniform stress fields.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2020-07-15
    Description: Water-lubricated bearings usually operate under severe environmental conditions, most likely in the mixed regime, in which surface contact between the drive shaft and the bearing sleeve is often significant. This presents great challenges to bearing design, especially material selection. The Tenmat, Thordon, and Rubber are common water-lubricated bearing composites. In this paper, by using a block-on-ring test apparatus, the Stribeck curve, wear rate, and vibration characteristics of three kinds of polymer materials in water-lubricated bearings (Tenmat, Thordon SXL, and Ben Teng Group (BTG) Rubber) under low speed and heavy load were studied. The experimental results show that, under the same working conditions, BTG rubber has excellent tribological properties and vibration properties. The research method in this paper can provide references for the selection of materials used for friction pair, improvement of working performance and vibration reduction of water-lubricated bearings in the future.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2020-07-15
    Description: One of the biggest challenges in the commercialization of tin dioxide (SnO2)-based lithium-ion battery (LIB) electrodes is the volume expansion of SnO2 during the charge–discharge process. Additionally, the aggregation of SnO2 also deteriorates the performance of anode materials. In this study, we prepared SnO2 nanoflowers (NFs) using nanocrystalline cellulose (CNC) to improve the surface area, prevent the particle aggregation, and alleviate the change in volume of LIB anodes. Moreover, CNC served not only as the template for the synthesis of the SnO2 NFs but also as a conductive material, after annealing the SnO2 NFs at 800 °C to improve their electrochemical performance. The obtained CNC–SnO2NF composite was used as an active LIB electrode material and exhibited good cycling performance and a high initial reversible capacity of 891 mA h g−1, at a current density of 100 mA g−1. The composite anode could retain 30% of its initial capacity after 500 charge–discharge cycles.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2020-07-01
    Print ISSN: 0268-3768
    Electronic ISSN: 1433-3015
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2020-07-10
    Description: To speed up the implementation of the two-dimensional materials in the development of potential biomedical applications, the toxicological aspects toward human health need to be addressed. Due to time-consuming and expensive analysis, only part of the continuously expanding family of 2D materials can be tested in vitro. The machine learning methods can be used—by extracting new insights from available biological data sets, and provide further guidance for experimental studies. This study identifies the most relevant highly surface-specific features that might be responsible for cytotoxic behavior of 2D materials, especially MXenes. In particular, two factors, namely, the presence of transition metal oxides and lithium atoms on the surface, are identified as cytotoxicity-generating features. The developed machine learning model succeeds in predicting toxicity for other 2D MXenes, previously not tested in vitro, and hence, is able to complement the existing knowledge coming from in vitro studies. Thus, we claim that it might be one of the solutions for reducing the number of toxicological studies needed, and allows for minimizing failures in future biological applications.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2020-07-08
    Description: The tensile properties, scratch behaviors and sliding wear of an oxide scale obtained on the surface of titanium Grade 2 in the process of isothermal oxidation at 600, 700 and 800 °C were determined in the study. It was shown that the intensity of the oxidation process increased along with an increase in temperature and extension of the oxidation time, which translated directly into the thickness of the deposited oxide layers. The tests showed that isothermal oxidation had an adverse effect on the tensile properties of titanium. After oxidation, it was found that the maximum reduction in tensile strength, Rm, was approximately 17.5%, and of the yield point, Rp0.2, approximately 13.9%. Examination of scratch behaviors of the oxide scale showed that the layers obtained at temperatures of 700 (72 h) and 800 °C (2 and 6 h) had the best adhesion properties. The best resistance to scratching was exhibited by the layer obtained after 6 h oxidation at 800 °C (critical load: Lc1 = 63 N, Lc2 = 85 N). The study showed that after oxidation, a considerable reduction in wear factor of a disc made of titanium Grade 2 was observed for both the friction couples used (Al2O3, steel 100Cr6). The maximum reduction in wear factor of the oxidized titanium disc during interaction with Al2O3 balls was ca. 79%, and with 100Cr6 balls, ca. 96%.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2020-07-08
