ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (102)
  • Frontiers Media S.A.  (66)
  • 2020-2023  (168)
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    Frontiers Media S.A.
    Publication Date: 2022-12-22
    Description: Gender equality is far from being reached in the areas of Science, Technology, Engineering, and Mathematics. Women in Earth Sciences still remain underrepresented although positive trends are recognized in the last decades. Dealing with gender inequalities in academia, however, is only part of the problem. As well as Earth Sciences need more women in leadership positions and decision-making committees, and more girls educated in the field, alike there are well-founded reasons for scientists to put attention to gender in a broader sense. According to United Nations, inadequate attention has been given how gender inequality drives disaster risks and impacts. The present contribution aims to broaden the gender perspective from improving underrepresentation in the workplace and breaking down barriers in research careers, to including gender in research content in an extensive sense. A paradigm shift is proposed from women in science to women in society, coping with gender-responsive disaster risk reduction and multiple gender dimensions in Earth Sciences. Counterbalancing present inequalities in the workplace, as well as applying a gender lens in all hazard-related activities is needed to cope with complex social systems in earthquake-prone areas. An intersectional approach and transdisciplinary research are needed.
    Description: Published
    Description: 1033321
    Description: 2TM. Divulgazione Scientifica
    Description: JCR Journal
    Keywords: gender, women, gender-responsive, disaster risk reduction, natural hazards, earthquake science ; 05.03. Educational, History of Science, Public Issues ; 05.09. Miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-12-19
    Description: New sedimentological data of facies and diagenesis as well as chronological data including strontium (87Sr/86Sr)-isotope ratios and uranium (U)-series dating, radiocarbon (14C) accelerator mass spectrometry (AMS) dating and biostratigraphy from elevated reef terraces (makatea) in the southern Cook Islands of Mangaia, Rarotonga and Aitutaki contribute to controversial discussions regarding age and sea-level relationships of these occurrences during the Neogene and Quaternary. The oldest limestones of the uplifted makatea island of Mangaia include reef-related facies which are mid-Miocene in age, based on new Sr-isotope and biostratigraphical data. In between these older deposits and the lowest coastal reef terrace of marine isotope stage (MIS) 5e, various older Pleistocene reef-related facies were identified. Based on Sr-isotope ratios, these were deposited during earlier Pleistocene highstands (as old as 2.28 Ma). Rare reef terraces on Rarotonga belong to the Plio-Pleistocene and the late Miocene, according to 87Sr/86Sr ratios. The late Miocene age is enigmatic as it exceeds the age of subaerially exposed volcanic rocks of Rarotonga island. The fossil reef could have formed on an older submarine volcanic high that was later displaced by younger volcanism to its present position, or the Sr-age could be too old due to diagenetic resetting. The Plio-Pleistocene Rarotonga reef terraces are overlain irregularly by Holocene reef deposits that are interpreted as storm rubble. Reef terraces on Aitutaki represent evidence of a higher-than-present (up to 1 m) sea-level during the late Holocene, based on 14C AMS age data. They are very similar to elevated late Holocene reefs of adjacent French Polynesia with regard to composition, elevation and age.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-12-16
    Description: Communicating scientific information about earthquakes is an important and delicate issue in countries like Italy, where seismic risk is high. Furthermore, continuous and scientifically sound communication is needed, especially in recent times when social media have amplified the risk of being biased by misinformation, fake news and conspiracy theories. For this reason, we have developed a communication strategy for earthquake science and risk in Italy, mostly based on social media. The INGVterremoti platform was born between 2010 and 2012 with the goal of increasing scientific information released to the public, and also establishing a two-way communication channel between scientists and citizens. In the past 12 years, the INGVterremoti platform has gained trust and popularity, increasing the number of involved people, which amounts today to several hundred thousand. The platform consists of a coordinated suite of social media channels and a blog-magazine, where updates on ongoing earthquake sequences and posts on scientific topics are continuously published. Our end users are mostly citizens, but also authorities and media. Special attention has been given to interactions with the public, especially on our Facebook page, in order to understand their information needs, identify rumors and fake news, particularly in areas affected by seismic sequences, and address the most pressing requests. In this paper we describe the INGVterremoti strategy, the different media that we use, focusing on their strengths and weaknesses. We concentrate on the experience, carried out in the last few years, of the publication of provisional information on ongoing earthquakes, a long-standing issue strongly requested by our followers. The INGVterremoti platform has played a fundamental role in many seismic sequences of the past 12 years in Italy, starting from the Emilia sequence in 2012, to the central Italy one, started with the deadly earthquake of 24 August 2016 and still ongoing. Besides the periods of high attention after strong earthquakes, we used the INGVterremoti social media as a tool for releasing continuous and sound information to the public, and as a way to involve citizens in the communication arena.
    Description: Published
    Description: 1003867
    Description: 4TM. Web e Social
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-12-12
    Description: Author Posting. © The Author(s), 2022. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in . Journal of Phycology (2022), https://doi.org/10.1111/jpy.13230.
