ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Resources and Remote Sensing  (1,434)
  • United States  (1,321)
  • 2000-2004  (2,755)
  • 1
    Publication Date: 2019-08-28
    Description: Below is the 1st year progress report for NAG5-13435 "New Retrieval Algorithms for Geophysical Products from GLI and MODIS Data". Activity on this project has been coordinated with our NASA DB project NAG5-9604. For your convenience, this report has six sections and an Appendix. Sections I - III discuss specific activities undertaken during the past year to analyze/use MODIS data. Section IV formally states our intention to no longer pursue any research using JAXA's (formerly NASDA's) GLI instrument which catastrophically failed very early after launch (also see the Appendix). Section V provides some indications of directions for second year activities based on our January 2004 telephone discussions and email exchanges. A brief summary is given in Section VI.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: This document is concentrates on a couple of the missions where the Spacelab hardware was used to do Earth science. The Atmospheric Laboratory for Applications and Science (ATLAS) series of missions and the Lidar in-Space Technology Experiment (LITE) mission, the ATLAS being a series of three Shuttle missions that were very much Spacelab missions, are described. A little bit about the history, what the missions were, some of the instruments that were on them, and results are given.
    Keywords: Earth Resources and Remote Sensing
    Type: The Spacelab Accomplishments Forum; 67-90; NASA/CP-2000-210332
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-26
    Description: An assessment of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) laboratory and in-flight uniformity is presented in this Slide presentation. The ideal uniform system is described, being a system where every spectrum is intercomparable to every other spectrum. Two types of failures to achieve this uniformity are described. Graphs showing measured spectral upwelling radiance, the expanded spectral convolution, the radiometric error from spectral error, the results from the hyperion Arizaro calibration experiment and a AVIRIS cross-track uniformity are among those presented. The reasons why uniformity matters are presented.
    Keywords: Earth Resources and Remote Sensing
    Type: AVIRIS Workshop; May 24, 2005 - May 27, 2005; California; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-26
    Description: Increasing numbers of space assets can enable coordinated measurements of flooding phenomena to enhance tracking of extreme events. We describe the use of space and ground measurements to target further measurements as part of a flood monitoring system in Thailand. We utilize rapidly delivered MODIS data to detect major areas of flooding and the target the Earth Observing One Advanced Land Imager sensor to acquire higher spatial resolution data. Automatic surface water extent mapping products delivered to interested parties. We are also working to extend our network to include in-situ sensing networks and additional space assets.
    Keywords: Earth Resources and Remote Sensing
    Type: 34th International Symposium on Remote Sensing of Environment; Apr 10, 2011 - Apr 15, 2011; Sydney; Australia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-17
    Description: In May 1999, the airborne thermal infrared hyperspectral imaging system, Spatially Enhanced Broadband Array Spectrograph System (SEBASS), was flown over Mon-non Mesa, NV, to provide the first test of such a system for geological mapping. Several types of carbonate deposits were identified using the 11.25 microns band. However, massive calcrete outcrops exhibited weak spectral contrast, which was confirmed by field and laboratory measurements. Because the weathered calcrete surface appeared relatively smooth in hand specimen, this weak spectral contrast was unexpected. Here we show that microscopic roughness not readily apparent to the eye has introduced both a cavity effect and volume scattering to reduce spectral contrast. The macroroughness of crevices and cobbles may also have a significant cavity effect. The diminished spectral contrast is important because it places higher signal-to-noise ratio (SNR) requirements for spectroscopic detection and identification. This effect should be factored into instrumentation planning and interpretations, especially interpretations without benefit of ground truth. SEBASS had the required high SNR and spectral resolution to allow us to demonstrate for the first time the ability of an airborne hyperspectral thermal infrared scanner to detect and identify spectrally subtle materials.
    Keywords: Earth Resources and Remote Sensing
    Type: Remote Sensing of Evironment (ISSN 0034-4257); 80; 447-459
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-17
    Description: Development of methods to identify the physical and chemical character of materials on the earth's surface is one of the foci of hyperspectral remote sensing activities. Enhancing the ability to elucidate changes in foliar chemistry that relate to the health of a plant is a benefit to plant physiologists, foresters, and plant ecologists, as well as geologist and environmental scientists. Vegetation covers the landscape throughout the temperate and tropical regions of the earth. The existence of vegetation in these areas presents special problems to remote sensing systems since geologic bedrock and alteration zones are masked. At times, however, alterations in the soil/sediment geochemical environment result in foliar chemical changes that are detectable via remote sensing. Examples include monitoring of chlorophyll reflectance/fluorescence and equivalent water thickness indices as indicators of drought-induced plant stress. Another processing and interpretation approach used with hyperspectral data has been principal components analysis (PCA). Rowan et al. used PCA to identify absorption feature patterns obtained from vegetated areas with discrete bedrock geology or mineralization as the substrate. Many researchers highlight the need to advance our ability for hyperspectral imaging in vegetated areas as a near-term priority.
    Keywords: Earth Resources and Remote Sensing
    Type: Proceedings of the Tenth JPL Airborne Earth Science Workshop; 219-228
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-17
    Description: The central objective of this project has been the development of geostatistical methods fro mapping elevation and ice surface characteristics from satellite radar altimeter (RA) and Syntheitc Aperture Radar (SAR) data. The main results are an Atlas of elevation maps of Antarctica, from GEOSAT RA data and an Atlas from ERS-1 RA data, including a total of about 200 maps with 3 km grid resolution. Maps and digital terrain models are applied to monitor and study changes in Antarctic ice streams and glaciers, including Lambert Glacier/Amery Ice Shelf, Mertz and Ninnis Glaciers, Jutulstraumen Glacier, Fimbul Ice Shelf, Slessor Glacier, Williamson Glacier and others.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-17
    Description: The overall goal of this research is to examine the feasibility of applying a newly developed diagnostic model of soil water evaporation to large land areas using remotely sensed input parameters. The model estimates the rate of soil evaporation during periods when it is limited by the net transport resulting from competing effects of capillary rise and drainage. The critical soil hydraulic properties are implicitly estimated via the intensity and duration of the first stage (energy limited) evaporation, removing a major obstacle in the remote estimation of evaporation over large areas. This duration, or 'time to drying' (t(sub d)) is revealed through three signatures detectable in time series of remote sensing variables. The first is a break in soil albedo that occurs as a small vapor transmission zone develops near the surface. The second is a break in either surface to air temperature differences or in the diurnal surface temperature range, both of which indicate increased sensible heat flux (and/or storage) required to balance the decrease in latent heat flux. The third is a break in the temporal pattern of near surface soil moisture. Soil moisture tends to decrease rapidly during stage I drying (as water is removed from storage), and then become more or less constant during soil limited, or 'stage II' drying (as water is merely transmitted from deeper soil storage). The research tasks address: (1) improvements in model structure, including extensions to transpiration and aggregation over spatially variable soil and topographic landscape attributes; and (2) applications of the model using remotely sensed input parameters.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-17
    Description: Parameters describing the vertical structure of forests, for example tree height, height-to-base-of-live-crown, underlying topography, and leaf area density, bear on land-surface, biogeochemical, and climate modeling efforts. Single, fixed-baseline interferometric synthetic aperture radar (INSAR) normalized cross-correlations constitute two observations from which to estimate forest vertical structure parameters: Cross-correlation amplitude and phase. Multialtitude INSAR observations increase the effective number of baselines potentially enabling the estimation of a larger set of vertical-structure parameters. Polarimetry and polarimetric interferometry can further extend the observation set. This paper describes the first acquisition of multialtitude INSAR for the purpose of estimating the parameters describing a vegetated land surface. These data were collected over ponderosa pine in central Oregon near longitude and latitude -121 37 25 and 44 29 56. The JPL interferometric TOPSAR system was flown at the standard 8-km altitude, and also at 4-km and 2-km altitudes, in a race track. A reference line including the above coordinates was maintained at 35 deg for both the north-east heading and the return southwest heading, at all altitudes. In addition to the three altitudes for interferometry, one line was flown with full zero-baseline polarimetry at the 8-km altitude. A preliminary analysis of part of the data collected suggests that they are consistent with one of two physical models describing the vegetation: 1) a single-layer, randomly oriented forest volume with a very strong ground return or 2) a multilayered randomly oriented volume; a homogeneous, single-layer model with no ground return cannot account for the multialtitude correlation amplitudes. Below the inconsistency of the data with a single-layer model is followed by analysis scenarios which include either the ground or a layered structure. The ground returns suggested by this preliminary analysis seem too strong to be plausible, but parameters describing a two-layer compare reasonably well to a field-measured probability distribution of tree heights in the area.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-17
    Description: The purpose of this project has been to develop and enhance the HITRAN molecular spectroscopic database and associated software to support the observational programs of the Earth Observing System (EOS). Emphasis has been on the EOS projects: the Atmospheric Infrared Sounder (AIRS), the High-Resolution Dynamics Limb Sounder (HIRDLS), Measurements of Pollution in the Troposphere (MOPITT), the Tropospheric Emission Spectrometer (TES), and the Stratospheric Aerosol and Gas Experiment (SAGE III). The HITRAN program is also involved in the Ozone Monitoring Experiment (OMI). The data requirements of these programs in terms of spectroscopy are varied with respect to constituents being observed, required remote-sensing parameters, and spectral coverage. A general requisite is for additional spectral parameters and improvements to existing molecular bands sufficient for the simulation of the observations leading to retrieval of the atmospheric state. In addition, cross-section data for heavier molecular species must be expanded and made amenable to modeling in remote sensing. The effort in the project also includes developing software and distribution to make access, manipulation, and use of HITRAN functional to the EOS program.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-08-17
    Description: The Autonomous Sciencecraft Experiment (ASE) has been selected for flight demonstration by NASAs New Millennium Program (NMP) as part of the Space Technology 6 (ST6) mission. NASA has identified the development of an autonomously operating spacecraft as a necessity for an expanded program of missions exploring the Solar System. The versatile ASE spacecraft command and control software, image formation software, and science processing software will be uploaded to the Earth Observer 1 (EO-1) spacecraft in early 2004 to detect surface modification related to volcanism, ice formation and retreat, and flooding.
    Keywords: Earth Resources and Remote Sensing
    Type: Lunar and Planetary Science XXXV: Image Processing and Earth Observations; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-08-17
    Description: The purpose of this project is to develop and enhance the HITRAN molecular spectroscopic database and associated software to support the observational programs of the Earth Observing System (EOS). In particular, the focus is on the EOS projects: the Atmospheric Infrared Sounder (AIRS), the High-Resolution Dynamics Limb Sounder (HIRDLS), Measurements of Pollution in the Troposphere (MOPITT), the Tropospheric Emission Spectrometer (TES), and the Stratospheric Aerosol and Gas Experiment (SAGE III). The HITRAN program is also involved in the Ozone Monitoring Experiment (OMI). The data requirements of these programs in terms of spectroscopy are varied with respect to constituents being observed, required remote-sensing parameters, and spectral coverage. A general requisite is for additional spectral parameters and improvements to existing molecular bands sufficient for the simulation of the observations leading to retrieval of the atmospheric state. In addition, cross-section data for heavier molecular species must be expanded and made amenable to modeling in remote sensing. The effort in the project also includes developing software and distribution to make access, manipulation, and use of HITRAN functional to the EOS program.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-17
    Description: This volume contains abstracts that have been accepted for presentation at the symposium on Solar System Remote Sensing, September 20-21, 2002, in Pittsburgh, Pennsylvania. Administration and publications support for this meeting were provided by the staff of the Publications and Program Services Departments at the Lunar and Planetary Institute.
    Keywords: Earth Resources and Remote Sensing
    Type: LPI-Contrib-1129 , (ISSN 0161-5297)|Sep 20, 2002 - Sep 21, 2002; Pittsburgh, PA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-08-17
    Description: In the early 1990s a series of surface-based direct sun and zenith sky measurements of total column ozone were made with SBUV/2 flight models and the SSBUV Space Shuttle instrument in Boulder, Colorado which were compared with NOAA Dobson Instrument direct sun observations and TOMS instrument overpass observations of column ozone. These early measurements led to the investigation of the accuracy of derived total column ozone amounts and aerosol optical depths from zenith sky observations. Following the development and availability of radiometrically stable IAD narrow band interference filter and nitrided silicon photodiodes a simple compact multifilter spectroradiometer was developed which can be used as a calibration transfer standard spectroradiometer (CTSS) or as a surface based instrument remote sensing instruments for measurements of total column ozone and aerosol optical depths. The total column ozone derived from zenith sky observations agrees with Dobson direct sun AD double wavelength pair measurements and with TOMS overpass ozone amounts within uncertainties of about 1%. When used as a calibration transfer standard spectroradiometer the multifilter spectroradiometer appears to be capable of establishing instrument radiometric calibration uncertainties of the order of 1% or less relative to national standards laboratory radiometric standards.