    Description: Stabilization is a traditional strategy used to improve soils with the main objective of ensuring that this base is compliant with the technical specifications required for the subsequent development of different infrastructures. This study proposes the use of commercial nanomaterials, based on a solution of silicates, to improve the technical characteristics and bearing capacity of the expansive soil. A physical–chemical property study was carried out on the additive nanomaterial. Subsequently, different mixtures of expansive soil, selected soil and artificial gravel with quicklime and commercial nanomaterials were developed to evaluate the improvement obtained by the use of nanomaterials in the technical characteristics of the soil. Compressive strength and the Californian Bearing Ratio index were considerably increased. A full-scale study was carried out in which the nanomaterial product was applied to two different sections of stabilized road compared to a control section. The results obtained showed that the use of nanomaterial led to the possibility of reducing the control section by 30 cm, thus achieving less use of quicklime and a mechanical means for preparing the road section. The use of commercial nanomaterial improved the behavior of the stabilized sub-base layer. Through life cycle assessment, this study has shown that the use of nanomaterials reduces the environmental impact associated with soil stabilization.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2020-07-08
    Description: Zirconia is a well-known bioceramic for dental and orthopedic applications due to its mechanical and aesthetic properties. However, it lacks sufficient bioactivity to bond with the living bone. This study was aimed to induce bioactivity to tetragonal zirconia polycrystal (3Y-TZP) by simple biomimetic aqueous solution treatment. First, hydrofluoric acid (HF) etching was performed to enhance the surface roughness of the 3Y-TZP surface. Then, the samples were treated with two types of aqueous solutions containing calcium and phosphate ions (Ca-P solutions); one solution additionally contained magnesium (Mg) ions and the other without Mg ions. Finally, hydroxyapatite (HAp)-forming ability was evaluated by the conventional simulated body fluid (SBF) test, and the effect of Mg ions on the adhesive strength of the HAp layer to the roughened 3Y-TZP surface was also investigated. The results concluded that there were no noticeable differences in the effect of Mg ions on the HAp-forming ability, and both types of solution treatments resulted in dense HAp formation in 1 day SBF immersion. However, incorporation of Mg ions in one of the Ca-P solutions significantly improved the adhesive strength of the HAp layer to the HF-etched 3Y-TZP substrate compared to the Ca-P solution with no Mg ions.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2020-07-09
    Description: Fe3O4 decorated graphene was synthesized for electromagnetic wave absorption via a facile one-pot hydrothermal approach. The structure and morphology of the as-prepared nanomaterials were systematically investigated. The graphene oxide (GO) was reduced and Fe3O4 nanoparticles were evenly decorated on the surface of reduced graphene oxide (rGO) nanosheets. The average particle size of Fe3O4 nanoparticles is about 15.3 nm. The as-prepared rGO-Fe3O4 nanocomposites exhibited a good microwave absorption performance because of the combination of graphene and magnetic Fe3O4. When the thicknesses are 1.6 mm and 6.5 mm, the reflection loss (RL) values are up to −34.4 dB and −37.5 dB, respectively. The effective bandwidths are 3.8 and 1.9 GHz.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2020-07-09
    Description: Submicron biomaterials have recently been found with a wide range of applications for biomedical purposes, mostly due to a considerable decrement in size and an increment in surface area. There have been several attempts to use innovative nanoscale biomaterials for tissue repair and tissue regeneration. One of the most significant metal oxide nanoparticles (NPs), with numerous potential uses in future medicine, is engineered cerium oxide (CeO2) nanoparticles (CeONPs), also known as nanoceria. Although many advancements have been reported so far, nanotoxicological studies suggest that the nanomaterial’s characteristics lie behind its potential toxicity. Particularly, physicochemical properties can explain the positive and negative interactions between CeONPs and biosystems at molecular levels. This review represents recent advances of CeONPs in biomedical engineering, with a special focus on tissue engineering and regenerative medicine. In addition, a summary report of the toxicity evidence on CeONPs with a view toward their biomedical applications and physicochemical properties is presented. Considering the critical role of nanoengineering in the manipulation and optimization of CeONPs, it is expected that this class of nanoengineered biomaterials plays a promising role in the future of tissue engineering and regenerative medicine.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2020-07-09