    Description: The marine green alga Brilliantia kiribatiensis gen. et sp. nov. is described from samples collected from the coral reefs of the Southern Line Islands, Republic of Kiribati, Pacific Ocean. Phylogenetic analysis of sequences of the large- and small-subunit rDNA and the rDNA internal transcribed spacer region revealed that Brilliantia is a member of the Boodleaceae (Cladophorales), containing the genera Apjohnia, Boodlea, Cladophoropsis, Chamaedoris, Phyllodictyon, and Struvea. Within this clade it formed a distinct lineage, sister to Struvea elegans, but more distantly related to the bona fide Struvea species (including the type S. plumosa). Brilliantia differs from the other genera by having a very simple architecture forming upright, unbranched, single-celled filaments attached to the substratum by a rhizoidal mat. Cell division occurs by segregative cell division only at the onset of reproduction. Based on current sample collection, B. kiribatiensis seems to be largely restricted to the Southern Line Islands, although it was also observed on neighboring islands, including Orona Atoll in the Phoenix Islands of Kiribati, and the Rangiroa and Takapoto Atolls in the Tuamotus of French Polynesia. This discovery highlights the likeliness that there is still much biodiversity yet to be discovered from these remote and pristine reefs of the central Pacific.
    Description: National Geographic Society
    Description: 2022-12-12
    Keywords: 18S nuclear ribosomal DNA ; Chlorophyta ; Cladophorales ; Molecular phylogeny ; Siphonocladales ; Ulvophyceae
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-11-07
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kourantidou, M., & Jin, D. Mesopelagic-epipelagic fish nexus in viability and feasibility of commercial-scale mesopelagic fisheries. Natural Resource Modeling, 35(4), (2022): e12350, https://doi.org/10.1111/nrm.12350.
    Description: While considerable scientific uncertainties persist for mesopelagic ecosystems, the fishing industry has developed a great interest in commercial exploitation with improved technologies as part of their search for new sources of feed for fishmeal and fish oil for aquaculture, which will intensify with the planet's growing population. The multiple uncertainties surrounding the ecosystem structure and particularly the size of biomass, hinder a good understanding of the risks associated with large-scale exploitation, which is needed for a management framework for sustainable ocean uses. Despite concerns regarding irreversible losses triggered by commercial fishing, work exploring the vulnerability of mesopelagic fish to harvesting is largely missing. This study investigates the economic feasibility of mesopelagic fishing which is the primary driver for any possible future expansion. Using very limited information currently available, we conduct a high-level assessment focusing on key ecological and economic interactions and develop an initial understanding of the economic feasibility of commercial harvesting for mesopelagic fish in the coming years. We conduct simulations using a classical bioeconomic model that captures two species groups, mesopelagic and epipelagic fish, using a wide range of price and cost parameters. We analyze different scenarios for the economic profitability of the fishery in a regional fishery management context. The results of our study highlight the importance of better understanding key biological and ecological mechanisms and parameters which can in turn help inform policies aimed at protecting the mesopelagic.
    Description: This study is supported by WHOI's Ocean Twilight Zone program which is part of the Audacious Project, a collaborative endeavor, housed at TED.
    Keywords: Bioeconomic analysis ; Commercial fisheries ; Ecological interactions ; Economic feasibility ; Mesopelagic fish ; Twilight zone
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kuehn, E., Clausen, D. S., Null, R. W., Metzger, B. M., Willis, A. D., & Ozpolat, B. D. Segment number threshold determines juvenile onset of germline cluster expansion in Platynereis dumerilii. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, (2021.): 1-16, https://doi.org/10.1002/jez.b.23100.
    Description: Development of sexual characters and generation of gametes are tightly coupled with growth. Platynereis dumerilii is a marine annelid that has been used to study germline development and gametogenesis. P. dumerilii has germ cell clusters found across the body in the juvenile worms, and the clusters eventually form the gametes. Like other segmented worms, P. dumerilii grows by adding new segments at its posterior end. The number of segments reflect the growth state of the worms and therefore is a useful and measurable growth state metric to study the growth-reproduction crosstalk. To understand how growth correlates with progression of gametogenesis, we investigated germline development across several developmental stages. We discovered a distinct transition period when worms increase the number of germline clusters at a particular segment number threshold. Additionally, we found that keeping worms short in segment number, by manipulating environmental conditions or via amputations, supported a segment number threshold requirement for germline development. Finally, we asked if these clusters in P. dumerilii play a role in regeneration (as similar free-roaming cells are observed in Hydra and planarian regeneration) and found that the clusters were not required for regeneration in P. dumerilii, suggesting a strictly germline nature. Overall, these molecular analyses suggest a previously unidentified developmental transition dependent on the growth state of juvenile P. dumerilii leading to substantially increased germline expansion.