    Keywords: Earth Resources and Remote Sensing
    Type: Optical Remote Sensing of the Atmosphere and Clouds II; 4150; 115-123
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-08-17
    Description: The expanded remotely sensed data space consisting of coincident radar backscatter and optical reflectance data provides for a more complete description of the Earth surface. This is especially useful where many parameters are needed to describe a certain scene, such as in the presence of dense and complex-structured vegetation or where there is considerable underlying topography. The goal of this paper is to use a combination of radar and optical data to develop a methodology for parameter classification for dense and hilly forests, and further, class-specific parameter estimation. The area to be used in this study is the H. J. Andrews Forest in Oregon, one of the Long-Term Ecological Research (LTER) sites in the US. This area consists of various dense old-growth conifer stands, and contains significant topographic relief. The Andrews forest has been the subject of many ecological studies over several decades, resulting in an abundance of ground measurements. Recently, biomass and leaf-area index (LAI) values for approximately 30 reference stands have also become available which span a large range of those parameters. The remote sensing data types to be used are the C-, L-, and P-band polarimetric radar data from the JPL airborne SAR (AIRSAR), the C-band single-polarization data from the JPL topographic SAR (TOPSAR), and the Thematic Mapper (TM) data from Landsat, all acquired in late April 1998. The total number of useful independent data channels from the AIRSAR is 15 (three frequencies, each with three unique polarizations and amplitude and phase of the like-polarized correlation), from the TOPSAR is 2 (amplitude and phase of the interferometric correlation), and from the TM is 6 (the thermal band is not used). The range pixel spacing of the AIRSAR is 3.3m for C- and L-bands and 6.6m for P-band. The TOPSAR pixel spacing is 10m, and the TM pixel size is 30m. To achieve parameter classification, first a number of parameters are defined which are of interest to ecologists for forest process modeling. These parameters include total biomass, leaf biomass, LAI, and tree height. The remote sensing data from radar and TM are used to formulate a multivariate analysis problem given the ground measurements of the parameters. Each class of each parameter is defined by a probability density function (pdf), the spread of which defines the range of that class. High classification accuracy results from situations in which little overlap occurs between pdfs. Classification results provide the basis for the future work of class-specific parameter estimation using radar and optical data. This work was performed in part by the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, and in part by the NASA Ames Research Center, Moffett Field, CA, both under contract from the National Aeronautics and Space Administration.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-08-17
    Description: The Ocean Color Temperature Scanner (OCTS) onboard the Advanced Earth Observation Satellite (ADEOS) was launched on August 17, 1996. Calibration of OCTS is required for use of the on-orbit measured data for retrieval of physical properties of the ocean. In the solar reflected portion of the electromagnetic spectrum, OCTS measures images with nominally 700-m spatial resolution through eight multispectral bands. The objective of this research was to establish the absolute radiometric calibration of OCTS on orbit through an underflight by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS is a NASA earth-observing imaging spectrometer designed, built and operated by the Jet Propulsion Laboratory (JPL). AVIRIS acquires data from 20-km altitude on a NASA ER-2 aircraft, above most of the Earth's atmosphere. AVIRIS measures the solar reflected spectrum from 370 nm to 2500 nm through 224 contiguous spectral channels. The full width at half maximum (FWHM) of the spectral channels is nominally 10-nm. AVIRIS spectra are acquired as images of 11 km by up to 800 km extent with 20-m spatial resolution. The high spectral resolution of AVIRIS data allows direct convolution to the spectral response functions of the eight multispectral bands of OCTS. The high spatial resolution of AVIRIS data allows for spatial re-sampling of the data to match the ADEOS sensors spatial resolution. In addition, the AVIRIS high spatial resolution allows assessment of the scaling effects due to environmental factors of thin cirrus clouds, sub-pixel cloud cover, white caps, ocean foam, sun-glint, and bright-target adjacency. The platform navigation information recorded by AVIRIS allows calculation of the position and observation geometry of each spectrum for matching to the OCTS measurement. AVIRIS is rigorously characterized and calibrated in the laboratory prior to and following the flight season. The stability and repeatability of AVIRIS calibration have been validated through an extensive series of inflight calibration experiments. In the OCTS portion of the spectrum, using pre-and post-flight runway calibrations of AVIRIS coupled with the on-board calibrator an absolute calibration accuracy of better than 3% spectral, 2% radiometric and 5% spatial has been achieved. An analogous satellite underflight calibration experiment was performed with AVIRIS and the Optical Sensor (OPS) onboard the Japanese Earth Resources Satellite (JERS).
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-08-17
    Description: The Colorado Geological Survey and the co-authors of this paper were awarded one of 15 NASA Broad Agency Announcement (BAA) grants in 2001. The project focuses on the use of hyperspectral remote sensing to map acid-generating minerals that affect water quality within a watershed, and to identify the relative contributions of natural and anthropogenic sources to that drainage. A further objective is to define the most cost-effective remote sensing instrument configuration for this application.
    Keywords: Earth Resources and Remote Sensing
    Type: Proceedings of the 12th JPL Airborne Earth Science Workshop; JPL-Publ-04-6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-08-16
    Description: In 1998 the University of Texas Institute of Classical Archaeology, in collaboration with the University of Texas Center for Space Research and the National Preserve of Tauric Chersonesos (Ukraine), began a collaborative project, funded by NASA's Solid Earth and Natural Hazards program, to investigate the use of remotely sensed data for the study and protection of the ancient a cultural territory, or chora, of Chersonesos in Crimea, Ukraine.
    Keywords: Earth Resources and Remote Sensing
    Type: Book of Abstracts: International Conference on Remote Sensing Applications for Archeological Research and World Heritage Conservation; 1-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-08-16
    Description: The Mojave Desert-Death Valley region has had a long history as a test bed for remote sensing techniques. Along with visible-near infrared and thermal IR sensors, imaging radars have flown and orbited over the area since the 1970's, yielding new insights into the geologic applications of these technologies. More recently, radar interferometry has been used to derive digital topographic maps of the area, supplementing the USGS 7.5' digital quadrangles currently available for nearly the entire area. As for their shorter-wavelength brethren, imaging radars were tested early in their civilian history in the Mojave Desert-Death Valley region because it contains a variety of surface types in a small area without the confounding effects of vegetation. The earliest imaging radars to be flown over the region included military tests of short-wavelength (3 cm) X-band sensors. Later, the Jet Propulsion Laboratory began its development of imaging radars with an airborne sensor, followed by the Seasat orbital radar in 1978. These systems were L-band (25 cm). Following Seasat, JPL embarked upon a series of Space Shuttle Imaging Radars: SIRA (1981), SIR-B (1984), and SIR-C (1994). The most recent in the series was the most capable radar sensor flown in space and acquired large numbers of data swaths in a variety of test areas around the world. The Mojave Desert-Death Valley region was one of those test areas, and was covered very well with 3 wavelengths, multiple polarizations, and at multiple angles. At the same time, the JPL aircraft radar program continued improving and collecting data over the Mojave Desert Death Valley region. Now called AIRSAR, the system includes 3 bands (P-band, 67 cm; L-band, 25 cm; C-band, 5 cm). Each band can collect all possible polarizations in a mode called polarimetry. In addition, AIRSAR can be operated in the TOPSAR mode wherein 2 antennas collect data interferometrically, yielding a digital elevation model (DEM). Both L-band and C-band can be operated in this way, with horizontal resolution of about 5 m and vertical errors less than 2 m. The findings and developments of these earlier investigations are discussed.
    Keywords: Earth Resources and Remote Sensing
    Type: Field Trip and Workshop on the Martian Highlands and Mojave Desert Analogs; 19-20; LPI-Contrib-1101
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-08-16
    Description: Collaborative effort is underway to map boreal forests worldwide using L-band, single polarization Synthetic Aperture Radar (SAR) imagery from the Japanese Earth Resources (JERS-1) satellite. Final products of the North American Boreal Forest Mapping Project will include two continental scale radar mosaics and supplementary multitemporal mosaics for Alaska, central Canada, and eastern Canada. For selected sites, we are also producing local scale (100 km x 100 km) and regional scale maps (1000 km x 1000 km). As with the nearly completed Amazon component of the Global Rain Forest Mapping project, SAR imagery, radar image mosaics and SAR-derived texture image products will be available to the scientific community on the World Wide Web. Image acquisition for this project has been completed and processing and image interpretation is underway at the Alaska SAR Facility.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-08-16
    Description: Hapke's photometric model has been widely used in solar system remote sensing applications for nearly two decades. Recently, Hapke extended his model to describe the coherent-backscatter opposition effect and multiple-scattering by particles with anisotropic single particle phase functions (SPPF's). A practical difficulty for retrieving Hapke's model parameters from typical planet, satellite, and asteroid photometry data sets is that the model employs a large number of adjustable parameters (at least eight) that can be reliably constrained only for a small number of planetary data sets in which both disk-resolved and whole-disk observations are available from opposition to very large phase angles. The present work aims to reduce the number of adjustable parameters and preserve (or even enhance) the model's accuracy and usefulness by expressing Hapke's parameters in terms of more fundamental physical properties on which they mutually depend. The most difficult part of this task, described here, is to develop a simple method for computing the effective SPPF for structurally complex regolith grains from optical constants, grain-size distribution, and average regolith porosity. The development of light-scattering models for irregularly shaped particles is a large, complex subject and many sophisticated methods, such as Discrete Dipole Approximation (DDA) and Monte-Carlo simulations, have been explored elsewhere. Many of these methods are computationally intensive and probably impractical for routine substitution in Hapke's model. Here, progress is reported in developing a practical, semi-empirical method for estimating the directional scattering behavior (i.e. SPPF) of irregular regolith grains. The method employs Optical Transfer Function (OTF) techniques to model how the structural complexity of regolith particles broaden and attenuate the angular distribution of scattered light relative to that expected from ideal spherical particles of equivalent size and composition.
    Keywords: Earth Resources and Remote Sensing
    Type: Solar System Remote Sensing; 27-28; LPI-Contrib-1129
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-08-16
    Description: Global Positioning System (GPS) signals reflected from the ocean surface have potential use for various remote sensing purposes. Some possibilities arc measurements of surface roughness characteristics from which ware height, wind speed, and direction could be determined. For this paper, GPS-reflected signal measurements collected at aircraft altitudes of 2 km to 5 km with a delay-Doppler mapping GPS receiver arc used to explore the possibility of determining wind speed. To interpret the GPS data, a theoretical model has been developed that describes the power of the reflected GPS signals for different time delays and Doppler frequencies as a function of geometrical and environmental parameters. The results indicate a good agreement between the measured and the modeled normalized signal power waveforms during changing surface wind conditions. The estimated wind speed using surface- reflected GPS data, obtained by comparing actual and modeled waveforms, shows good agreement (within 2 m/s) with data obtained from a nearby buoy and independent wind speed measurements derived from the TOPEX/Poseidon altimetric satellite.
    Keywords: Earth Resources and Remote Sensing
    Type: Remote Sensing of Environment (ISSN 0034-4257); 73; 162-174
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-08-16
    Description: A collection of issues is discussed that are potential pitfalls, if handled incorrectly, for earth-orbiting lidar remote sensing instruments. These issues arise due to the long target ranges, high lidar-to-target relative velocities, low signal levels, use of laser scanners, and other unique aspects of using lasers in earth orbit. Consequences of misunderstanding these topics range from minor inconvenience to improper calibration to total failure. We will focus on wind measurement using coherent detection Doppler lidar, but many of the potential pitfalls apply also to noncoherent lidar wind measurement, and to measurement of parameters other than wind.
    Keywords: Earth Resources and Remote Sensing
    Type: Lidar Remote Sensing for Industry and Environment Monitoring; 4153; 385-393
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-08-15
    Description: In order to evaluate side-lobe contamination from the near-nadir region for Ku-Band radars, a statistical characterization of global near-nadir backscatter is constructed. This characterization is performed for a variety of surface types using data from TRMM, Seasat, and Topex. An assessment of the relative calibration accuracy of these sensors is also presented.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-08-15
    Description: This paper summarizes the GPM-Core coverage trade space analysis. The goal of this analysis was to determine the GPM-Core sensitivity to changes in altitude and inclination for the three onboard instruments: the radiometer, the KU band radar and the KA band radar. This study will enable a better choice of the nominal GPM-Core orbit as well as the optimal size of the maintenance box (+/-1 km, +/-5 km..). For this work, we used two different figures-of-merit: (1) the time required to cover 100% of the +/-65 deg latitude band and (2) the coverage obtained for a given propagation time (7 days and 30 days). The first figure-of-merit is used for the radiometer as it has a sensor cone half-angle between 3 to 5 times bigger than the radars. Thus, we anticipate that for this instrument the period of the orbit (i.e. altitude) will be the main driver and that the 100% coverage value will be reached within less than a week. The second figure-of-merit is used for the radar instruments as they have small sensor cone half-angle and will, in some cases, never reach the 100% coverage threshold point.
    Keywords: Earth Resources and Remote Sensing
    Type: NASA/TM-2002-211615 , NAS 1.15:211615 , Rept-2002-03357-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-08-15
    Description: In this paper, the 100 meter JERS-1 Amazon mosaic image was used in a new classifier to generate a I km resolution land cover map. The inputs to the classifier were 1 km resolution mean backscatter and seven first order texture measures derived from the 100 m data by using a 10 x 10 independent sampling window. The classification approach included two interdependent stages: 1) a supervised maximum a posteriori Bayesian approach to classify the mean backscatter image into 5 general land cover categories of forest, savannah, inundated, white sand, and anthropogenic vegetation classes, and 2) a texture measure decision rule approach to further discriminate subcategory classes based on taxonomic information and biomass levels. Fourteen classes were successfully separated at 1 km scale. The results were verified by examining the accuracy of the approach by comparison with the IBGE and the AVHRR 1 km resolution land cover maps.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-08-15
    Description: Characterization of urban radiance and reflectance is important for understanding the effects of solar energy flux on the urban environment as well as for satellite mapping of urban settlement patterns. Spectral mixture analyses of Landsat and Ikonos imagery suggest that the urban radiance field can very often be described with combinations of three or four spectral endmembers. Dimensionality estimates of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) radiance measurements of urban areas reveal the existence of 30 to 60 spectral dimensions. The extent to which broadband imagery collected by operational satellites can represent the higher dimensional mixing space is a function of both the spatial and spectral resolution of the sensor. AVIRIS imagery offers the spatial and spectral resolution necessary to investigate the scale dependence of the spectral dimensionality. Dimensionality estimates derived from Minimum Noise Fraction (MNF) eigenvalue distributions show a distinct scale dependence for AVIRIS radiance measurements of Milpitas, California. Apparent dimensionality diminishes from almost 40 to less than 10 spectral dimensions between scales of 8000 m and 300 m. The 10 to 30 m scale of most features in urban mosaics results in substantial spectral mixing at the 20 m scale of high altitude AVIRIS pixels. Much of the variance at pixel scales is therefore likely to result from actual differences in surface reflectance at pixel scales. Spatial smoothing and spectral subsampling of AVIRIS spectra both result in substantial loss of information and reduction of apparent dimensionality, but the primary spectral endmembers in all cases are analogous to those found in global analyses of Landsat and Ikonos imagery of other urban areas.