    Description: To prevent cracks caused by shrinkage of the deck of the Xiaoqing River Bridge, MgO concrete (MC) and steel fiber reinforced MgO concrete (SMC) were used. The deformation and strength of the deck were measured in the field, the resistance to chloride penetration of the concrete was measured in the laboratory, and the pore structure of the concrete was analyzed by a mercury intrusion porosimeter (MIP). The results showed that the expansion caused by the hydration of MgO could suppress the shrinkage of the bridge deck, and the deformation of the deck changed from −88.3 × 10−6 to 24.9 × 10−6, effectively preventing shrinkage cracks. At the same time, due to the restriction of the expansion of MgO by the steel bars, the expansion of the bridge deck in the later stage gradually stabilized, and no harmful expansion was produced. When steel fiber and MgO were used at the same time, the three-dimensional distribution of steel fiber further limited the expansion of MgO. The hydration expansion of MgO in confined space reduced the porosity of concrete, optimized the pore structure, and improved the strength and durability of concrete. The research on the performance of concrete in the in-situ test section showed that MgO and steel fiber were safe for the bridge deck, which not only solved the problem of shrinkage cracking of the bridge deck but also further improved the mechanical properties of the bridge deck.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2020-07-09
    Description: Bicelles have been intensively studied for use as drug delivery carriers and in biological studies, but their preparation with low-cost materials and via a simple process would allow their use for other purposes as well. Herein, bicelles were prepared through a semi-spontaneous method using a mixture of hydrogenated soybean lecithin (SL) and a nonionic surfactant, polyoxyethylene cholesteryl ether (ChEO10), and then we investigated the effect of composition and temperature on the structure of bicelles, which is important to design tailored systems. As the fraction of ChEO10 (XC) was increased, a bimodal particle size distribution with a small particle size of several tens of nanometers and a large particle size of several hundred nanometers was obtained, and only small particles were observed when XC ≥ 0.6, suggesting the formation of significant structure transition (liposomes to bicelles). The small-angle neutron scattering (SANS) spectrum for these particles fitted a core-shell bicelle model, providing further evidence of bicelle formation. A transition from a monomodal to a bimodal size distribution occurred as the temperature was increased, with this transition taking place at lower temperatures when higher SL-ChEO10 concentrations were used. SANS showed that this temperature-dependent size change was reversible, suggesting the SL-ChEO10 bicelles were stable against temperature, hence making them suitable for several applications.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2020-07-07
    Description: Anisotropy can influence surface function and can be an indication of processing. These influences and indications include friction, wetting, and microwear. This article studies two methods for multiscale quantification and visualization of anisotropy. One uses multiscale curvature tensor analysis and shows anisotropy in horizontal coordinates i.e., topocentric. The other uses multiple bandpass filters (also known as sliding bandpass filters) applied prior to calculating anisotropy parameters, texture aspect ratios (Str) and texture directions (Std), showing anisotropy in horizontal directions only. Topographies were studied on two milled steel surfaces, one convex with an evident large scale, cylindrical form anisotropy, the other nominally flat with smaller scale anisotropies; a µEDMed surface, an example of an isotropic surface; and an additively manufactured surface with pillar-like features. Curvature tensors contain the two principal curvatures, i.e., maximum and minimum curvatures, which are orthogonal, and their directions, at each location. Principal directions are plotted for each calculated location on each surface, at each scale considered. Histograms in horizontal coordinates show altitude and azimuth angles of principal curvatures, elucidating dominant texture directions at each scale. Str and Std do not show vertical components, i.e., altitudes, of anisotropy. Changes of anisotropy with scale categorically failed to be detected by traditional characterization methods used conventionally. These multiscale methods show clearly in several representations that anisotropy changes with scale on actual surface measurements with markedly different anisotropies.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2020-07-07
    Description: Background: Recently, the defects of the tooth surface in the cervical region are often restored using composite filling materials. It should meet the needs of the patients regarding esthetics and material stability. The aim of the study was to analyze the tooth root surface at the cervical region after the removal of the composite filling material by means of the Erbium-doped Yttrium Aluminium Garnet (Er: YAG) laser or drill using the scanning electron microscopy (SEM) and fluorescence microscopy. Materials and Methods: For the purposes of this study, 14 premolar teeth (n = 14) were removed due to orthodontic reasons. The rectangular shape cavities with 3 mm in width and 1.5 mm in height were prepared with a 0.8 mm bur on high-speed contra-angle in the tooth surface just below cemento-enamel