ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice  (185)
  • 2005-2009  (185)
  • 2006  (185)
Collection
Keywords
Years
  • 2005-2009  (185)
Year
  • 1
    Publication Date: 2006-12-23
    Description: The germinal center (GC) is an important site for the generation and selection of B cells bearing high-affinity antibodies, yet GC cell migration and interaction dynamics have not been directly observed. Using two-photon microscopy of mouse lymph nodes, we revealed that GC B cells are highly motile and extend long cell processes. They transited between GC dark and light zones and divided in both regions, although these B cells resided for only several hours in the light zone where antigen is displayed. GC B cells formed few stable contacts with GC T cells despite frequent encounters, and T cells were seen to carry dead B cell blebs. On the basis of these observations, we propose a model in which competition for T cell help plays a more dominant role in the selection of GC B cells than previously appreciated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Allen, Christopher D C -- Okada, Takaharu -- Tang, H Lucy -- Cyster, Jason G -- New York, N.Y. -- Science. 2007 Jan 26;315(5811):528-31. Epub 2006 Dec 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17185562" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antibody Affinity ; B-Lymphocytes/*cytology/*immunology/physiology ; Cell Cycle ; Cell Death ; Cell Movement ; Dendritic Cells, Follicular/cytology/physiology ; Germinal Center/cytology/*immunology ; Macrophages/physiology ; Mice ; Mice, Inbred C57BL ; Microscopy/methods ; Models, Immunological ; Mutation ; T-Lymphocytes/cytology/immunology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-12-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wickelgren, Ingrid -- New York, N.Y. -- Science. 2006 Dec 22;314(5807):1859-60.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17185572" target="_blank"〉PubMed〈/a〉
    Keywords: *Adjuvants, Immunologic ; Animals ; *Antibody Formation ; B-Lymphocytes/immunology ; Immunity, Innate ; Mice ; Toll-Like Receptors/*immunology ; Vaccines/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-12-23
    Description: Innate immune signals mediated by Toll-like receptors (TLRs) have been thought to contribute considerably to the antibody-enhancing effects of vaccine adjuvants. However, we report here that mice deficient in the critical signaling components for TLR mount robust antibody responses to T cell-dependent antigen given in four typical adjuvants: alum, Freund's complete adjuvant, Freund's incomplete adjuvant, and monophosphoryl-lipid A/trehalose dicorynomycolate adjuvant. We conclude that TLR signaling does not account for the action of classical adjuvants and does not fully explain the action of a strong adjuvant containing a TLR ligand. This may have important implications in the use and development of vaccine adjuvants.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1868398/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1868398/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gavin, Amanda L -- Hoebe, Kasper -- Duong, Bao -- Ota, Takayuki -- Martin, Christopher -- Beutler, Bruce -- Nemazee, David -- AI050241/AI/NIAID NIH HHS/ -- R01 GM044809/GM/NIGMS NIH HHS/ -- R01GM44809/GM/NIGMS NIH HHS/ -- T32AI07606/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2006 Dec 22;314(5807):1936-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17185603" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Vesicular Transport/genetics/metabolism ; *Adjuvants, Immunologic ; Animals ; *Antibody Formation ; Antigens, T-Independent/immunology ; B-Lymphocytes/*immunology ; Cell Wall Skeleton/immunology ; Cord Factors/immunology ; Freund's Adjuvant/immunology ; Hemocyanin/immunology ; Immunity, Innate ; Immunization ; Immunization, Secondary ; Immunoglobulins/blood ; Ligands ; Lipid A/analogs & derivatives/immunology ; Lipopolysaccharides/immunology ; Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Myeloid Differentiation Factor 88/genetics/metabolism ; Picrates/immunology ; *Signal Transduction ; T-Lymphocytes/immunology ; Toll-Like Receptors/*immunology/metabolism ; Vaccines/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-12-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Linden, Joel -- New York, N.Y. -- Science. 2006 Dec 15;314(5806):1689-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA. jlinden@virginia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17170280" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/metabolism ; Adenosine Monophosphate/metabolism ; Adenosine Triphosphate/*metabolism ; Animals ; Apyrase/pharmacology ; *Autocrine Communication ; Blood Platelets/metabolism ; Cell Membrane/metabolism ; *Chemotaxis, Leukocyte/drug effects ; Endothelial Cells/metabolism ; Mice ; Models, Biological ; N-Formylmethionine Leucyl-Phenylalanine ; Neutrophils/drug effects/*metabolism/physiology ; Receptor, Adenosine A3/metabolism ; Receptors, Purinergic/*metabolism ; Receptors, Purinergic P2/metabolism ; Receptors, Purinergic P2Y2 ; Respiratory Burst/drug effects ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-12-16