    Keywords: Earth Resources and Remote Sensing
    Type: Proceedings of the Tenth JPL Airborne Earth Science Workshop; 375-385
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-08-15
    Description: Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data from Blythe, California, were acquired in June 1997 to study agricultural spectra from different crops and to identify crops in other areas with similar environmental factors and similar spectral properties. The main objectives of this study are: (1) to compare the spectral and radiometric characteristics of AVIRIS data from agriculture crops with ground spectra measured by a FieldSpec ASD spectrometer; (2) to explore the use of AVIRIS spectral images for identifying agricultural crops; (3) to study the spectral expression of environmental factors on selected crops; and (4) to build a spectral library for the crops that were studied. A long-term goal is to extend the spectral library for different vegetation or crops in different stages of growth. To support our study, on July 18 and 19, 2000, we collected spectra using the FieldSpec spectrometer from selected fields with different crops in the Blythe area of California (longitude 114 deg 33.28 W and latitude 33 deg 25.42 N to longitude 1140 44.53 W and latitude 33 deg 39.77 N). These crops were cotton in different stages of growth, varieties of grass pure or mixed, Sudan grass, Bermuda grass, Teff grass, and alfalfa. Some of the fields were treated with different types of irrigation (i.e., wet to dry conditions). Additional parameters were studied such as the soil water content (WC), pH, and organic matter (OM). The results of this study showed that for crops known to be similar, there is a significant correlation between the spectra that were collected by AVIRIS in 1997 and spectra measured by the FieldSpec (registered) spectrometer in 2000. This correlation allowed development of a spectral library to be used in ENVI-IDL analysis software. This library was used successfully to identify different crops. Furthermore, using IDL algorithms of Spectral Angle Mapper classification (SAM), spectral feature fitting (SFF) and spectral binary encoding (SPE) showed that there is excellent agreement between the predicted and the actual crop type (i.e., the correlation is between 85-90% match). Further use of the AVIRIS images can be of a value to crop identification or crop yield for commercial use.
    Keywords: Earth Resources and Remote Sensing
    Type: Proceedings of the Tenth JPL Airborne Earth Science Workshop; 351-365
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-08-15
    Description: As part of the April 2000 Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Hawaii deployment, two researchers from the University of California, Santa Barbara, were sent to Hawaii to collect supporting field data. The primary goal of the fieldwork was to obtain spectra of bright targets to be used for retrieving surface reflectance from AVIRIS imagery. Secondary goals included recording the spectra of dominant vegetation, marking the position of homogeneous land cover for use as potential image endmembers (PIEs), and recording firsthand impressions of cover types. Primary and secondary goals were met. Spectra were recorded for 12 calibration targets on 5 islands and spectra were obtained for 61 vegetation species. Twenty PIEs were located, and video was used to document cover at 56 locations.
    Keywords: Earth Resources and Remote Sensing
    Type: Proceedings of the Tenth JPL Airborne Earth Science Workshop; 115-118
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-08-15
    Description: Accurate road location and condition information are of primary importance in road infrastructure management. Additionally, spatially accurate and up-to-date road networks are essential in ambulance and rescue dispatch in emergency situations. However, accurate road infrastructure databases do not exist for vast areas, particularly in areas with rapid expansion. Currently, the US Department of Transportation (USDOT) extends great effort in field Global Positioning System (GPS) mapping and condition assessment to meet these informational needs. This methodology, though effective, is both time-consuming and costly, because every road within a DOT's jurisdiction must be field-visited to obtain accurate information. Therefore, the USDOT is interested in identifying new technologies that could help meet road infrastructure informational needs more effectively. Remote sensing provides one means by which large areas may be mapped with a high standard of accuracy and is a technology with great potential in infrastructure mapping. The goal of our research is to develop accurate road extraction techniques using high spatial resolution, fine spectral resolution imagery. Additionally, our research will explore the use of hyperspectral data in assessing road quality. Finally, this research aims to define the spatial and spectral requirements for remote sensing data to be used successfully for road feature extraction and road quality mapping. Our findings will facilitate the USDOT in assessing remote sensing as a new resource in infrastructure studies.
    Keywords: Earth Resources and Remote Sensing
    Type: Proceedings of the Tenth JPL Airborne Earth Science Workshop; 145-150
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-15
    Description: On February 22, 2000 Space Shuttle Endeavour landed at Kennedy Space Center, completing the highly successful 11-day flight of the Shuttle Radar Topography Mission (SRTM). Onboard were over 300 high-density tapes containing data for the highest resolution, most complete digital topographic map of Earth ever made. SRTM is a cooperative project between NASA and the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense. The mission was designed to use a single-pass radar interferometer to produce a digital elevation model (DEM) of the Earth's land surface between about 60 deg north and 56 deg south latitude. When completed, the DEM will have 30 m pixel spacing and about 15 m vertical accuracy. Two orthorectified image mosaics (one from the ascending passes with illumination from the southeast and one from descending passes with illumination from the southwest) will also be produced.
    Keywords: Earth Resources and Remote Sensing
    Type: Space-Based Observation Technology; 33-1 - 33-3; RTO-MP-61
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-08-15
    Description: The addition of interferometric backscattering pairs to the conventional polarimetric SAR data over forests and other vegetated areas increases the dimensionality of the data space, in principle enabling the estimation of a larger number of vegetation parameters. Without regard to the sensitivity of these data to vegetation scattering parameters, this paper poses the question: Will increasing the data channels as such result in a one-to-one increase in the number of parameters that can be estimated, or do vegetation and data properties inherently limit that number otherwise? In this paper, the complete polarimetric interferometric covariance matrix is considered and various symmetry properties of the scattering medium are used to study whether any of the correlation pairs can be eliminated. The number of independent pairs has direct consequences in their utility in parameter estimation schemes, since the maximum number of parameters that can be estimated cannot exceed the number of unique measurements. The independent components of the polarimetric interferometric SAR (POL/INSAR) data are derived for media with reflection, rotation, and azimuth symmetries, which are often encountered in vegetated surfaces. Similar derivations have been carried out before for simple polarimetry, i.e., zero baseline. This paper extends those to the interferometric case of general nonzero baselines. It is shown that depending on the type of symmetries present, the number of independent available measurements that can be used to estimate medium parameters will vary. In particular, whereas in the general case there are 27 mathematically independent measurements possible from a polarimetric interferometer, this number can be reduced to 15, 9, and 6 if the medium has reflection, rotation, or azimuthal symmetries, respectively. The results can be used in several ways in the interpretation of SAR data and the development of parameter estimation schemes, which will be discussed at the presentation. Recent POL/INSAR data from the JPL AIRSAR over a forested area will be used to demonstrate the results of this derivation. This work was performed by the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, under contract from the National Aeronautics and Space Administration.
    Keywords: Earth Resources and Remote Sensing
    Type: Polarimetric Effects in Interferometry; Unknown
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-08-15
    Description: Spectroscopy is used in the laboratory to measure the molecular components and concentrations of plant constituents to answer questions about the plant type, status, and health. Imaging spectrometers measure the upwelling spectral radiance above the Earth's surface as images. Ideally, imaging spectrometer data sets should be used to understand plant type, plant status, and health of plants in an agricultural setting. An Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data set was acquired over agricultural fields near Wallula, Washington on July 23rd, 1997. AVIRIS measures upwelling radiance spectra through 224 spectral channels with contiguous 10-nm sampling from 400 to 2500 run in the solar-reflected spectrum. The spectra are measured as images of 11 by up to 800 km with 20-m spatial resolution. The spectral images measured by AVIRIS represent the integrated signal resulting from: the solar irradiance; two way transmittance and scattering of the atmosphere; the absorptions and scattering of surface materials; as well as the spectral, radiometric and spatial response functions of AVIRIS. This paper presents initial research to derive properties of the agricultural fields near Wallula from the calibrated spectral images measured by AVIRIS near the top of the atmosphere.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-08-15
    Description: This paper will describe a new exciting concept for using microwave systems for Earth remote sensing. This concept will use a 6-m diameter mesh deployable antenna with active and passive systems to provide moderate spatial resolution images at L and S-band microwave frequencies.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-08-15
    Description: In this paper, we have introduced a method of inferring the radiative effect of smoke aerosols using a technique that combines satellite remote sensing with trajectory modeling. The results shown here clearly show large flux biases between theoretical and measured radiative fluxes correlate with the arrival of smoke aerosol to the area. Further analysis is required to convincingly demonstrate that the reason for these differences is the radiative effect of the smoke aerosols. To do this, the estimated fluxes taken from the ERA-15 will be recomputed every 3 hours using International Satellite Cloud Climatology Project (ISCCP) data set entitled DX gridded to a 1o equal angle resolution (see paper 7B.2 for details). Surface radiometric and ancillary data for several more Canadian surface sites are being obtained at minute temporal resolution. The ultimate purpose of this research is to derive aerosol smoke maps for fire events such as this to be included in an aerosol climatology and be incorporated in the computation of the earth's surface radiation budget to better understand the radiative effect of aerosols.
    Keywords: Earth Resources and Remote Sensing
    Type: NASA-99-10AMS-PWS
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-08-15
    Description: The first Antarctic Imaging Campaign (AIC) occurred during the period September 9, 1997 through October 20, 1997. The AIC utilized the unique attributes of the Canadian RADARSAT-1 to acquire the first, high-resolution, synthetic aperture imagery covering the entire Antarctic Continent. Although the primary goal of the mission was the acquisition of image data, the nearly flawless execution of the mission enabled additional collections of exact repeat orbit data. These data, covering an extensive portion of the interior Antarctic, potentially are suitable for interferometric analysis of topography and surface velocity. This document summarizes the Project through completion with delivery of products to the NASA DAACs.
    Keywords: Earth Resources and Remote Sensing
    Type: OSURF-737668
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-08-15
    Description: A highly accurate global topographic map of the Earth's surface has been an elusive goal for at least three decades that may soon be achieved with the newly acquired Shuttle Radar Topographic Mission (SRTM) data. SRTM collected data for 99.97% of the Earth's landmass between -57 degrees and 60 degrees latitude during a 11 day mission in February, 2000. A modified version of the SIR-C radar that previously flew on the shuttle in 1994 augmented with a radar mounted on a 62 m boom was used to collect radar interferometric data at C (5.6 cm wavelength) and X (3 cm wavelength) bands. The C-band radar was operated in the SCANSAR mode in order to extend the swath width to 225 km the minimal amount required to achieve contiguous coverage at the equator. This paper presents an overview of the new algorithms and techniques used to process the SCANSAR data to digital elevation maps. First results of topographic maps generated from the SRTM data are used to illustrate the techniques described in this paper.
    Keywords: Earth Resources and Remote Sensing
    Type: Microwave Remote Sensing of the Atmosphere and Environment II; 4152; 179-189
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-08-15
    Description: This paper provides an overview of the Shuttle Radar Topography Mission (SRTM), with emphasis on flight system implementation and mission operations from systems engineering perspective. Successfully flown in February, 2000, the SRTM's primary payload consists of several subsystems to form the first spaceborne dual-frequency (C-band and X-band) fixed baseline interferometric synthetic aperture radar (InSAR) system, with the mission objective to acquire data sets over 80% of Earth's landmass for height reconstruction. The paper provides system architecture, unique design features, engineering budgets, design verification, in-flight checkout and data acquisition of the SRTM payload, in particular for the C-band system. Mission operation and post-mission data processing activities are also presented. The complexity of the SRTM as a system, the ambitious mission objective, the demanding requirements and the high interdependency between multi-disciplined subsystems posed many challenges. The engineering experience and the insight thus gained have important implications for future spaceborne interferometric SAR mission design and implementation.
    Keywords: Earth Resources and Remote Sensing
    Type: Microwave Remote Sensing of the Atmosphere and Environment II; 4152; 167-178
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-08-15
    Description: Multispectral digital imagery from aircraft or satellite is presently being used to derive basic assessments of crop health for growers and others involved in the agricultural industry. Research indicates that narrow band stress indices derived from hyperspectral imagery should have improved sensitivity to provide more specific information on the type and cause of crop stress, Under funding from the NASA Earth Observation Commercial Applications Program (EOCAP) we are identifying and evaluating scientific and commercial applications of hyperspectral imagery for the remote characterization of agricultural crop stress. During the summer of 1999 a field experiment was conducted with varying nitrogen treatments on a production corn-field in eastern Nebraska. The AVIRIS (Airborne Visible-Infrared Imaging Spectrometer) hyperspectral imager was flown at two critical dates during crop development, at two different altitudes, providing images with approximately 18m pixels and 3m pixels. Simultaneous supporting soil and crop characterization included spectral reflectance measurements above the canopy, biomass characterization, soil sampling, and aerial photography. In this paper we describe the experiment and results, and examine the following three issues relative to the utility of hyperspectral imagery for scientific study and commercial crop stress products: (1) Accuracy of reflectance derived stress indices relative to conventional measures of stress. We compare reflectance-derived indices (both field radiometer and AVIRIS) with applied nitrogen and with leaf level measurement of nitrogen availability and chlorophyll concentrations over the experimental plots (4 replications of 5 different nitrogen levels); (2) Ability of the hyperspectral sensors to detect sub-pixel areas under crop stress. We applied the stress indices to both the 3m and 18m AVIRIS imagery for the entire production corn field using several sub-pixel areas within the field to compare the relative sensitivity of each stress index; and (3) Comparative sensitivity of stress indices to realistic measurement uncertainties. We compare the stress indices calculated with several levels of spectral uncertainty (by shifting the wavelengths) and reflectance uncertainty (by systematically varying the reflectance retrieval code initialization).