    Description: Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R35GM138008 (to BDÖ) and R35GM133420 (to ADW) and Hibbitt Startup Funds (to BDÖ).
    Keywords: Annelida ; Critical size ; Developmental transition ; Gametogenesis ; Sexual reproduction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-27
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ritschard, E. A., Whitelaw, B., Albertin, C. B., Cooke, I. R., Strugnell, J. M., & Simakov, O. Coupled genomic evolutionary histories as signatures of organismal innovations in cephalopods: co-evolutionary signatures across levels of genome organization may shed light on functional linkage and origin of cephalopod novelties. BioEssays, 41, (2019): 1900073, doi: 10.1002/bies.201900073.
    Description: How genomic innovation translates into organismal organization remains largely unanswered. Possessing the largest invertebrate nervous system, in conjunction with many species‐specific organs, coleoid cephalopods (octopuses, squids, cuttlefishes) provide exciting model systems to investigate how organismal novelties evolve. However, dissecting these processes requires novel approaches that enable deeper interrogation of genome evolution. Here, the existence of specific sets of genomic co‐evolutionary signatures between expanded gene families, genome reorganization, and novel genes is posited. It is reasoned that their co‐evolution has contributed to the complex organization of cephalopod nervous systems and the emergence of ecologically unique organs. In the course of reviewing this field, how the first cephalopod genomic studies have begun to shed light on the molecular underpinnings of morphological novelty is illustrated and their impact on directing future research is described. It is argued that the application and evolutionary profiling of evolutionary signatures from these studies will help identify and dissect the organismal principles of cephalopod innovations. By providing specific examples, the implications of this approach both within and beyond cephalopod biology are discussed.
    Description: E.A.R. and O.S. are supported by the Austrian Science Fund (Grant No. P30686‐B29). E.A.R. is supported by Stazione Zoologica Anton Dohrn (Naples, Italy) PhD Program. The authors wish to thank Graziano Fiorito (SZN, Italy), Hannah Schmidbaur (University of Vienna, Austria), Thomas Hummel (University of Vienna, Austria) for many insightful comments and reading of the draft manuscript. The authors would like to apologize to all colleagues whose work has been omitted due to space constraints.
    Keywords: Cephalopod ; Gene duplication ; Genome rearrangement ; Novel gene ; Organismal innovation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Arenas Gómez, Claudia M., Sabin, K. Z., & Echeverri, K. Wound healing across the animal kingdom: Crosstalk between the immune system and the extracellular matrix. Developmental Dynamics, (2020): 1-13, doi:10.1002/dvdy.178.
    Description: Tissue regeneration is widespread in the animal kingdom. To date, key roles for different molecular and cellular programs in regeneration have been described, but the ultimate blueprint for this talent remains elusive. In animals capable of tissue regeneration, one of the most crucial stages is wound healing, whose main goal is to close the wound and prevent infection. In this stage, it is necessary to avoid scar formation to facilitate the activation of the immune system and remodeling of the extracellular matrix, key factors in promoting tissue regeneration. In this review, we will discuss the current state of knowledge regarding the role of the immune system and the interplay with the extracellular matrix to trigger a regenerative response.
    Description: The research in the Echeverri lab is supported NIH NCID R01 to Karen Echeverri and start‐up funds from the MBL. Keith Z. Sabin has been supported by an NIH T32 GM113846 grant.
    Keywords: Extracellular matrix ; Immune system ; Regeneration ; Wound healing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sanders‐DeMott, R., Eagle, M., Kroeger, K., Wang, F., Brooks, T., Suttles, J., Nick, S., Mann, A., & Tang, J. Impoundment increases methane emissions in Phragmites‐invaded coastal wetlands. Global Change Biology, 28(15), (2022): 4539– 4557. https://doi.org/10.1111/gcb.16217.
    Description: Saline tidal wetlands are important sites of carbon sequestration and produce negligible methane (CH4) emissions due to regular inundation with sulfate-rich seawater. Yet, widespread management of coastal hydrology has restricted tidal exchange in vast areas of coastal wetlands. These ecosystems often undergo impoundment and freshening, which in turn cause vegetation shifts like invasion by Phragmites, that affect ecosystem carbon balance. Understanding controls and scaling of carbon exchange in these understudied ecosystems is critical for informing climate consequences of blue carbon restoration and/or management interventions. Here, we (1) examine how carbon fluxes vary across a salinity gradient (4–25 psu) in impounded and natural, tidally unrestricted Phragmites wetlands using static chambers and (2) probe drivers of carbon fluxes within an impounded coastal wetland using eddy covariance at the Herring River in Wellfleet, MA, United States. Freshening across the salinity gradient led to a 50-fold increase in CH4 emissions, but effects on carbon dioxide (CO2) were less pronounced with uptake generally enhanced in the fresher, impounded sites. The impounded wetland experienced little variation in water-table depth or salinity during the growing season and was a strong CO2 sink of −352 g CO2-C m−2 year−1 offset by CH4 emission of 11.4 g CH4-C m−2 year−1. Growing season CH4 flux was driven primarily by temperature. Methane flux exhibited a diurnal cycle with a night-time minimum that was not reflected in opaque chamber measurements. Therefore, we suggest accounting for the diurnal cycle of CH4 in Phragmites, for example by applying a scaling factor developed here of ~0.6 to mid-day chamber measurements. Taken together, these results suggest that although freshened, impounded wetlands can be strong carbon sinks, enhanced CH4 emission with freshening reduces net radiative balance. Restoration of tidal flow to impounded ecosystems could limit CH4 production and enhance their climate regulating benefits.