    Description: Cells must amplify external signals to orient and migrate in chemotactic gradient fields. We find that human neutrophils release adenosine triphosphate (ATP) from the leading edge of the cell surface to amplify chemotactic signals and direct cell orientation by feedback through P2Y2 nucleotide receptors. Neutrophils rapidly hydrolyze released ATP to adenosine that then acts via A3-type adenosine receptors, which are recruited to the leading edge, to promote cell migration. Thus, ATP release and autocrine feedback through P2Y2 and A3 receptors provide signal amplification, controlling gradient sensing and migration of neutrophils.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Yu -- Corriden, Ross -- Inoue, Yoshiaki -- Yip, Linda -- Hashiguchi, Naoyuki -- Zinkernagel, Annelies -- Nizet, Victor -- Insel, Paul A -- Junger, Wolfgang G -- GM-60475/GM/NIGMS NIH HHS/ -- GM-66232/GM/NIGMS NIH HHS/ -- PR043034/PR/OCPHP CDC HHS/ -- R01 GM-51477/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Dec 15;314(5806):1792-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Surgery, University of California San Diego, San Diego, CA 92103, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17170310" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/metabolism/pharmacology ; Adenosine A3 Receptor Agonists ; Adenosine A3 Receptor Antagonists ; Adenosine Triphosphate/analogs & derivatives/*metabolism/pharmacology ; Animals ; *Autocrine Communication ; Cell Membrane/metabolism ; *Chemotaxis, Leukocyte/drug effects ; Cytoplasmic Granules/metabolism ; HL-60 Cells ; Humans ; Hydrolysis ; Mice ; Mice, Knockout ; Neutrophils/drug effects/metabolism/*physiology ; Purinergic P2 Receptor Antagonists ; Receptor, Adenosine A3/*metabolism ; Receptors, Purinergic P2/*metabolism ; Receptors, Purinergic P2Y2 ; Signal Transduction ; Suramin/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-12-16
    Description: Antibody class switching in activated B cells uses class switch recombination (CSR), which joins activation-induced cytidine deaminase (AID)-dependent double-strand breaks (DSBs) within two large immunoglobulin heavy chain (IgH) locus switch (S) regions that lie up to 200 kilobases apart. To test postulated roles of S regions and AID in CSR, we generated mutant B cells in which donor Smu and accepter Sgamma1 regions were replaced with yeast I-SceI endonuclease sites. We found that site-specific I-SceI DSBs mediate recombinational IgH locus class switching from IgM to IgG1 without S regions or AID. We propose that CSR evolved to exploit a general DNA repair process that promotes joining of widely separated DSBs within a chromosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zarrin, Ali A -- Del Vecchio, Catherine -- Tseng, Eva -- Gleason, Megan -- Zarin, Payam -- Tian, Ming -- Alt, Frederick W -- 2P01AI031541-15/AI/NIAID NIH HHS/ -- P01CA092625-05/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 19;315(5810):377-81. Epub 2006 Dec 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Children's Hospital, CBR Institute for Biomedical Research, and Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17170253" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/*immunology ; Base Sequence ; Cell Line ; Cytidine Deaminase/*metabolism ; *DNA Breaks, Double-Stranded ; DNA Repair ; Deoxyribonucleases, Type II Site-Specific/genetics/*metabolism ; Embryonic Stem Cells ; Gene Targeting ; Genes, Immunoglobulin Heavy Chain ; Hybridomas ; *Immunoglobulin Class Switching ; Immunoglobulin G/biosynthesis/genetics ; Immunoglobulin M/biosynthesis/genetics ; *Immunoglobulin Switch Region ; Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Mutation ; Recombination, Genetic ; Saccharomyces cerevisiae/enzymology ; Saccharomyces cerevisiae Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-12-16
    Description: Genetically matched pluripotent embryonic stem (ES) cells generated via nuclear transfer or parthenogenesis (pES cells) are a potential source of histocompatible cells and tissues for transplantation. After parthenogenetic activation of murine oocytes and interruption of meiosis I or II, we isolated and genotyped pES cells and characterized those that carried the full complement of major histocompatibility complex (MHC) antigens of the oocyte donor. Differentiated tissues from these pES cells engrafted in immunocompetent MHC-matched mouse recipients, demonstrating that selected pES cells can serve as a source of histocompatible tissues for transplantation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Kitai -- Lerou, Paul -- Yabuuchi, Akiko -- Lengerke, Claudia -- Ng, Kitwa -- West, Jason -- Kirby, Andrew -- Daly, Mark J -- Daley, George Q -- T32: HD07466/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 26;315(5811):482-6. Epub 2006 Dec 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana Farber Cancer Institute, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17170255" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Line ; Chromosome Segregation ; Embryonic Stem Cells/cytology/*immunology/physiology ; Female ; Genotype ; H-2 Antigens/*genetics/*immunology ; Heterozygote ; *Histocompatibility ; Histocompatibility Antigens Class II/genetics/immunology ; *Major Histocompatibility Complex ; Meiosis ; Mice ; Mice, Inbred C57BL ; Mice, Inbred CBA ; Oocytes/cytology/immunology ; *Parthenogenesis ; Pluripotent Stem Cells/cytology/*immunology/physiology ; Polymerase Chain Reaction ; Recombination, Genetic ; Stem Cell Transplantation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-12-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chaudhuri, Jayanta -- Jasin, Maria -- R01 GM054668/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 19;315(5810):335-6. Epub 2006 Dec 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA. chaudhuj@mskcc.