    Keywords: Earth Resources and Remote Sensing
    Type: Hyperspectral Remote Sensing of the Land and Atmosphere; 4151; 197-204
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-08-15
    Description: Water balance considerations at the soil surface lead to an equation that relates the autocorrelation of soil moisture in climate models to (1) seasonality in the statistics of the atmospheric forcing, (2) the variation of evaporation with soil moisture, (3) the variation of runoff with soil moisture, and (4) persistence in the atmospheric forcing, as perhaps induced by land atmosphere feedback. Geographical variations in the relative strengths of these factors, which can be established through analysis of model diagnostics and which can be validated to a certain extent against observations, lead to geographical variations in simulated soil moisture memory and thus, in effect, to geographical variations in seasonal precipitation predictability associated with soil moisture. The use of the equation to characterize controls on soil moisture memory is demonstrated with data from the modeling system of the NASA Seasonal-to-Interannual Prediction Project.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-08-15
    Description: During this period work was performed in the following areas. These areas are defined in the Work Schedule presented in the original proposal: BRDF development, Data acquisition and processing, THR Table generation and Presentations and Publications. BRDF development involves creating and/or modifying a reflectance model of the Antarctic surface. This model must, for a temporal and spatial average, be representative of the East Antarctic plateau and be expressed in terms of the three standard surface angles: solar zenith angle (SolZA), view zenith angle (SatZA), and relative azimuth angle (RelAZ). We successfully acquired a limited amount of NOAA-9 AVHRR data for radiance validation. The data were obtained from the Laboratory for Terrestrial Physics at Goddard Space Flight Center. We developed our own reading and unpacking software, which we used to select Channel 1 data (visible). We then applied geographic subsetting criteria (same as used for TOMS), and wrote only the relevant data to packed binary files. We proceeded with analysis of these data, which is not yet complete.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-15
    Description: Funded and administered by NASA, the Affiliated Research Center (ARC) program transfers geospatial technologies from the Space Agency and participating universities to commercial companies, non-profit and trade organizations, and tribal governments. The origins of the ARC program date back to 1988, when NASA's Stennis Space Center initiated the Visiting Investigator Program to bring industry closer to spatial information technologies. The success of this trial program led to an expansion into the ARC program, whose goal is to enhance competitiveness of U.S. industries through more efficient use of remote sensing and related technologies. NASA's ARC program served as the foundation for the development of International Hardwood Resources, which then grew into Falcon Informatics with the acquisition of a technology from a European software company and a change of business models. Doylestown, Pennsylvania-based Falcon Informatics is now a world-leading information services company that combines in-depth timber industry experience with state-of-the-art software to serve the needs of national governments, international paper companies, and timber-investment management organizations.
    Keywords: Earth Resources and Remote Sensing
    Type: Spinoff; 71-72; NASA/NP-2004-10-374-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-08-14
    Description: Future NASA Earth observing satellites will carry high-precision instruments capable of producing large amounts of scientific data. The strategy will be to network these instrument-laden satellites into a web-like array of sensors to facilitate the collection, processing, transmission, storage, and distribution of data and data products - the essential elements of what we refer to as "Information Technology." Many of these Information Technologies will enable the satellite and ground information systems to function effectively in real-time, providing scientists with the capability of customizing data collection activities on a satellite or group of satellites directly from the ground. In future systems, extremely large quantities of data collected by scientific instruments will require the fastest processors, the highest communication channel transfer rates, and the largest data storage capacity to insure that data flows smoothly from the satellite-based instrument to the ground-based archive. Autonomous systems will control all essential processes and play a key role in coordinating the data flow through space-based communication networks. In this paper, we will discuss those critical information technologies for Earth observing satellites that will support the next generation of space-based scientific measurements of planet Earth, and insure that data and data products provided by these systems will be accessible to scientists and the user community in general.
    Keywords: Earth Resources and Remote Sensing
    Type: IGARSS 2001; Jul 01, 2001; Sydney; Australia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-08-14
    Description: The MODerate resolution Imaging Spectroradiometer (MODIS) was launched on NASA's EOS-Terra spacecraft December 1999. With 36 spectral bands covering the visible, near wave and short wave infrared. MODIS produces over 40 global science data products, including sea surface temperature, ocean color, cloud properties, vegetation indices land surface temperature and land cover change. The MODIS Data Processing System (MODAPS) produces 400 GB/day of global MODIS science products from calibrated radiances generated in the Earth Observing System Data and Information System (EOSDIS). The science products are shipped to the EOSDIS for archiving and distribution to the public. An additional 200 GB of products are shipped each day to MODIS team members for quality assurance and validation of their products. In the sections that follow, we will describe the architecture of the MODAPS, identify processing bottlenecks encountered in scaling MODAPS from 50 GB/day backup system to a 400 GB/day production system and discuss how these were handled.
    Keywords: Earth Resources and Remote Sensing
    Type: Geoscience and Remote Sensing; Jul 24, 2000 - Jul 28, 2000; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-08-14
    Description: As reported at previous sessions of the Interdepartmental Hurricane Conference, the Office of Earth Science within the National Aeronautics and Space Administration (NASA) has been sponsoring the Convection And Moisture Experiment (CAMEX) since 1993. Although originally designed to support satellite calibration and validation activities and to demonstrate new remote sensing technology pertinent to the global water cycle, the CAMEX research objectives have evolved to include a strong emphasis on hurricane observational studies. A hallmark of CAMEX success has been fruitful research collaborations with the Hurricane Research Division (HRD) of the National Oceanic and Atmospheric Administration (NOAA) and the Hurricanes At Landfall Initiative of the United States Weather Research Program. Satellite, aircraft, and ground-based observations collected during the 1998 and 200 1 field phases of CAMEX represent a wealth of information describing the three dimensional structure of tropical cyclones. Early research results gleaned from these observations have been submitted to a special issue of the American Meteorological Society Journal of Atmospheric Sciences. An overview of these early findings and their expected significance to the operational community will be presented during this talk.
    Keywords: Earth Resources and Remote Sensing
    Type: 58th Interdepartment Hurricane Conference; Feb 29, 2004 - Mar 05, 2004; Charleston, SC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-08-14
    Description: For the past three decades, Earth science remote sensing technologies have been providing enormous amounts of useful data and information in broadening our understanding of our home planet as a system. This research, as it has expanded our learning process, has also generated additional questions. This has further resulted in establishing new science requirements, which have culminated in defining and pushing the state-of-the-art technology needs. NASA s Earth science program has deployed 18 highly complex satellites, with a total of 80 sensors, so far and is in a process of defining and launching multiple observing systems in the next decade. Due to the heightened security alert of the nation, researchers and technologists are paying serious attention to the use of these science driven technologies for dual use. In other words, how such sophisticated observing and measuring systems can be used in detecting multiple types of security concerns with a substantial lead time so that the appropriate law enforcement agencies can take adequate steps to defuse any potential risky scenarios. This paper examines numerous NASA technologies such as laser/lidar systems, microwave and millimeter wave technologies, optical observing systems, high performance computational techniques for rapid analyses, and imaging products that can have a tremendous pay off for security applications.
    Keywords: Earth Resources and Remote Sensing
    Type: SPIE Defense and Security Symposium; Apr 12, 2004 - Apr 16, 2004; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-08-14
    Description: The National Aeronautics and Space Administration (NASA), Earth Science Enterprise is engaged in applications of NASA Earth science and remote sensing technologies for public health. Efforts are focused on establishing partnerships with those agencies and organizations that have responsibility for protecting the Nation's Health. The program's goal is the integration of NASA's advanced data and technology for enhanced decision support in the areas of disease surveillance and environmental health. A focused applications program, based on understanding partner issues and requirements, has the potential to significantly contribute to more informed decision making in public health practice. This paper intends to provide background information on NASA's investment in public health and is a call for partnership with the larger practice community.
    Keywords: Earth Resources and Remote Sensing
    Type: SE-2002-11-00077-SSC
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-08-13
    Description: Cultural resource surveys are important for compliance with Federal and State law. Stennis Space Center (SSC) in Mississippi is researching, developing, and validating remote sensing and Geographical Information System (GIS) methods for aiding cultural resource assessments on the center's own land. The suitability of IKONOS satellite imagery for georeferencing scanned historic maps is examined in this viewgraph presentation. IKONOS data can be used to map historic buildings and farmland in Gainsville, MS, and plan archaeological surveys.
    Keywords: Earth Resources and Remote Sensing
    Type: SE-2002-02-00011-SSC , 2002 NASA Environmental Management and Energy Conference; Mar 12, 2002 - Mar 14, 2002; Norfolk, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-08-13
    Description: The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the 2002 Winter Olympic Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes and "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC) See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science and on National and International Network TV. New computer software tools allow us to roam and zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds. data. Spectacular new visualizations of the global atmosphere and oceans are shown. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP military satellite.
    Keywords: Earth Resources and Remote Sensing
    Type: Visions of our Planet''s Atmosphere, Land and Oceans: NASA/NOAA Electronic Theater 2002; May 22, 2002 - May 25, 2002; Boulder, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-08-13
    Description: A Bayesian data-analysis framework is described for atmospheric and surface retrievals from remotely-sensed hyper-spectral data. Some computational techniques are high- lighted for improved accuracy in the forward physics model.
    Keywords: Earth Resources and Remote Sensing
    Type: Rept-1 , NASA Earth Science Technology Conference; Jun 24, 2004; Palo Alto, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-08-13
    Description: Meteorological observations, in situ data and satellite images of dust episodes were used already in the 1970s to estimate that 100 tg of dust are transported from Africa over the Atlantic Ocean every year between June and August and deposited in the Atlantic Ocean and the Americas. Desert dust is a main source of nutrients to oceanic biota and the Amazon forest, but deteriorates air quality and caries pathogens as shown for Florida. Dust affects the Earth radiation budget, thus participating in climate change and feedback mechanisms. There is an urgent need for new tools for quantitative evaluation of the dust distribution, transport and deposition. The Terra spacecraft launched at the dawn of the last millennium provides first systematic well calibrated multispectral measurements from the MODIS instrument, for daily global analysis of aerosol. MODIS data are used here to distinguish dust from smoke and maritime aerosols and evaluate the African dust column concentration, transport and deposition. We found that 230 plus or minus 80 tg of dust are transported annually from Africa to the Atlantic Ocean, 30 tg return to Africa and Europe, 70 tg reach the Caribbean, 45 tg fertilize the Amazon Basin, 4 times as previous estimates thus explaining a paradox regarding the source of nutrition to the Amazon forest, and 120 plus or minus 40 tg are deposited in the Atlantic Ocean. The results are compared favorably with dust transport models for particle radius less than or equal to 12 microns. This study is a first example of quantitative use of MODIS aerosol for a geophysical study.
    Keywords: Earth Resources and Remote Sensing
    Type: ISA-NASA Science Workshop; May 04, 2004 - May 08, 2004; Dead Sea; Israel
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-08-13
    Description: Fritz Hasler (NASA/Goddard) will demonstrate the latest Blue Marble Digital Earth technology. We will fly in from space through Terra, Landsat 7, to 1 m Ikonos "Spy Satellite" data to Washington, NYC, Chicago, and LA. You will see animations using the new 1 km global datasets from the EOS Terra satellite. Spectacular new animations from Terra, Landsat 7, and SeaWiFS will be presented. See the latest animations of the super hurricanes like, Floyd, Luis, and Mitch, from GOES & TRMM. See movies assembled using new low cost HDTV nonlinear editing equipment that is revolutionizing the way we communicate scientific results. See climate change in action with Global Land & Ocean productivity changes over the last 20 years. Remote sensing observations of ocean SST, height, winds, color, and El Nino from GOES, AVHRR, SSMI & SeaWiFS are put in context with atmospheric and ocean simulations. Compare symmetrical equatorial eddies observed by GOES with the simulations.
    Keywords: Earth Resources and Remote Sensing
    Type: 2001 Blue Marble and Development in HDTV Technology for Public Outreach; Sep 18, 2001 - Sep 25, 2001; Minneapolis, MN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-08-13
    Description: Contents include the following: 1. Introduction: Background information. Initial applications of the SSC EGIS. Ongoing projects. 2.Scope of SSC EGIS. 3. Data layers. 4. Onsite operations. 5. Landcover classifications. 6. Current activities. 7. GIS/Key. 8. Infrastructure base map - development. 9. Infrastructure base map - application. 10. Incorrected layer. 11. Corrected layer. 12. Emergency environmental response tool. 13. Future directions. 14. Bridging the gaps. 15. Environmental geographical information system.
    Keywords: Earth Resources and Remote Sensing
    Type: SE-2002-03-00014-SSC , 2002 NASA Environmental Management and Energy Conference; Mar 12, 2002 - Mar 14, 2002; Norfolk, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-08-13
    Description: Contents include the following: Monitoring the Ancient Countryside: Remote Sensing and GIS at the Chora of Chersonesos (Crimea, Ukraine). Integration of Remote Sensing and GIS for Management Decision Support in the Pendjari Biosphere Reserve (Republic of Benin). Monitoring of deforestation invasion in natural reserves of northern Madagascar based on space imagery. Cartography of Kahuzi-Biega National Park. Cartography and Land Use Change of World Heritage Areas and the Benefits of Remote Sensing and GIS for Conservation. Assessing and Monitoring Vegetation in Nabq Protected Area, South Sinai, Egypt, using combine approach of Satellite Imagery and Land Surveys. Evaluation of forage resources in semi-arid savannah environments with satellite imagery: contribution to the management of a protected area (Nakuru National Park) in Kenya. SOGHA, the Surveillance of Gorilla Habitat in World Heritage sites using Space Technologies. Application of Remote Sensing to monitor the Mont-Saint-Michel Bay (France). Application of Remote Sensing & GIS for the Conservation of Natural and Cultural Heritage Sites of the Southern Province of Sri Lanka. Social and Environmental monitoring of a UNESCO Biosphere Reserve: Case Study over the Vosges du Nord and Pfalzerwald Parks using Corona and Spot Imagery. Satellite Remote Sensing as tool to Monitor Indian Reservation in the Brazilian Amazonia. Remote Sensing and GIS Technology for Monitoring UNESCO World Heritage Sites - A Pilot Project. Urban Green Spaces: Modern Heritage. Monitoring of the technical condition of the St. Sophia Cathedral and related monastic buildings in Kiev with Space Applications, geo-positioning systems and GIS tools. The Murghab delta palaeochannel Reconstruction on the Basis of Remote Sensing from Space. Acquisition, Registration and Application of IKONOS Space Imagery for the cultural World Heritage site at Mew, Turkmenistan. Remote Sensing and VR applications for the reconstruction of archaeological landscapes. Archaeology through Space: Experience in Indian Subcontinent. The creation of a GIS Archaeological Site Location Catalogue in Yucatan: A Tool to preserve its Cultural Heritage. Mapping the Ancient Anasazi Roads of Southeast Utah. Remote Sensing and GIS Technology for Identification of Conservation and Heritage sites in Urban Planning. Mapping Angkor: For a new appraisal of the Angkor region. Angkor and radar imaging: seeing a vast pre-industrial low-density, dispersed urban complex. Technical and methodological aspects of archaeological CRM integrating high resolution satellite imagery. The contribution of satellite imagery to archaeological survey: an example from western Syria. The use of satellite images, digital elevation models and ground truth for the monitoring of land degradation in the "Cinque Terre" National park. Remote Sensing and GIS Applications for Protection and Conservation of World Heritage Site on the coast - Case Study of Tamil Nadu Coast, India. Multispectral high resolution satellite imagery in combination with "traditional" remote sensing and ground survey methods to the study of archaeological landscapes. The case study of Tuscany. Use of Remotely-Sensed Imagery in Cultural Landscape. Characterisation at Fort Hood, Texas. Heritage Learning and Data Collection: Biodiversity & Heritage Conservation through Collaborative Monitoring & Research. A collaborative project by UNESCO's WHC (World Heritage Center) & The GLOBE Program (Global Learning and Observations to Benefit the Environment). Practical Remote Sensing Activities in an Interdisciplinary Master-Level Space Course.