    Description: This project was supported by USGS-NPS Natural Resources Preservation Program #2021-07, U.S. Geological Survey Coastal & Marine Hazards and Resources Program and the USGS Land Change Science Program's LandCarbon program, and NOAA National Estuarine Research Reserve Science Collaborative NA14NOS4190145. R Sanders-DeMott was supported by a USGS Mendenhall Fellowship and partnership with Restore America's Estuaries.
    Keywords: Blue carbon ; Coastal wetland ; Dike ; Eddy covariance ; Impoundment ; Methane ; Net ecosystem exchange ; Phragmites ; Restoration ; Static chambers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tsakalakis, I., Follows, M. J., Dutkiewicz, S., Follett, C. L., & Vallino, J. J. Diel light cycles affect phytoplankton competition in the global ocean. Global Ecology and Biogeography, 31(9), (2022): 1838-1849, https://doi.org/10.1111/geb.13562.
    Description: Aim Light, essential for photosynthesis, is present in two periodic cycles in nature: seasonal and diel. Although seasonality of light is typically resolved in ocean biogeochemical–ecosystem models because of its significance for seasonal succession and biogeography of phytoplankton, the diel light cycle is generally not resolved. The goal of this study is to demonstrate the impact of diel light cycles on phytoplankton competition and biogeography in the global ocean. Location Global ocean. Major taxa studied Phytoplankton. Methods We use a three-dimensional global ocean model and compare simulations of high temporal resolution with and without diel light cycles. The model simulates 15 phytoplankton types with different cell sizes, encompassing two broad ecological strategies: small cells with high nutrient affinity (gleaners) and larger cells with high maximal growth rate (opportunists). Both are grazed by zooplankton and limited by nitrogen, phosphorus and iron. Results Simulations show that diel cycles of light induce diel cycles in limiting nutrients in the global ocean. Diel nutrient cycles are associated with higher concentrations of limiting nutrients, by 100% at low latitudes (−40° to 40°), a process that increases the relative abundance of opportunists over gleaners. Size classes with the highest maximal growth rates from both gleaner and opportunist groups are favoured by diel light cycles. This mechanism weakens as latitude increases, because the effects of the seasonal cycle dominate over those of the diel cycle. Main conclusions Understanding the mechanisms that govern phytoplankton biogeography is crucial for predicting ocean ecosystem functioning and biogeochemical cycles. We show that the diel light cycle has a significant impact on phytoplankton competition and biogeography, indicating the need for understanding the role of diel processes in shaping macroecological patterns in the global ocean.
    Description: Simons Collaboration on Computational Biogeochemical Modeling of Marine Ecosystems supported M.J.F. and S.D. on CBIOMES grant #549931; C.L.F. on CBIOMES grants #827829 and #553242; and J.J.V. and I.T. on CBIOMES grant #549941. The National Science Foundation supported I.T. and J.J.V. on award #1558710 and J.J.V. on awards #1637630, #1655552 and #1841599.
    Keywords: Biogeography ; Diel light cycle ; Global ocean ; Modelling ; Nutrient cycles ; Phytoplankton ; Resource competition
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Munoz, S. E., Porter, T. J., Bakkelund, A., Nusbaumer, J., Dee, S. G., Hamilton, B., Giosan, L., & Tierney, J. E. Lipid biomarker record documents hydroclimatic variability of the Mississippi River Basin during the common era. Geophysical Research Letters, 47(12), (2020): e2020GL087237, doi:10.1029/2020GL087237.
    Description: Floods and droughts in the Mississippi River basin are perennial hazards that cause severe economic disruption. Here we develop and analyze a new lipid biomarker record from Horseshoe Lake (Illinois, USA) to evaluate the climatic conditions associated with hydroclimatic extremes that occurred in this region over the last 1,800 years. We present geochemical proxy evidence of temperature and moisture variability using branched glycerol dialkyl glycerol tetraethers (brGDGTs) and plant leaf wax hydrogen isotopic composition (δ2Hwax) and use isotope‐enabled coupled model simulations to diagnose the controls on these proxies. Our data show pronounced warming during the Medieval era (CE 1000–1,600) that corresponds to midcontinental megadroughts. Severe floods on the upper Mississippi River basin also occurred during the Medieval era and correspond to periods of enhanced warm‐season moisture. Our findings imply that projected increases in temperature and warm‐season precipitation could enhance both drought and flood hazards in this economically vital region.