junction (CEJ) and filled with the composite material. The composite material was removed with the Er: YAG laser at a power of 3.4 W, energy 170 mJ, frequency 20 Hz, pulse duration 300 μs, tip diameter 0.8 mm, air/fluid cooling 3 mL/s, and time of irradiation: 6 sec, at a distance from teeth of 2 mm (G1 group, n = 7) or a high-speed contra-angle bur (G2 group, n = 7). After the removal of composite material, the surfaces of teeth were examined using the scanning electron microscopy (SEM) and fluorescence microscopy. Results: The Er: YAG irradiation allowed to remove completely the composite material from the tooth cavity. The study confirmed, that the ends of collagen fibers were only partially denatured after the Er: YAG laser application. Conclusion: It has been proved that using the Er: YAG laser is an effective and safe method of composite removal for the dentin surface.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2020-07-07
    Description: Graphitic carbon nitride (g-C3N4) is a conjugated polymer, which recently drew a lot of attention as a metal-free and UV and visible light responsive photocatalyst in the field of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability and earth-abundant nature. In the present work, bulk g-C3N4 was synthesized by thermal decomposition of melamine. This material was further exfoliated by thermal treatment. S-doped samples were prepared from thiourea or further treatment of exfoliated g-C3N4 by mesylchloride. Synthesized materials were applied for photocatalytic removal of air pollutants (acetaldehyde and NOx) according to the ISO 22197 and ISO 22197-1 methodology. The efficiency of acetaldehyde removal under UV irradiation was negligible for all g-C3N4 samples. This can be explained by the fact that g-C3N4 under irradiation does not directly form hydroxyl radicals, which are the primary oxidation species in acetaldehyde oxidation. It was proved by electron paramagnetic resonance (EPR) spectroscopy that the dominant species formed on the irradiated surface of g-C3N4 was the superoxide radical. Its production was responsible for a very high NOx removal efficiency not only under UV irradiation (which was comparable with that of TiO2), but also under visible irradiation.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2020-07-07
    Description: The dynamic mechanical behaviors of Hydroxyl-terminated polybutadiene (HTPB) propellant was studied by a split Hopkinson pressure bar apparatus (SHPB) at strain rates ranging from 103 to 104 s−1. The obtained stress–strain curves indicated that the mechanical features, such as ultimate stress and strain energy, were strongly dependent on the strain rate. The real time deformation and fracture evolution of HTPB propellant were captured by a high-speed digital camera accompanied with an SHPB setup. Furthermore, microscopic observation for the post-test specimen was conducted to explore the different damage mechanisms under various conditions of impact loading. The dominated damage characteristics of HTPB propellant were changed from debonding and matrix tearing to multiple cracking modes of ammonium perchlorate (AP) particles, along with the increase of the strain rate. For the first time, the influence of AP particle density on the dynamic response of HTPB propellant was studied by analyzing the strain-rate sensitivity (SRS) index of HTPB propellant with two different filler content (80 wt.% and 85 wt.%), which deduced from a power function of ultimate stress and strain energy density. The result of this study is of significance for evaluating the structural integrity and security of HTPB propellant.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2020-07-08
    Description: High strain rate biaxial forging (HSRBF) was performed on AZ31 magnesium alloy to an accumulated strain of ΣΔε = 1.32, the related microstructure, texture and mechanical properties were investigated. It was found that the microstructure evolution can be divided into two steps during HSRBF. In the early forging processes, the refinement of the grain is obvious, the size of ~10 μm can be achieved; this can be attributed to the unique mechanisms including the formation of high density twins ({1012} extension twin and {1011}-{1012} secondary twin) and subsequently twining induced DRX (dynamic recrystallization). The thermal activated temperature increases with the increase of accumulated strain and results in the grain growth. Rolling texture is the main texture in the high strain rate biaxial forged (HSRBFed) alloys, the intensity of which decreases with the accumulated strain. Moreover, the basal pole rotates towards the direction of forging direction (FD) after each forging pass, and a basal texture with basal pole inclining at 15–20° from the rolling direction (RD) is formed in the full recrystallized HSRBFed alloys. The grain refinement and tiled texture are attributed to the excellent strength and ductility of HSRMBFed alloys with full recrystallized structure. As the accumulated strain is ΣΔε = 0.88, the HSRMBFed alloy displays an outstanding combination of mechanical properties, the ultimate tensile strength (UTS) is 331.2 MPa and the elongation is 25.1%.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...