    Keywords: Earth Resources and Remote Sensing
    Type: International Conference on Remote Sensing Applications for Archeological Research and World Heritage Conservation|Space Applications for Heritage Conservation; Nov 05, 2002 - Nov 08, 2002; Strasbourg; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-27
    Description: This list contains the names of data products from the Goddard Earth Observing System - Data Assimilation System (GEOS-4 DAS) at the Goddard Earth Science (GES) Data and Information Services Center (DISC) Distributed Active Archive Center (DAAC). The list divides the data products into Assimilated Synoptic Files and Assimilated Time Averaged Files.
    Keywords: Earth Resources and Remote Sensing
    Type: Spring 2003 ASPRS Meeting; Spring 2003; Anchorage, AK; United States|Fall 2002 AGU Meeting; Fall 2002; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-20
    Description: The surface temperature, T(sub s), of a land surface measured by a radiometer, T(sub s,r), and the temperature "felt" by the air, T(sub aero), often differ significantly and are difficult if not impossible to define rigorously. However, recent studies conducted by the principal investigators with several land surface models suggest that this problem can be largely resolved. The main goal of this project was to use model-based and empirical studies to improve understanding and reconcile the difference between T(sub s,r) and T(sub aero), while maintaining consistency within the models and with theory and data. The results from this effort have contributed progress towards the effective use of remotely sensed surface temperature measurements taken from an arbitrary view angle over a partial canopy cover for producing high quality sensible and latent heat flux estimates. In addition, we have developed parameterizations that are designed to improve the representation of the roughness length for heat in climate and mesoscale models. This not only provides improved representation of surface energy balance in such models, but should also facilitate the use of surface temperature measurements for validating or updating the surface temperature produced by SVATs (soil-vegetation-atmosphere schemes) in climate or mesoscale models.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-20
    Description: Coastal bays formed by the barrier islands of Delaware, Maryland and Virginia are parts of a coastal region known as a "Coastal Compartment". The coastal compartment between the Chesapeake and Delaware Bays is actually the mosaic of landscapes on the headland of the interfluve that separates these large drainage basins. The coastal compartments form a variety of different-shaped waterways landward of the coastline. Shape differences along the boundaries produce differences in exposure to wind and waves. Different shoreface topographies seaward of the coastline also influence surface roughness by changing wave-refraction patterns. Surface-water roughness (caused by waves) is controlled by a number of parameters, including fetch, shielding, exposure corridors, water-mass boundary conditions, wetland vegetation and water depth in coastal bays. In the coastal ocean, surface roughness patterns are controlled by shoreface shoaling and inlet refraction patterns in the coastal ocean. Knowledge of wave phenomena in the nearshore and backbarrier areas is needed to understand how wave climate influences important ecosystems in estuaries and bays.
    Keywords: Earth Resources and Remote Sensing
    Type: ODURF-154952
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-19
    Description: Sensor Web observing systems may have the potential to significantly improve our ability to monitor, understand, and predict the evolution of rapidly evolving, transient, or variable environmental features and events. This improvement will come about by integrating novel data collection techniques, new or improved instruments, emerging communications technologies and protocols, sensor mark-up languages, and interoperable planning and scheduling systems. In contrast to today's observing systems, "event-driven" sensor webs will synthesize real- or near-real time measurements and information from other platforms and then react by reconfiguring the platforms and instruments to invoke new measurement modes and adaptive observation strategies. Similarly, "model-driven" sensor webs will utilize environmental prediction models to initiate targeted sensor measurements or to use a new observing strategy. The sensor web concept contrasts with today's data collection techniques and observing system operations concepts where independent measurements are made by remote sensing and in situ platforms that do not share, and therefore cannot act upon, potentially useful complementary sensor measurement data and platform state information. This presentation describes NASA's view of event-driven and model-driven Sensor Webs and highlights several research and development activities at the Goddard Space Flight Center.
    Keywords: Earth Resources and Remote Sensing
    Type: AGI 2005 User''s Conference; Oct 11, 2005 - Oct 14, 2005; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-19
    Description: What is the role of Earth remote sensing and other geospatial technologies in our society? Recent global events have brought into focus the role of geospatial science and technology such as remote sensing, GIS, GPS in assisting the professionals who are responsible for operations such as rescue and recovery of sites after a disaster or a terrorist act. This paper reviews the use of recent remote sensing products from satellites such as IKONOS in these efforts. Aerial and satellite imagery used in land mine detection has been evaluated and the results of this evaluation will be discussed. Synopsis of current and future ISS Earth Remote Sensing capabilities will be provided. The role of future missions in humanitarian use of remote sensing will be explored.
    Keywords: Earth Resources and Remote Sensing
    Type: JSC-CN-7761 , IGARSS/IEEE 2003; Jul 21, 2003 - Jul 25, 2003; Toulouse; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-19
    Description: This lecture will cover the basic ideas of space observations of chemical constituents, modern analysis techniques and results. I will show analysis using TOMS, UARS, SAGE, Terra. I will show some of the planned missions for the US that will launch in the next few years.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-19
    Description: This paper examines the relationships between the socio-demographic characteristics of small settlers in the Brazilian Amazon and the life cycle hypothesis in the process of deforestation. The analysis was conducted combining remote sensing and geographic data with primary data of 153 small settlers along the TransAmazon Highway. Regression analyses and spatial autocorrelation tests were conducted. The results from the empirical model indicate that socio-demographic characteristics of households as well as institutional and market factors, affect the land use decision. Although remotely sensed information is not very popular among Brazilian social scientists, these results confirm that they can be very useful for this kind of study. Furthermore, the research presented by this paper strongly indicates that family and socio-demographic data, as well as market data, may result in misspecification problems. The same applies to models that do not incorporate spatial analysis.
    Keywords: Earth Resources and Remote Sensing
    Type: Revista Brasleira de Economia [Brazilian Economy Review]; 54; 4; 683-711
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-19
    Description: Tropical deforestation remains a critical issue given its present rate and a widespread consensus regarding its implications for the global carbon cycle and biodiversity. Nowhere is the problem more pronounced than in the Amazon basin, home to the world's largest intact, tropical forest. This article addresses land cover change processes at household level in the Amazon basin, and to this end adapts a concept of domestic life cycle to the current institutional environment of tropical frontiers. In particular, it poses a risk minimization model that integrates demography with market-based factors such as transportation costs and accessibility. In essence, the article merges the theory of Chayanov with the household economy framework, in which markets exist for inputs (including labor), outputs, and capital. The risk model is specified and estimated, using survey data for 261 small producers along the Transamazon Highway in the eastern sector of the Brazilian Amazon.
    Keywords: Earth Resources and Remote Sensing
    Type: International Regional Science Review; 25; 2; 169-199
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-19
    Description: Changes in land use and land cover are dynamic processes reflecting a sequence of decisions made by individual land managers. In developing economies, these decisions may be embedded in the evolution of individual households, as is often the case in indigenous areas and agricultural frontiers. One goal of the present article is to address the land use and land-cover decisions of colonist farmers in the Amazon Basin as a function, in part, of household characteristics. Another goal is to generalize the issue of tropical deforestation into a broader discussion on forest dynamics. The extent of secondary forest in tropical areas has been well documented in South America and Africa. Agricultural-plot abandonment often occurs in tandem with primary forest clearance and as part of the same decision-making calculus. Consequently, tropical deforestation and forest succession are not independent processes in the landscape. This article presents a framework that integrates them into a model of forest dynamics at household level, and in so doing provides an account of the spatial pattern of deforestation that has been observed in the Amazon's colonization frontiers.
    Keywords: Earth Resources and Remote Sensing
    Type: Annals of the Association of American Geographers; 93; 2; 376-398
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-19
    Description: This article addresses land-cover and land-use dynamics from the perspective of regional science and economic geography. It first provides an account of the so-called spatially explicit model, which has emerged in recent years as a key empirical approach to the issue. The article uses this discussion as a springboard to evaluate the potential utility of von Thuenen to the discourse on land-cover and land-use change. After identifying shortcomings of current theoretical approaches to land use in mainly urban models, the article filters a discussion of deforestation through the lens of bid-rent and assesses its effectiveness in helping us comprehend the destruction of tropical forest in the Amazon basin. The article considers the adjustments that would have to be made to existing theory to make it more useful to the empirical issues.
    Keywords: Earth Resources and Remote Sensing
    Type: International Regional Science Review; 27; 3; 247-270
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-19
    Description: This study compares aerosol optical depths (AOD) products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model and their integrated products with ground measurements across the eastern U.S. from March 1, 2000 to December 31, 2001. The Terra MODIS Level-3 (collection 4) AOD at 0.55 pm has better correlation, but consistently overestimates the values of the Aerosol Robotic Network (AERONET) measurements. GOCART has small biases for a 22-month integration, and slight positive biases are appeared for the cold season. These results are also supported by the comparison with the IMPROVE (Interagency Monitoring of Protected Visual Environments) light extinction index. The optimal interpolation improves the daily-scale RMSE from either MODIS or GOCART alone. However, the regional biases in the aerosol products constitute a major constraint to the optimal estimate of AOD.
    Keywords: Earth Resources and Remote Sensing
    Type: Geophysical Research Letters; 31; L21101
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-18
    Description: Multispectral data requirements for Earth science applications are not always studied rigorously studied before a new remote sensing system is designed. A study of the spatial resolution, spectral bandpasses, and radiometric sensitivity requirements of real-world applications would focus the design onto providing maximum benefits to the end-user community. To support systematic studies of multispectral data requirements, the Applications Research Toolbox (ART) has been developed at NASA's Stennis Space Center. The ART software allows users to create and assess simulated datasets while varying a wide range of system parameters. The simulations are based on data acquired by existing multispectral and hyperspectral instruments. The produced datasets can be further evaluated for specific end-user applications. Spectral synthesis of multispectral images from hyperspectral data is a key part of the ART software. In this process, hyperspectral image cubes are transformed into multispectral imagery without changes in spatial sampling and resolution. The transformation algorithm takes into account spectral responses of both the synthesized, broad, multispectral bands and the utilized, narrow, hyperspectral bands. To validate the spectral synthesis algorithm, simulated multispectral images are compared with images collected near-coincidentally by the Landsat 7 ETM+ and the EO-1 ALI instruments. Hyperspectral images acquired with the airborne AVIRIS instrument and with the Hyperion instrument onboard the EO-1 satellite were used as input data to the presented simulations.
    Keywords: Earth Resources and Remote Sensing
    Type: SE-2001-11-00065-SSC , 2002 AVIRIS Earth Science and Applications Workshop; Mar 05, 2002 - Mar 08, 2002; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-18
    Description: Ground Penetrating Radar (GPR) was used in recent surveys to acquire subsurface geophysical data for historic sites at Gainesville, Mississippi, a town abandoned in 1962 with the building of the John C. Stennis Space Center. Prior to GPR data collection, a 20- by 20-meter grid was established using UTM map projection and GPS for locating cell corners. Lines of GPR data were then collected every 25 centimeters. The images were then processed, and coregistered to georeferenced aerial and satellite imagery. This procedure is enabling analysts to assess the GPR imagery more effectively in a geospatial context. Field validation of anomalies created by known subsurface features from both recent and historic sources is allowing soil attributes, such as variations in Relative Dielectric Permittivity, to be tested more accurately. Additional work is assessing how GPR data can be effectively combined with other forms of remote sensing to direct archaeological surveys and excavations.