    Description: This project was supported by grants to S. E. M and L. G. (NSF EAR‐1804107), T. J. P. (NSERC Discovery Grant), and S. G. D. (NOAA‐NA18OAR4310427).
    Keywords: Lipid biomarker ; Leaf wax ; BrGDGT ; Common Era ; Paleoclimate ; Hydroclimate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bowen, J. C., Ward, C. P., Kling, G. W., & Cory, R. M. Arctic amplification of global warming strengthened by sunlight oxidation of permafrost carbon to CO2. Geophysical Research Letters, 47(12), (2020): e2020GL087085, doi:10.1029/2020GL087085.
    Description: Once thawed, up to 15% of the ∼1,000 Pg of organic carbon (C) in arctic permafrost soils may be oxidized to carbon dioxide (CO2) by 2,100, amplifying climate change. However, predictions of this amplification strength ignore the oxidation of permafrost C to CO2 in surface waters (photomineralization). We characterized the wavelength dependence of permafrost dissolved organic carbon (DOC) photomineralization and demonstrate that iron catalyzes photomineralization of old DOC (4,000–6,300 a BP) derived from soil lignin and tannin. Rates of CO2 production from photomineralization of permafrost DOC are twofold higher than for modern DOC. Given that model predictions of future net loss of ecosystem C from thawing permafrost do not include the loss of CO2 to the atmosphere from DOC photomineralization, current predictions of an average of 208 Pg C loss by 2,299 may be too low by ~14%.
    Description: This research was supported by National Science Foundation (NSF) CAREER 1351745 (R.M.C.), DEB 1637459 and 1754835 (G.W.K.), the Camille and Henry Dreyfus Postdoctoral Program in Environmental Chemistry (R.M.C. and C.P.W.), the Frank and Lisina Hock Endowed Fund (C.P.W.), and the NOSAMS Graduate Student Internship Program (J.C.B.).
    Keywords: Photochemistry ; Permafrost ; Arctic ; Carbon cycling ; Dissolved organic carbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jin, D., Hoagland, P., & Ashton, A. D. Risk averse choices of managed beach widths under environmental uncertainty. Natural Resource Modeling, (2021): e12324, https://doi.org/10.1111/nrm.12324.
    Description: Applying a theoretical geo-economic approach, we examined key factors affecting decisions about the choice of beach width when eroded coastal beaches are being nourished (i.e., when fill is placed to widen a beach). Within this geo-economic framework, optimal beach width is positively related to its values for hazard protection and recreation and negatively related to nourishment costs and the discount rate. Using a dynamic modeling framework, we investigated the time paths of beach width and nourishment that maximized net present value under an accelerating sea level. We then analyzed how environmental uncertainty about expected future beach width, arising from natural shoreline dynamics, intermittent large storms, or sea-level rise, leads to economic choices favoring narrower beaches. Risk aversion can affect a coastal property owner's choice of beach width in contradictory ways: the expected benefits of hazard protection must be balanced against the expected costs of repeated nourishment actions.
    Description: Support for this study was provided by NSF Grant No. ARG 1518503, WHOI Sea Grant (NOAA Award Number: NA18OAR4170104), and the J. Seward Johnson Fund in Support of the Marine Policy Center.
    Keywords: Beach nourishment ; Beach width ; Coastal protection ; Risk management ; Shoreline change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Farrell, U. C., Samawi, R., Anjanappa, S., Klykov, R., Adeboye, O. O., Agic, H., Ahm, A.-S. C., Boag, T. H., Bowyer, F., Brocks, J. J., Brunoir, T. N., Canfield, D. E., Chen, X., Cheng, M., Clarkson, M. O., Cole, D. B., Cordie, D. R., Crockford, P. W., Cui, H., Dahl, T. W., Mouro, L. D., Dewing, K., Dornbos, S. Q., Drabon, N., Dumoulin, J. A., Emmings, J. F., Endriga, C. R., Fraser, T. A., Gaines, R. R., Gaschnig, R. M., Gibson, T. M., Gilleaudeau, G. J., Gill, B. C., Goldberg, K., Guilbaud, R., Halverson, G. P., Hammarlund, E. U., Hantsoo, K. G., Henderson, M. A., Hodgskiss, M. S. W., Horner, Tristan J., Husson, J. M., Johnson, B., Kabanov, P., Brenhin K. C., Kimmig, J., Kipp, M. A., Knoll, A. H., Kreitsmann, T., Kunzmann, M., Kurzweil, F., LeRoy, M. A., Li, C., Lipp, A. G., Loydell, D. K., Lu, X., Macdonald, F. A., Magnall, J. M., Mänd, K., Mehra, A., Melchin, M. J., Miller, A. J., Mills, N. T., Mwinde, C. N., O'Connell, B., Och, L. M., Ossa Ossa, F., Pagès, A., Paiste, K., Partin, C. A., Peters, S. E., Petrov, P., Playter, T. L., Plaza-Torres, S., Porter, Susannah M., Poulton, S. W., Pruss, S. B., Richoz, S., Ritzer, S. R., Rooney, A. D., Sahoo, S. K., Schoepfer, S. D., Sclafani, J. A., Shen, Y., Shorttle, O., Slotznick, S. P., Smith, E. F., Spinks, S., Stockey, R. G., Strauss, J. V., Stüeken, E. E., Tecklenburg, S., Thomson, D., Tosca, N. J., Uhlein, G. J., Vizcaíno, M. N., Wang, H., White, T., Wilby, P. R., Woltz, C. R., Wood, R. A., Xiang, L., Yurchenko, I. A., Zhang, T., Planavsky, N. J., Lau, K. V., Johnston, D. T., Sperling, E. A., The Sedimentary Geochemistry and Paleoenvironments Project. Geobiology. 00, (2021): 1– 12,https://doi.org/10.1111/gbi.12462.