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17170256" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibody Formation ; B-Lymphocytes/*immunology ; Cytidine Deaminase/genetics/*metabolism ; DNA Breaks, Double-Stranded ; DNA Repair ; Deoxyribonucleases, Type II Site-Specific/*metabolism ; Genes, Immunoglobulin Heavy Chain ; *Immunoglobulin Class Switching ; *Immunoglobulin Switch Region ; Mice ; Mutation ; Recombination, Genetic ; Saccharomyces cerevisiae/enzymology ; Saccharomyces cerevisiae Proteins ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-12-16
    Description: The majority of known Toxoplasma gondii isolates from Europe and North America belong to three clonal lines that differ dramatically in their virulence, depending on the host. To identify the responsible genes, we mapped virulence in F(1) progeny derived from crosses between type II and type III strains, which we introduced into mice. Five virulence (VIR) loci were thus identified, and for two of these, genetic complementation showed that a predicted protein kinase (ROP18 and ROP16, respectively) is the key molecule. Both are hypervariable rhoptry proteins that are secreted into the host cell upon invasion. These results suggest that secreted kinases unique to the Apicomplexa are crucial in the host-pathogen interaction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646183/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646183/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saeij, J P J -- Boyle, J P -- Coller, S -- Taylor, S -- Sibley, L D -- Brooke-Powell, E T -- Ajioka, J W -- Boothroyd, J C -- 1R01AI045806-01A1/AI/NIAID NIH HHS/ -- AI05093/AI/NIAID NIH HHS/ -- AI059176/AI/NIAID NIH HHS/ -- AI21423/AI/NIAID NIH HHS/ -- AI30230/AI/NIAID NIH HHS/ -- AI36629/AI/NIAID NIH HHS/ -- AI41014/AI/NIAID NIH HHS/ -- F32AI60306/AI/NIAID NIH HHS/ -- R01 AI021423/AI/NIAID NIH HHS/ -- R01 AI021423-20/AI/NIAID NIH HHS/ -- R01 AI036629/AI/NIAID NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2006 Dec 15;314(5806):1780-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17170306" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Chromosome Mapping ; Chromosomes/genetics ; Crosses, Genetic ; Female ; Genes, Protozoan ; Genetic Complementation Test ; Mice ; Mice, Inbred BALB C ; Mice, Inbred CBA ; Molecular Sequence Data ; Oligonucleotide Array Sequence Analysis ; *Polymorphism, Single Nucleotide ; Protozoan Proteins/chemistry/*genetics/metabolism ; Quantitative Trait Loci ; Toxoplasma/enzymology/*genetics/*pathogenicity ; Toxoplasmosis, Animal/*parasitology ; Virulence ; Virulence Factors/chemistry/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-12-16
    Description: Toxoplasma gondii strains differ dramatically in virulence despite being genetically very similar. Genetic mapping revealed two closely adjacent quantitative trait loci on parasite chromosome VIIa that control the extreme virulence of the type I lineage. Positional cloning identified the candidate virulence gene ROP18, a highly polymorphic serine-threonine kinase that was secreted into the host cell during parasite invasion. Transfection of the virulent ROP18 allele into a nonpathogenic type III strain increased growth and enhanced mortality by 4 to 5 logs. These attributes of ROP18 required kinase activity, which revealed that secretion of effectors is a major component of parasite virulence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taylor, S -- Barragan, A -- Su, C -- Fux, B -- Fentress, S J -- Tang, K -- Beatty, W L -- Hajj, H El -- Jerome, M -- Behnke, M S -- White, M -- Wootton, J C -- Sibley, L D -- AI059176/AI/NIAID NIH HHS/ -- AI36629/AI/NIAID NIH HHS/ -- AI44600/AI/NIAID NIH HHS/ -- P20 RR-020185/RR/NCRR NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2006 Dec 15;314(5806):1776-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17170305" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Catalytic Domain ; Chromosome Mapping ; Chromosomes/genetics ; Cloning, Molecular ; Genes, Protozoan ; Mice ; Molecular Sequence Data ; Movement ; Point Mutation ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Protozoan Proteins/chemistry/genetics/*metabolism ; Quantitative Trait Loci ; Toxoplasma/*enzymology/genetics/growth & development/*pathogenicity ; Toxoplasmosis, Animal/mortality/parasitology ; Transfection ; Virulence/genetics ; Virulence Factors/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...