    Keywords: Earth Resources and Remote Sensing
    Type: SE-2002-08-00055-SSC , 59th Annual Meeting of the Southeastern Archaeological Conference; Nov 06, 2002 - Nov 09, 2002; Biloxi, MS; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-18
    Description: The Atlas San Juan Mission was conducted in February 2004 with the main objectives of observing the Urban Heat Island of San Juan, providing high resolution data of the land use for El Yunque Rain Forest and for calibrating remote sensors. The mission was coordinated with NASA staff members at Marshall, Stennis, Goddard, and Glenn. The Airborne Thermal and Land Applications Sensor (ATLAS) from NASA/Stennis, that operates in the visual and IR bands, was used as the main sensor and was flown over Puerto Rico in a Lear 23 jet plane. To support the data gathering effort by the ATLAS sensor, remote sensing observations and upper air soundings were conducted along with the deployment of a number of ground based weather stations and temperature sensors. This presentation focuses in the analysis of this complementary data for the Atlas San Juan Mission. Upper air data show that during the days of the mission the Caribbean mid and high atmospheres were relatively dry and highly stable reflecting positive surface lifted index, a necessary condition to conduct this suborbital campaign. Surface wind patterns at levels below 850mb were dominated by the easterly trades, while the jet stream at the edge of the troposphere dominated the westerly wind at levels above 500mb. The jet stream remained at high latitudes reducing the possibility of fronts. In consequence, only 8.4 mm of precipitation were reported during the entire mission. Observation of soundings located about 150 km apart reflected minimum variations of the boundary layer across the island for levels below 850 meters and a uniform atmosphere for higher levels. The weather stations and the temperature sensors were placed at strategic locations to observe variations across the urban and rural landscapes. Time series plot of the stations' data show that heavily urbanized commercial areas have higher air temperatures than urban and suburban residential areas, and much higher temperatures than rural areas. Temperature differences [dT(U-R)] were obtained by subtracting the values of several stations from a reference urban station, located in the commercial area of San Juan. These time series show that the UHI peaks during the morning between 10:00am and noon to an average of 4.5 C, a temporal pattern not previously observed in similar studies for continental cities. It is also observed a high variability of the UHI with the precipitation patterns even for short events. These results may be a reflection of a large land use density by low level buildings with an apparent absence of significant heat storage effects in the urban areas, and the importance of the surrounding soil and vegetation moisture in controlling the urban tropical climate. The ATLAS data was used to determine albedo and surface temperature patterns on a 10m scale for the study area. These data were used to calibrate the spatial distribution of the surface temperature when using remote sensing images from MODIS (Moderate Resolution Imaging Spectroradiometer). Surface temperatures were estimated using the land surface temperature product MOD11_L2 distributed by the Land Process Distributed Active Archive Center (LP DAAC). These results show the maximum, minimum and average temperatures in San Juan and in the entire Island at a resolution of 1 km. The information retrieved from MODIS for land surface temperatures reflected similar temporal and spatial variations as the weather stations and ATLAS measurements with a highest absolute offset of about 5 C due to the differences between surface and air temperatures.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-18
    Description: The skewed statistical distributions of land cover types in complex, heterogeneous urban areas limits the effectiveness of traditional spectrally based maximum-likelihood classifiers. This work examines the utility of fractal dimension and Moran's I index of spatial autocorrelation in segmenting high-resolution panchromatic and lower-resolution multispectral imagery. Tools available in the Image Characterization and Modeling System (ICAMS) were used to analyze multi-temporal and multi-platform imagery of Atlanta, Georgia. In this example, land cover change trajectories from forest or grassland to built up land covers lead to decreased spatial autocorrelation. In lower resolution imagery such as Landsat MSS, the complex details of forested land covers and urbanized areas are smoothed, and texture-based change detection is less effective. Although segmentation of panchromatic images is possible using fractal dimension or Moran's I, widely differing land covers often yield similar values of these indices. Better results are obtained when a surface of local fractal dimension or spatial autocorrelation is combined as an additional layer in a supervised maximum-likelihood multispectral classification.
    Keywords: Earth Resources and Remote Sensing
    Type: Proceedings of the American Society for Photogrammetry and Remote Sensing; May 05, 2003 - May 07, 2003; Anchorage, AK; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-18
    Description: We have developed an algorithm to detect suspended sediments and shallow coastal waters using imaging data acquired with the Moderate Resolution Imaging SpectroRadiometer (MODIS). The MODIS instruments on board the NASA Terra and Aqua Spacecrafts are equipped with one set of narrow channels located in a wide 0.4 - 2.5 micron spectral range. These channels were designed primarily for remote sensing of the land surface and atmosphere. We have found that the set of land and cloud channels are also quite useful for remote sensing of the bright coastal waters. We have developed an empirical algorithm, which uses the narrow MODIS channels in this wide spectral range, for identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. In our algorithm, we take advantage of the strong water absorption at wavelengths longer than 1 micron that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.
    Keywords: Earth Resources and Remote Sensing
    Type: American Geophysical Union Fall Meeting; Dec 06, 2002 - Dec 10, 2002; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-18
    Description: Remotely sensed normalized difference vegetation index (NDVI) values, derived from high-resolution satellite images, were compared with ground measurements of vineyard leaf area index (LAI) periodically during the 2001 growing season. The two variables were strongly related at six ground calibration sites on each of four occasions (r squared = 0.91 to 0.98). Linear regression equations relating the two variables did not significantly differ by observation date, and a single equation accounted for 92 percent of the variance in the combined dataset. Temporal stability of the relationship opens the possibility of transforming NDVI maps to LAI in the absence of repeated ground calibration fieldwork. In order to take advantage of this circumstance, however, steps should be taken to assure temporal consistency in spectral data values comprising the NDVI.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-18
    Description: Many recent field experiments are designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentrations over eastern/southeastern Asia and along the rim of the western Pacific. For example, the ACE-Asia was conducted from March-May 2001 in the vicinity of the Taklimakan and Gobi deserts, East Coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). Asian dust typically originates in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian aerosols is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the mid-Pacific Ocean. During ACE-Asia we have measured continuously aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from surface. The inclusion of flux measurements permits the determination of aerosol radiative flux in addition to measurements of loading and optical depth. At the time of the Terra/MODIS, SeaWiFS, TOMS and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. Preliminary results will be presented and discussed their implications in regional climatic effects.
    Keywords: Earth Resources and Remote Sensing
    Type: Apare Workshop and 6th International Aerosol Conference; Sep 06, 2002 - Sep 13, 2002; Taipei; Taiwan, Province of China|7th Scientific Conference of the International Global Atmos- pheric Chemistry Project; Sep 18, 2002 - Sep 25, 2002; Crete; Greece
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-18
    Description: It is estimated that by the year 2025, 60% of the world s population will live in cities (UNFP, 1999). As cities continue to grow, urban sprawl (e.g., the expansion of urban surfaces outward into rural surroundings) creates unique problems related to land use, transportation, agriculture, housing, pollution, and development. Urban expansion also has measurable impacts on environmental processes. Urban areas modify boundary layer processes through the creation of an urban heat island (UHI). The literature indicates that the signature of the urban heat island effect may be resolvable in rainfall patterns over and downwind of metropolitan areas. However, a recent U.S. Weather Research Program panel concluded that more observational and modeling research is needed in this area (Dabberdt et al. 2000). NASA and other agencies initiated programs such as the Atlanta Land-use Analysis: Temperature and Air Quality Project (ATLANTA) (Quattrochi et al. 1998) which aimed to identify and understand how urban heat islands impact the environment. However, a comprehensive assessment of the role of urban-induced rainfall in the global water and energy cycle (GWEC) and cycling of freshwater was not a primary focus of these efforts. NASA's Earth Science Enterprise (ESE) seeks to develop a scientific understanding of the Earth system and its response to natural or human-induced changes to enable improved prediction capability for climate, weather, and natural hazards (NASA, 2000). Within this mission, the ESE has three basic thrusts: science research to increase Earth system knowledge; an applications program to transfer science knowledge to practical use in society; and a technology program to enable new, better, and cheaper capabilities for observing the earth. Within this framework, a research program is underway to further address the co-relationship between land cover use and change (e.g. urban development) and its impact on key components of the GWEC (e.g., precipitation). This presentation discusses the feasibility of using the TRMM or GPM satellite to identify precipitation anomalies likely caused by urbanization (Shepherd et al. 2002). Recent results from analyses of TRMM data around several major U.S. cities (e.g. Dallas, Atlanta, Houston) will be discussed. The presentation also summarizes a NASA-funded research effort to investigate the phenomenon of urban-induced precipitation anomalies using TRMM (future GPM) satellite-based remote sensing, an intensive ground observation/validation effort near Atlanta, and coupled atmosphere-land numerical modeling techniques.
    Keywords: Earth Resources and Remote Sensing
    Type: Seminar on Urban Induced Rainfall; Nov 24, 2002 - Nov 25, 2002; Charlottesville, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-18
    Description: Recently produced daily Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol data for the whole year of 2001 are used to show the concentration and dynamics of aerosol over ocean and large parts of the continents. The data were validated against the Aerosol Robotic Network (AERONET) measurements over land and ocean in a special issue in GRL now in press. Monthly averages and a movie based on the daily data are produced and used to demonstrate the spatial and temporal evolution of aerosol. The MODIS wide spectral range is used to distinguish fine smoke and pollution aerosol from coarse dust and salt. The aerosol is observed above ocean and land. The movie produced from the MODIS data provides a new dimension to aerosol observations by showing the dynamics of the system. For example in February smoke and dust emitted from the Sahel and West Africa is shown to travel to the North-East Atlantic. In April heavy dust and pollution from East Asia is shown to travel to North America. In May-June pollution and dust play a dynamical dance in the Arabian Sea and Bay of Bengal. In Aug-September smoke from South Africa and South America is shown to pulsate in tandem and to periodically to be transported to the otherwise pristine Southern part of the Southern Hemisphere. The MODIS data are compared with the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation Transport (GOCART) model to test and adjust source and sink strengths in the model and to study the effect of clouds on the representation of the satellite data.
    Keywords: Earth Resources and Remote Sensing
    Type: NCAR Conference; Jul 09, 2002 - Jul 17, 2002; Boulder, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-18
    Description: There is a significant interest in the Earth Science remote sensing community in substantially increasing the number of observations relative to the current frequency of collection. The obvious reason for such a push is to improve the temporal and surface coverage of measurements. However, there is little analysis available in terms of benefits, costs and optimized set of sensors needed to make these necessary observations. This is a complex problem that should be carefully studied and balanced over many boundaries. For example, the question of technology maturity versus users' desire for obtaining additional measurements is noncongruent. This is further complicated by the limitations of the laws of physics and the economic conditions. With the advent of advanced technology, it is anticipated that developments in spacecraft technology will enable advanced capabilities to become more affordable. However, specialized detector subsystems, and precision flying techniques may still require substantial innovation, development time and cost. Additionally, the space deployment scheme should also be given careful attention because of the high associated expense. Nonetheless, it is important to carefully examine the science priorities and steer the development efforts that can commensurate with the tangible requirements. This presentation will focus on a possible set of architectural concepts beneficial for future Earth science studies and research its and potential benefits.
    Keywords: Earth Resources and Remote Sensing
    Type: Future Intelligent Earth Observing Satellites; Nov 11, 2002; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-18
    Description: Remote sensing of archaeological features is most successful when instrumentation and imagery are carefully selected bearing in mind the nature of the remains and the local context. Instruments need to be calibrated to local conditions, and extensive field verification studies are necessary. This is illustrated by remote sensing in two research programs in Central America: the Arena1 Research Program in Costa Rica and the Ceren Research Program in El Salvador. Satellite and aircraft remote sensing was successful in the former, while the Ceren site required the development of ground-based geophysical exploration techniques. In both cases, remote sensing contributed information that was not available by any other means, thus allowing new interpretations and a fuller understanding of ancient societies.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: During the coming decade, the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global rain observing system from space based on an international fleet of satellites operated as a constellation of opportunity. One perspective for understanding the nature of the mission is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency rain-radar/passive microwave rain-radiometer retrievals, to high caliber rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber microwave- and infrared-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) research programs of a number of research agencies throughout the world, the GPM mission serves as a centerpiece space mission for improving our understanding of the Earth's water cycle from global scale and on down to regional scales and below. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., global water cycle acceleration accompanying global warming. As there are a number of ways in which to define a rate-change of the water cycle, it has not always been clear as to what constitutes a conclusive determination. This seminar presents an overview of the GPM Mission and how its overriding scientific objectives for climate, weather, and hydrology flow from the anticipated improvements that are being planned for the constellation-based measuring system, and how this mission may offer, over the long run, a more fundamental means to ascertain water cycle accelerations.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-18
    Description: MODIS is an earth-viewing cross-track scanning spectroradiometer launched on the Terra satellite in December 1999 and the Aqua satellite in May 2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this paper we will describe the various methods being used for the remote sensing of cloud, aerosol, and surface properties using MODIS data, focusing primarily on (i) the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, (ii) cloud optical properties, especially cloud optical thickness and effective radius of water drops and ice crystals, (iii) aerosol optical thickness and size characteristics both over land and ocean, and (iv) ecosystem classification and surface spectral reflectance. The physical principles behind the determination of each of these products will be described, together with an example of their application using MODIS observations to the east Asian region. All products are archived into two categories: pixel-level retrievals (referred to as Level-2 products) and global gridded products at a latitude and longitude resolution of 1 min (Level-3 products).
    Keywords: Earth Resources and Remote Sensing
    Type: 2002 Workshop on GAME-T & Hydrometeorological Studies; Oct 29, 2002 - Oct 30, 2002; Chiang Rai; Thailand
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The Peten region of northern Guatemala is one of the last places on earth where major archeological sites remain to be discovered. It was in this region that the Maya civilization began, flourished, and abruptly disappeared. Remote sensing technology is helping to locate and map ancient Maya sites that are threatened today by accelerating deforestation and looting. Thematic Mapper and IKONOS satellite and airborne Star3-I radar data, combined with Global Positioning System (GPS) technology, are successfully detecting ancient Maya features such as cities, roadways, canals, and water reservoirs. Satellite imagery is also being used to map the bajos, which are seasonally flooded swamps that cover over 40% of the land surface. The use of bajos for farming has been a source of debate within the professional community for many years. But the recent detection and verification of cultural features within the bajo system by our research team are providing conclusive evidence that the ancient Maya had adapted well to wetland environments from the earliest times and utilized them until the time of the Maya collapse. The use of the bajos for farming is also an important resource for the future of the current inhabitants who are experiencing rapid population growth. Remote sensing imagery is also demonstrating that in the Preclassic period (600 BC- AD 250), the Maya had already achieved a high organizational level as evidenced by the construction of massive temples and an elaborate inter-connecting roadway system. Although they experienced several setbacks such as droughts and hurricanes, the Maya nevertheless managed the delicate forest ecosystem successfully for several centuries. However, around AD 800, something happened to the Maya to cause their rapid decline and eventual disappearance from the region. The evidence indicates that at this time there was increased climatic dryness, extensive deforestation, overpopulation, and widespread warfare. This raises a question that is relevant to the contemporary world-namely, how severe do internal stresses in a civilization have to become before relatively minor climate shifts can trigger a widespread cultural collapse?