    Description: Geobiology explores how Earth's system has changed over the course of geologic history and how living organisms on this planet are impacted by or are indeed causing these changes. For decades, geologists, paleontologists, and geochemists have generated data to investigate these topics. Foundational efforts in sedimentary geochemistry utilized spreadsheets for data storage and analysis, suitable for several thousand samples, but not practical or scalable for larger, more complex datasets. As results have accumulated, researchers have increasingly gravitated toward larger compilations and statistical tools. New data frameworks have become necessary to handle larger sample sets and encourage more sophisticated or even standardized statistical analyses. In this paper, we describe the Sedimentary Geochemistry and Paleoenvironments Project (SGP; Figure 1), which is an open, community-oriented, database-driven research consortium. The goals of SGP are to (1) create a relational database tailored to the needs of the deep-time (millions to billions of years) sedimentary geochemical research community, including assembling and curating published and associated unpublished data; (2) create a website where data can be retrieved in a flexible way; and (3) build a collaborative consortium where researchers are incentivized to contribute data by giving them priority access and the opportunity to work on exciting questions in group papers. Finally, and more idealistically, the goal was to establish a culture of modern data management and data analysis in sedimentary geochemistry. Relative to many other fields, the main emphasis in our field has been on instrument measurement of sedimentary geochemical data rather than data analysis (compared with fields like ecology, for instance, where the post-experiment ANOVA (analysis of variance) is customary). Thus, the longer-term goal was to build a collaborative environment where geobiologists and geologists can work and learn together to assess changes in geochemical signatures through Earth history.
    Description: We thank the donors of The American Chemical Society Petroleum Research Fund for partial support of SGP website development (61017-ND2). EAS is funded by National Science Foundation grant (NSF) EAR-1922966. BGS authors (JE, PW) publish with permission of the Executive Director of the British Geological Survey, UKRI.
    Keywords: Consortium ; Database ; Earth history ; Geochemistry ; Website
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Huynh, A., Maktabi, B., Reddy, C. M., O'Neil, G. W., Chandler, M., & Baki, G. Evaluation of alkenones, a renewably sourced, plant-derived wax as a structuring agent for lipsticks. International Journal of Cosmetic Science, (2020), doi:10.1111/ics.12597.
    Description: OBJECTIVE Waxes are used as structuring agents in lipsticks. There are a variety of waxes combined in a single lipstick to provide good stability, pleasant texture and good pay‐off. Due to a significant growth for natural, green and sustainable products, there is a constant search for alternatives to animal‐derived and petroleum‐derived ingredients. In this study, a green, non‐animalderived wax, namely long‐chain ketones (referred to as alkenones), sourced from marine microalgae was formulated into lipsticks and evaluated as a structuring agent. METHODS Alkenones were used as a substitute for microcrystalline wax, ozokerite and candelilla wax, typical structuring agents. In total, 384 lipsticks were formulated: L1 (control, no alkenones), L2 (alkenones as a substitute for ozokerite), L3 (alkenones as a substitute for microcrystalline wax) and L4 (alkenones as a substitute for candelilla wax). Products were tested for hardness (bending force), stiffness, firmness (needle penetration), pay‐off (using a texture analyser and a consumer panel), friction, melting point and stability for 12 weeks at 25 and 45°C. RESULTS Alkenones influenced each characteristic evaluated. In general, lipsticks with alkenones (L2‐L4) became softer and easier to bend compared to the control (L1). In terms of firmness, lipsticks were similar to the control, except for L4, which was significantly (P 〈 0.05) firmer. The effect on pay‐off was not consistent. L2 and L3 had higher pay‐off to skin and fabric than L1. In addition, L4 had the lowest amount transferred, but it still had the highest colour intensity on skin. Alkenones influenced friction (glide) positively; the average friction decreased for L2‐L4. The lowest friction (i.e. best glide) was shown in L4. Melting point of the lipsticks was lower when alkenones were present. Overall, L4, containing 7% of 4 alkenones in combination with microcrystalline wax, ozokerite and carnauba wax, was found to have the most desirable attributes, including ease of bending, high level of firmness, low pay‐off in terms of amount, high colour intensity on skin and low friction (i.e. better glide). Consumers preferred L4 the most overall. CONCLUSION Results of this study indicate that alkenones offer a sustainable, non‐animal and non‐petroleum‐derived choice as a structuring agent for lipsticks.