    Keywords: Earth Resources and Remote Sensing
    Type: International Space University, NASA Remote Sensing and Archeology Conference; Nov 04, 2002; Strasbourg; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-18
    Description: To explicate the sources of uncertainty in the prediction of biophysical variables over space, consider the general equation: where z is a variable with values on some nominal, ordinal, interval or ratio scale; y is a vector of input variables; u is the spatial support of y and z ; x and u are the spatial locations of y and z , respectively; f is a model and B is the vector of the parameters of this model. Any y or z has a value and a spatial extent which is called its support. Viewed in this way, categories of uncertainty are from variable (e.g. measurement), parameter, positional. support and model (e.g. structural) sources. The prediction of Leaf Area Index (LAI) and the fraction of absorbed photosynthetically active radiation (fPAR) are examples of z variables predicted using model(s) as a function of y variables and spatially constant parameters. The MOD15 algorithm is an example of f, called f(sub 1), with parameters including those defined by one of six biome types and solar and view angles. The Leaf Canopy Model (LCM)2, a nested model that combines leaf radiative transfer with a full canopy reflectance model through the phase function, is a simpler though similar radiative transfer approach to f(sub 1). In a previous study, MOD15 and LCM2 gave similar results for the broadleaf forest biome. Differences between these two models can be used to consider the structural uncertainty in prediction results. In an effort to quantify each of the five sources of uncertainty and rank their relative importance for the LAI/fPAR prediction problem, we used recent data for an EOS Core Validation Site in the broadleaf biome with coincident surface reflectance, vegetation index, fPAR and LAI products from the Moderate Resolution Imaging Spectrometer (MODIS). Uncertainty due to support on the input reflectance variable was characterized using Landsat ETM+ data. Input uncertainties were propagated through the LCM2 model and compared with published uncertainties from the MOD15 algorithm.
    Keywords: Earth Resources and Remote Sensing
    Type: American Geophysical Union Fall Meeting; Dec 06, 2002 - Dec 10, 2002; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-18
    Description: Two of the large EOS observatories, Aqua (formerly EOS-PM) and Aura (formerly EOS-CHEM) will fly is nearly the same inclination with 1:30 PM -15 min ascending node equatorial crossing times. Between Aura and Aqua a series of smaller satellites will be stationed: Cloudsat, CALYPSO (formerly PICASSO-CENA), and PARASOL. This constellation of low earth orbit satellites will provide an unprecedented opportunity to make near simultaneous atmospheric cloud and aerosol observations. This paper will provide details of the science opportunity and describe the sensor types for the afternoon constellation. This constellation by accretion provides a prototype for the Earth Science Vision sensor web and represent the building books for a future web structure.
    Keywords: Earth Resources and Remote Sensing
    Type: International Geoscience and Remote Sensing Symposium Conference (IGARSS); Jun 24, 2002 - Jun 28, 2002; Toronto; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-18
    Description: NASA's Post-2010 Earth Science Vision is partly built around a new paradigm called the Sensor Web, involving a collaborating set of sensors ranging from deep space, at the L1 and L2 (Lagrange) points, down to the ocean and land surfaces. L1 and L2 observatories, roughly 1.5 million km from Earth towards and away from the Sun, respectively, provide unique vantage points. from L1, the entire sunlit face of the Earth is visible, and from L2, the entire night side. In tandem, they can observe the entire Earth simultaneously, with much less stitching than now needed to patch together the five operational geostationary images. This makes new kinds of science possible, especially science requiring synoptic (simultaneous) observations over the whole globe. Triana, the pioneer of these kinds of observatories, is currently waiting for a launch opportunity. We will describe the novel features of the Triana mission, and of the L1 and L2 vantage points, with examples of the kinds of science that can be done from these points and examples of the way in which Earth observation from such great distances is pushing instrument technology.
    Keywords: Earth Resources and Remote Sensing
    Type: International Geoscience and Remote Sensing Symposium Conference (IGARSS); Jun 24, 2002 - Jun 28, 2002; Toronto; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-18
    Description: In response to the need for improved observations of environmental factors to better understand the links between human health and the environment, NASA has established a new program to significantly improve the utilization of NASA's diverse array of data, information, and observations of the Earth for health applications. This initiative, lead by Goddard Space Flight Center (GSFC) has the following goals: (1) To encourage interdisciplinary research on the relationships between environmental parameters (e.g., rainfall, vegetation) and health, (2) Develop practical early warning systems, (3) Create a unique system for the exchange of Earth science and health data, (4) Provide an investigator field support system for customers and partners, (5) Facilitate a system for observation, identification, and surveillance of parameters relevant to environment and health issues. The NASA Environment and Health Program is conducting several interdisciplinary projects to examine applications of remote sensing data and information to a variety of health issues, including studies on malaria, Rift Valley Fever, St. Louis Encephalitis, Dengue Fever, Ebola, African Dust and health, meningitis, asthma, and filariasis. In addition, the NASA program is creating a user-friendly data system to help provide the public health community with easy and timely access to space-based environmental data for epidemiological studies. This NASA data system is being designed to bring land, atmosphere, water and ocean satellite data/products to users not familiar with satellite data/products, but who are knowledgeable in the Geographic Information Systems (GIS) environment. This paper discusses the most recent results of the interdisciplinary environment-health research projects and provides an analysis of the usefulness of the satellite data to epidemiological studies. In addition, there will be a summary of presently-available NASA Earth science data and a description of how it may be obtained.
    Keywords: Earth Resources and Remote Sensing
    Type: International Conference on Emerging Infectious Diseases; Mar 24, 2002 - Mar 27, 2002; Atlanta, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-18
    Description: The MODIS (Moderate Resolution Imaging Spectroradiometer) instruments collect daily measurements of our planet since early 2000 from the Terra spaceborne polar platform. It has unique channels to observe smoke over land and ocean and to observe fires. Using unsaturated channels at 3.9 micron MODIS detects the fires and estimates the fire radiative energy. Using solar channels in the visible (0.47 and 0.66 micron) and in the mid IR (2.1 micron) MODIS measures the smoke optical thickness distribution and evolution over the land. Seven Channels in the solar spectrum are used to detect the smoke properties and distribution over the oceans. Data from the Aerosol Robotic Network, are used to validate the MODIS observations. The MODIS aerosol data presented in a movie form is used to observe the generation of smoke plumes and their dispersion around the globe. For example a key conclusion is that smoke in particular from Southern Africa can pollute significantly the 'pristine' Southern Hemisphere zonal range of 45'S-60'S, and the Northern Pacific.
    Keywords: Earth Resources and Remote Sensing
    Type: 2002 American Geophysical Union Spring Meeting; May 28, 2002 - May 31, 2002; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-18
    Description: Electro-optical (EO) systems employed for communications, surveillance and weapons systems are commonly assessed in the North American and European continents. However, the atmospheric propagation environment in these regions is often dissimilar to most other parts of the world. In particular, atmospheric dust, industrial pollution, and smoke frequently reduce visibility to less than 5 km in Asia and South America significantly hampering EO system performance. Because atmospheric aerosol species vary considerably in size and chemistry, optimal wavelengths for EO systems vary from region to region. In this paper we examine the extinction effects from aerosol particles and water vapor on a regional basis. Theoretical studies are coupled with visibility and satellite climatologies to make an assessment for the coastal regions of the world. While longer wavelengths permit higher transmission by particles in regions significantly hampered by fine mode particles (such as industrial pollution and smoke), this advantage is commonly offset by high extinction values from water vapor. This offsetting effect is particularly strong in industrial and developing countries in the tropics and sub-tropics such as Southeast Asia and South America. Conversely, the advantage of low water vapor concentrations in longer wavelengths is offset by high mass-extinction efficiencies of atmospheric dust in this portion of the spectrum.
    Keywords: Earth Resources and Remote Sensing
    Type: SPIE Conference on Optics in Atmospheric Propagation and Adaptive Systems V; Sep 23, 2002 - Sep 27, 2002; Crete; Greece
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The Land Product Validation (LPV) subgroup of the Committee on Earth Observing Satellites Working Group on Calibration and Validation was formed in 2000. Goals of the LPV subgroup are: 1) to increase the quality and economy of global satellite product validation via developing and promoting international standards and protocols for field sampling, scaling, error budgeting, data exchange and product evaluation; 2) to advocate mission-long validation programs for current and future earth observing satellites.
    Keywords: Earth Resources and Remote Sensing
    Type: Global Observation of Forest Cover; Feb 11, 2002 - Feb 13, 2002; Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-18
    Description: The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) Terra Mission began to produce data in February 2000. The Terra MODIS is in a sun-synchronous orbit going north to south in the daylight portion of the orbit crossing the equator at about 1030 hours local time. The spacecraft, instrument, and data systems are performing well and are producing a wide variety of data products useful for scientific and applications studies in relatively consistent fashion extending from November 2000 to the present. Within the approximately 40 MODIS data products, several are new and represent powerful and exciting capabilities such the ability to provide observations over the globe of fire occurrences, microphysical properties of clouds and sun-stimulated fluorescence from phytoplankton in the surface waters of the ocean. The remainder of the MODIS products exceed or, at a minimum, match the capabilities of products from heritage sensors such as, for example, the Advanced Very High Resolution Radiometer (AVHRR). Efforts are underway to provide data sets for the greater Earth science community and to improve access to these products at the various Distributed Active Archive Centers (DAAC's) or through Direct Broadcast (DB) stations. The MODIS instrument on the EOS Aqua mission should also be expected to be in orbit and functioning in the Spring of 2002. The Aqua spacecraft will operate in a sun-synchronous orbit going south to north in the daylight portion of the orbit crossing the equator at approximately 1330 hours local time. Subsequently the Aqua MODIS observations will substantially add to the capabilities of the Terra MODIS for environmental applications and global change studies.
    Keywords: Earth Resources and Remote Sensing
    Type: 53rd International Astronautical Congress; Oct 10, 2002 - Oct 19, 2002; Unknown
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-18
    Description: A birds eye view of the Earth from afar and up close reveals the power and magnificence of the Earth and juxtaposes the simultaneous impacts and powerlessness of humankind. The NASA Electronic Theater presents Earth science observations and visualizations in an historical perspective. Fly in from outer space to South America with its Andes Mountains and the glaciers of Patagonia, ending up close and personal in Buenos Aires. See the latest spectacular images from NASA & NOAA remote sensing missions like GOES, TRMM, Landsat 7, QuikScat, and Terra, which will be visualized and explained in the context of global change. See visualizations of global data sets currently available from Earth orbiting satellites, including the Earth at night with its city lights, aerosols from biomass burning in South America and Africa, and global cloud properties. See the dynamics of vegetation growth and decay over South America over 17 years, and its contrast to the North American and Africa continents. New visualization tools allow us to roam & zoom through massive global mosaic images from the Himalayas to the dynamics of the Pacific Ocean that affect the climate of South and North America. New visualization tools allow us to roam & zoom through massive global mosaic images including Landsat and Terra tours of South America and Africa showing land use and land cover change from Patagonia to the Amazon Basin, including the Andes Mountains, the Pantanal, and the Bolivian highlands. Landsat flyins to Rio Di Janeiro and Buenos Aires will be shows to emphasize the capabilities of new satellite technology to visualize our natural environment. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa and across the Atlantic to the Caribbean and Amazon basin. See ocean vortexes and currents that bring up the nutrients to feed tiny phytoplankton and draw the fish, giant whales and fisherman. See how the ocean blooms in response to these currents and El Nino/La Nina climate changes. We will illustrate these and other topics with a dynamic theater-style presentation, along with animations of satellite launch deployments and orbital mapping to highlight aspects of Earth observations from space.
    Keywords: Earth Resources and Remote Sensing
    Type: Centro Nacional Patagonico Conference; Apr 14, 2002 - Apr 17, 2002; Puerto Madryn; Argentina|29th International Symposium on Remote Sensing of the Environment; Apr 08, 2002 - Apr 12, 2002; Buenos Aires; Argentina
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-18
    Description: The MODIS instrument was launched on the NASA Terra satellite in Dec. 1999. Since last Oct., the sensor and the aerosol algorithm reached maturity and provide global daily retrievals of aerosol optical thickness and properties. MODIS has 36 spectral channels in the visible to IR with resolution down to 250 m. This allows accurate cloud screening and multi-spectral aerosol retrievals. We derive the aerosol optical thickness over the ocean and most of the land areas, distinguishing between fine (mainly man-made aerosol) and coarse aerosol particles. The information is more precise over the ocean where we derive also the effective radius and scattering asymmetry parameter of the aerosol. New methods to derive the aerosol single scattering albedo are also being developed. These measurements are use to track different aerosol sources, transport and the radiative forcing at the top and bottom of the atmosphere. The AErosol RObotic NETwork of ground based radiometers is used for global validation of the satellite derived optical thickness, size parameters and single scattering albedo and measure additional aerosol parameters that cannot be derived from space.
    Keywords: Earth Resources and Remote Sensing
    Type: International Summer School; Sep 22, 2001 - Sep 28, 2001; La Londe-les-Maures; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-18
    Description: The Airborne Earth Science Microwave Imaging Radiometer (AESMIR) is a versatile new airborne imaging radiometer under development by NASA. The AESMIR design is unique in that it will perform dual-polarized imaging at all AMSR frequency bands (6.9 through 89 GHz) using only one sensor head/scanner package, providing an efficient solution for AMSR-type science applications (snow, soil moisture/land parameters, precip, ocean winds, SST, water vapor, sea ice, etc.). The microwave radiometers themselves will incorporate state-of-the-art receivers, with particular attention given to instrument calibration for the best possible accuracy and sensitivity. The single-package design of AESMIR makes it compatible with high-altitude aircraft platforms such as the NASA ER-2s and the Proteus. The arbitrary 2-axis gimbal can perform conical and cross-track scanning, as well as fixed-beam staring. This compatibility with high-altitude platforms coupled with the flexible scanning configuration, opens up previously unavailable science opportunities for convection/precip/cloud science and co-flying with complementary instruments, as well as providing wider swath coverage for all science applications. By designing AESMIR to be compatible with these high-altitude platforms, we are also compatible with the NASA P-3, the NASA DC-8, and ground-based deployments. Thus AESMIR can provide low-, mid-, and high altitude microwave imaging.
    Keywords: Earth Resources and Remote Sensing
    Type: Specialist Meeting on Microwave Remote Sensing; Nov 05, 2001 - Nov 09, 2001; Boulder, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The Facilities Engineering and Architectural Branch is responsible for the design and maintenance of buildings, laboratories, and civil structures. In order to improve efficiency and quality, the FEAB has dedicated itself to establishing a data infrastructure based on Geographic Information Systems, GIs. The value of GIS was explained in an article dating back to 1980 entitled "Need for a Multipurpose Cadastre which stated, "There is a critical need for a better land-information system in the United States to improve land-conveyance procedures, furnish a basis for equitable taxation, and provide much-needed information for resource management and environmental planning." Scientists and engineers both point to GIS as the solution. What is GIS? According to most text books, Geographic Information Systems is a class of software that stores, manages, and analyzes mapable features on, above, or below the surface of the earth. GIS software is basically database management software to the management of spatial data and information. Simply put, Geographic Information Systems manage, analyze, chart, graph, and map spatial information. At the outset, I was given goals and expectations from my branch and from my mentor with regards to the further implementation of GIs. Those goals are as follows: (1) Continue the development of GIS for the underground structures. (2) Extract and export annotated data from AutoCAD drawing files and construct a database (to serve as a prototype for future work). (3) Examine existing underground record drawings to determine existing and non-existing underground tanks. Once this data was collected and analyzed, I set out on the task of creating a user-friendly database that could be assessed by all members of the branch. It was important that the database be built using programs that most employees already possess, ruling out most AutoCAD-based viewers. Therefore, I set out to create an Access database that translated onto the web using Internet Explorer as the foundation. After some programming, it was possible to view AutoCAD files and other GIS-related applications on Internet Explorer, while providing the user with a variety of editing commands and setting options. I was also given the task of launching a divisional website using Macromedia Flash and other web- development programs.
    Keywords: Earth Resources and Remote Sensing
    Type: Research Symposium I
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-18
    Description: The understanding of single-scattering properties of complex ice crystals has significance in atmospheric radiative transfer and remote-sensing applications. In this work, light scattering by irregularly shaped Gaussian ice crystals is studied with the finite-difference time-domain (FDTD) technique. For given sample particle shapes and size parameters in the resonance region, the scattering phase matrices and asymmetry factors are calculated. It is found that the deformation of the particle surface can significantly smooth the scattering phase functions and slightly reduce the asymmetry factors. The polarization properties of irregular ice crystals are also significantly different from those of spherical cloud particles. These FDTD results could provide a reference for approximate light-scattering models developed for irregular particle shapes and can have potential applications in developing a much simpler practical light scattering model for ice clouds angular-distribution models and for remote sensing of ice clouds and aerosols using polarized light. (copyright) 2003 Elsevier Science Ltd. All rights reserved.
    Keywords: Earth Resources and Remote Sensing
    Type: JQSRT; 1083-1090
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-18
    Description: With the deployment of Earth Observing System (EOS) satellites that provide daily, global imagery, there is increasing interest in defining the limitations of the data and derived products due to its coarse spatial resolution. Much of the detail, i.e. small fragments and notches in boundaries, is lost with coarse resolution imagery such as the EOS MODerate-Resolution Imaging Spectroradiometer (MODIS) data. Higher spatial resolution data such as the EOS Advanced Spaceborn Thermal Emission and Reflection Radiometer (ASTER), Landsat and airborne sensor imagery provide more detailed information but are less frequently available. There are, however, both theoretical and analytical evidence that burn scars and other fragmented types of land covers form self-similar or self-affine patterns, that is, patterns that look similar when viewed at widely differing spatial scales. Therefore small features of the patterns should be predictable, at least in a statistical sense, with knowledge about the large features. Recent developments in fractal modeling for characterizing the spatial distribution of undiscovered petroleum deposits are thus applicable to generating simulations of finer resolution satellite image products. We will present example EOS products, analysis to investigate self-similarity, and simulation results.
    Keywords: Earth Resources and Remote Sensing
    Type: Seventh International Geostatistics Congress; Sep 26, 2004 - Oct 01, 2004; Banff, Alberta; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-18
    Description: The major flood events in the United States in the past few years have made it apparent that many floodplain maps being used by State governments are outdated and inaccurate. In response, many Stated have begun to update their Federal Emergency Management Agency (FEMA) Digital Flood Insurance Rate Maps. Accurate topographic data is one of the most critical inputs for floodplain analysis and delineation. Light detection and ranging (LIDAR) altimetry is one of the primary remote sensing technologies that can be used to obtain high-resolution and high-accuracy digital elevation data suitable for hydrologic and hydraulic (H&H) modeling, in part because of its ability to "penetrate" various cover types and to record geospatial data from the Earth's surface. However, the posting density or spacing at which LIDAR collects the data will affect the resulting accuracies of the derived bare Earth surface, depending on terrain type and land cover type. For example, flat areas are thought to require higher or denser postings than hilly areas to capture subtle changes in the topography that could have a significant effect on flooding extent. Likewise, if an area has dense understory and overstory, it may be difficult to receive LIDAR returns from the Earth's surface, which would affect the accuracy of that bare Earth surface and thus would affect flood model results. For these reasons, NASA and FEMA have partnered with the State of North Carolina and with the U.S./Mexico Foundation in Texas to assess the effect of LIDAR point density on the characterization of topographic variation and on H&H modeling results for improved floodplain mapping. Research for this project is being conducted in two areas of North Carolina and in the City of Brownsville, Texas, each with a different type of terrain and varying land cover/land use. Because of various project constraints, LIDAR data were acquired once at a high posting density and then decimated to coarser postings or densities. Quality assurance/quality control analyses were performed on each dataset. Cross sections extracted form the high density and then the decimated datasets were individually input into an H&H model to determine the model's sensitivity to topographic variation and the effect of that variation on the resulting water profiles. Additional analysis was performed on the Brownsville, Texas, LIDAR data to determine the percentage of returns that "penetrated" various types of canopy or vegetative cover. It is hoped that the results of these studies will benefit state and local communities as they consider the post spacing at which to acquire LIDAR data (which affects cost) and will benefit FEMA as the Agency assesses the use of different technologies for updating National Flood Insurance Program and related products.
    Keywords: Earth Resources and Remote Sensing
    Type: SSTI-2220-0003-ESAD
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-18
    Description: GeoSpec will support future satellite mission concepts in the Atmospheric Sciences and in Land and Ocean Sciences by providing time-resolved measurements of both chemically linked atmospheric trace gas concentrations of important molecules such as O3, NO2, CH2O and SO2 and at the same time coastal and ocean pollution events, tidal effects, and the origin and evolution of aerosol plumes. The instrument design concept in development is a dual spectrograph covering the WMS wavelength region of 310-500 nm and the VIS/NIR wavelength region of 480-900 nm coupled to all reflective telescope and high sensitivity PIN/CMOS area detector. The goal of the project is to demonstrate a system capable of making moderate spatial resolution (750 meters at nadir) hyperspectral measurements (0.6 to 1.2 nm resolution) from a geostationary orbit. This would enable studies of time-varying pollution and coastal change processes with a temporal resolution of 5 minutes on a regional scale to 1 hour on a continental scale. Other spatial resolutions can be supported by varying the focal length of the input telescope. Scientific rationale and instrument design and status will be presented.
    Keywords: Earth Resources and Remote Sensing
    Type: 35th COSPAR Scientific Assembly; Jul 18, 2004 - Jul 25, 2004; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-18
    Description: On-orbit calibration of Earth-observing sensors in the VIS and NIR spectral regions is usually performed using the sensors on-board devices such as internal lamp(s) or solar diffuser plate(s) to provide calibration parameters. For sensors with no (or with less reliable) on-board calibrators, lunar calibration or ground validation approaches are often used. Each of these has its own set of problems that need to be fully addressed in order to support high quality on-orbit calibration and characterization. Some science products, such as Ocean color, may impose more stringent requirements that demand greater calibration precision. This paper uses MODIS as an example to illustrate challenging issues involved in VIS and NIR on-orbit calibration. It focuses on the solar diffuser (SD) calibration approach, including the effects due to SD BRF, SD attenuation screen(s), and earthshine. The impact of optics (solar diffuser and scan mirror) on-orbit degradation, including changes in the sensor s response versus scan angle (RVS), on the calibration and subsequent data quality is also discussed.
    Keywords: Earth Resources and Remote Sensing
    Type: CALCON (Conference on Characterization and Radiometric Calibration for Remote Sensing); Aug 23, 2004 - Aug 26, 2004; Logan, UT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Three lightweight, portable hyperspectral sensor systems have been built that capture energy from 200 to 1700 nanometers (ultravio1et to shortwave infrared). The sensors incorporate a line scanning technique that requires no relative movement between the target and the sensor. This unique capability, combined with portability, opens up new uses of hyperspectral imaging for laboratory and field environments. Each system has a GUI-based software package that allows the user to communicate with the imaging device for setting spatial resolution, spectral bands and other parameters. NASA's Space Partnership Development has sponsored these innovative developments and their application to human problems on Earth and in space. Hyperspectral datasets have been captured and analyzed in numerous areas including precision agriculture, food safety, biomedical imaging, and forensics. Discussion on research results will include realtime detection of food contaminants, molds and toxin research on corn, identifying counterfeit documents, non-invasive wound monitoring and aircraft applications. Future research will include development of a thermal infrared hyperspectral sensor that will support natural resource applications on Earth and thermal analyses during long duration space flight. This paper incorporates a variety of disciplines and imaging technologies that have been linked together to allow the expansion of remote sensing across both traditional and non-traditional boundaries.
    Keywords: Earth Resources and Remote Sensing
    Type: Monitoring Science and Technology Symposium; Oct 21, 2004 - Oct 24, 2004; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-18
    Description: In 2004 NASA plans to launch the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations- CALIPSO mission, with a two-wavelength lidar aboard. CALIPSO will fly in formation with the Moderate Resolution Imaging Spectro-Radiometer (MODIS) on the Aqua satellite. Here we present inversions of combined aircraft lidar and MODIS data to study the properties of smoke off the southwest coast of Southern Africa. The inversion derives profiles of the aerosol extinction due to fine and coarse particles. Comparisons with three sets of airborne in situ measurements show excellent agreement of the aerosol extinction profiles; however the inversion derives smaller spectral dependence of the extinction than the in situ measurements. The inversion is sensitive to the aerosol backscattering-to-extinction ratio (BER). Due to nonsphericity of the coarse aerosols, the range of BERs of the smoke aerosol is 0.014 to 0.021 sr(sup -l) for the fine and coarse particles at 0.53 and 1.06 pm wavelengths, which do not differ much from the value for dust (0.016 sr(sup -1)) at these wavelengths.
    Keywords: Earth Resources and Remote Sensing
    Type: Geophysical Research Letters (ISSN 0094-8276); 30; 16; 1831
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-18
    Description: An optimal de-convolution (ODC) technique has been developed to estimate microwave brightness temperatures of agricultural fields using microwave radiometer observations. The technique is applied to airborne measurements taken by the Passive and Active L and S band (PALS) sensor in Iowa during Soil Moisture Experiments in 2002 (SMEX02). Agricultural fields in the study area were predominantly soybeans and corn. The brightness temperatures of corn and soybeans were observed to be significantly different because of large differences in vegetation biomass. PALS observations have significant over-sampling; observations were made about 100 m apart and the sensor footprint extends to about 400 m. Conventionally, observations of this type are averaged to produce smooth spatial data fields of brightness temperatures. However, the conventional approach is in contrast to reality in which the brightness temperatures are in fact strongly dependent on landcover, which is characterized by sharp boundaries. In this study, we mathematically de-convolve the observations into brightness temperature at the field scale (500-800m) using the sensor antenna response function. The result is more accurate spatial representation of field-scale brightness temperatures, which may in turn lead to more accurate soil moisture retrieval.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-18
    Description: We present and discuss observed variations in thermal transients and radiation fields prior to the earthquakes of September 18 near Bodie (M5.5) and September 28,2004 near Parkfield(M6.0) in California. Previous analysis of earthquake events have indicated the presence of a thermal anomaly, where temperatures increased or did not return to its usual nighttime value. The procedures used in our work is to analyze weather satellite data taken at night and to record the general condition where the ground cools after sunset. Two days before the Bodie earthquake lower temperature radiation was observed by the NOAA/AVHRR satellite. This occurred when the entire region was relatively cloud-free. IR land surface nighttime temperature from the MODIS instrument rose to +4 C in a 100 km radius around the Bodie epicenter. The thermal transient field recorded by MODIS in the vicinity of Parkfield, also with a cloud free environment, was around +l C and it is significantly smaller than the Parkfield epicenter, however, for that period showed a steady increase 4 days prior to the earthquake and a significant drop of the night before the quake. Geosynchronous weather satellite thermal IR measurements taken every half hour from sunset to dawn, were also recorded for 10 days prior to the Parkfield event and 5 days after as well as the day of the quake. To establish a baseline we also obtained GOES data for the same Julian sets were then used to systematically observe and record any thermal anomaly prior to the events that deviated from the baseline. Our recent results support the hypothesis of a possible relationship between an thermodynamic processes produced by increasing tectonic stress in the Earth's crust and a subsequent electro-chemical interaction between this crust and the atmosphere/ionosphere.
    Keywords: Earth Resources and Remote Sensing
    Type: 2004 Fall AGU Meeting; Dec 13, 2004 - Dec 17, 2004; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...