    Description: The authors would like to thank Texture Technologies for the technical assistance provided during this project. This research was funded by the Washington Research Foundation and a private donor from friends of the Woods Hole Oceanographic Institution, grant number N‐127244.
    Keywords: Colour cosmetics ; Formulation/stability ; Statistics ; Alkenones ; Lipstick
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Patrick, S. C., Martin, J. G. A., Ummenhofer, C. C., Corbeau, A., & Weimerskirch, H. Albatrosses respond adaptively to climate variability by changing variance in a foraging trait. Global Change Biology, (2021), https://doi.org/10.1111/gcb.15735.
    Description: The ability of individuals and populations to adapt to a changing climate is a key determinant of population dynamics. While changes in mean behaviour are well studied, changes in trait variance have been largely ignored, despite being assumed to be crucial for adapting to a changing environment. As the ability to acquire resources is essential to both reproduction and survival, changes in behaviours that maximize resource acquisition should be under selection. Here, using foraging trip duration data collected over 7 years on black-browed albatrosses (Thalassarche melanophris) on the Kerguelen Islands in the southern Indian Ocean, we examined the importance of changes in the mean and variance in foraging behaviour, and the associated effects on fitness, in response to the El Niño Southern Oscillation (ENSO). Using double hierarchical models, we found no evidence that individuals change their mean foraging trip duration in response to a changing environment, but found strong evidence of changes in variance. Younger birds showed greater variability in foraging trip duration in poor conditions as did birds with higher fitness. However, during brooding, birds showed greater variability in foraging behaviour under good conditions, suggesting that optimal conditions allow the alteration between chick provisioning and self-maintenance trips. We found weak correlations between sea surface temperature and the ENSO, but stronger links with sea-level pressure. We suggest that variability in behavioural traits affecting resource acquisition is under selection and offers a mechanism by which individuals can adapt to a changing climate. Studies which look only at effects on mean behaviour may underestimate the effects of climate change and fail to consider variance in traits as a key evolutionary force.
    Description: The authors thank the Institut Polaire Français Paul Emile Victor (IPEV, programme 109 to HW) for providing financial and logistical support for the field work at Kerguelen, and to the Terres Australes et Antarctique Francaises (TAAF). The usage of the following data sets is gratefully acknowledged: SOI, NCEP/NCAR SLP and NOAA OISST v2, all provided by NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, through https://www.esrl.noaa.gov/psd. CCU acknowledges support from the Joint Initiative Awards Fund from the Andrew W. Mellon Foundation and the James E. and Barbara V. Moltz Fellowship for Climate-Related Research.
    Keywords: Bet-hedging ; Intra-individual variability ; Resource acquisition ; Salt-water immersion logger ; Seabirds ; Southern Oscillation Index
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 47(15), (2020): e2020GL087266, doi:10.1029/2020GL087266.
    Description: Using a recently compiled global marine data set of dissolved helium isotopes and helium and neon concentrations, we make an estimate of the inventory of hydrothermal 3He in the Southern Ocean to be 4.9 ± 0.6 × 104 moles. Under the assumption that the bulk of the hydrothermally sourced 3He is upwelled there, we use recent estimates of the global hydrothermal 3He flux to determine an e‐folding residence time of 99 ± 18 years, depending on assumptions of water mass and upwelling boundaries. Our estimate is within the broad range of values obtained from recent Southern Ocean circulation models.
    Description: This work was funded under the auspices of the U.S. National Science Foundation's Grant OCE‐1756138.
    Description: 2021-02-04
    Keywords: Hydrothermal budgets ; Meridional overturning circulation ; Marine productivity ; Micronutrients ; Dissolved iron ; Southern Ocean upwelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ryan, S., Hellmer, H. H., Janout, M., Darelius, E., Vignes, L., & Schroeder, M. Exceptionally warm and prolonged flow of warm deep water toward the Filchner-Ronne Ice Shelf in 2017. Geophysical Research Letters, 47(13),(2020): e2020GL088119, doi:10.1029/2020GL088119.
    Description: The Filchner‐Ronne Ice Shelf, fringing the southern Weddell Sea, is Antarctica's second largest ice shelf. At present, basal melt rates are low due to active dense water formation; however, model projections suggest a drastic increase in the future due to enhanced inflow of open‐ocean warm water. Mooring observations from 2014 to 2016 along the eastern flank of the Filchner Trough (76°S) revealed a distinct seasonal cycle with inflow if Warm Deep Water during summer and autumn. Here we present extended time series showing an exceptionally warm and long inflow in 2017, with maximum temperatures exceeding 0.5°C. Warm temperatures persisted throughout winter, associated with a fresh anomaly, which lead to a change in stratification over the shelf, favoring an earlier inflow in the following summer. We suggest that the fresh anomaly developed upstream after anomalous summer sea ice melting and contributed to a shoaling of the shelf break thermocline.
    Description: The authors would like to express their gratitude to the officers and crews of RV Polarstern (cruises PS92 [Grant AWI_PS82_02], PS96 [Grant AWI_PS96_01], and PS111 [Grant AWI_PS111_01]), RRS Ernest Shackleton (Cruise ES060), and RSS James Clark Ross (Cruise JR16004) for their efficient assistance. E. D. received funding from the project TOBACO (267660), POLARPROG, Norges Forskningsrd.
    Keywords: Ocean-ice shelf interaction ; Weddell Sea ; Warm inflow ; Antarctic Slope Front ; Filchner-Ronne Ice Shelf
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Earth Surface Processes and Landforms, Wiley, ISSN: 0197-9337
    Publication Date: 2022-10-21
    Description: Thaw slumps in ice‐rich permafrost can retreat tens of metres per summer, driven by the melt of subaerially exposed ground ice. However, some slumps retain an ice‐veneering debris cover as they retreat. A quantitative understanding of the thermal regime and geomorphic evolution of debris‐covered slumps in a warming climate is largely lacking. To characterize the thermal regime, we instrumented four debris‐covered slumps in the Canadian Low Arctic and developed a numerical conduction‐based model. The observed surface temperatures 20°C and steep thermal gradients indicate that debris insulates the ice by shifting the energy balance towards radiative and turbulent losses. After the model was calibrated and validated with field observations, it predicted sub‐debris ice melt to decrease four‐fold from 1.9 to 0.5 m as the thickness of the fine‐grained debris quadruples from 0.1 to 0.4 m. With warming temperatures, melt is predicted to increase most rapidly, in relative terms, for thick (~0.5‐1.0 m) debris covers. The morphology and evolution of the debris‐covered slumps were characterized using field and remote sensing observations, which revealed differences in association with morphology and debris composition. Two low‐angle slumps retreated continually despite their persistent fine‐grained debris covers. The observed elevation losses decreased from ~1.0 m/yr where debris thickness ~.2 m to 0.1 m/yr where thickness ~1.0 m. Conversely, a steep slump with a coarse‐grained debris veneer underwent short‐lived bursts of retreat, hinting at a complex interplay of positive and negative feedback processes. The insulative protection and behaviour of debris vary significantly with factors such as thickness, grain size and climate: debris thus exerts a fundamental, spatially variable influence on slump trajectories in a warming climate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-10-21
    Description: This paper investigates different methods for quantifying thaw subsidence using terrestrial laser scanning (TLS) point clouds. Thaw subsidence is a slow (millimetre to centimetre per year) vertical displacement of the ground surface common in ice‐rich permafrost‐underlain landscapes. It is difficult to quantify thaw subsidence in tundra areas as they often lack stable reference frames. Also, there is no solid ground surface to serve as a basis for elevation measurements, due to a continuous moss–lichen cover. We investigate how an expert‐driven method improves the accuracy of benchmark measurements at discrete locations within two sites using multitemporal TLS data of a 1‐year period. Our method aggregates multiple experts’ determination of the ground surface in 3D point clouds, collected in a web‐based tool. We then compare this to the performance of a fully automated ground surface determination method. Lastly, we quantify ground surface displacement by directly computing multitemporal point cloud distances, thereby extending thaw subsidence observation to an area‐based assessment. Using the expert‐driven quantification as reference, we validate the other methods, including in‐situ benchmark measurements from a conventional field survey. This study demonstrates that quantifying the ground surface using 3D point clouds is more accurate than the field survey method. The expert‐driven method achieves an accuracy of 0.1 ± 0.1 cm. Compared to this, in‐situ benchmark measurements by single surveyors yield an accuracy of 0.4 ± 1.5 cm. This difference between the two methods is important, considering an observed displacement of 1.4 cm at the sites. Thaw subsidence quantification with the fully automatic benchmark‐based method achieves an accuracy of 0.2 ± 0.5 cm and direct point cloud distance computation an accuracy of 0.2 ± 0.9 cm. The range in accuracy is largely influenced by properties of vegetation structure at locations within the sites. The developed methods enable a link of automated quantification and expert judgement for transparent long‐term monitoring of permafrost subsidence.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-10-20
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Umanzor, S., Li, Y., Bailey, D., Augyte, S., Huang, M., Marty-Rivera, M., Jannink, J., Yarish, C., & Lindell, S. Comparative analysis of morphometric traits of farmed sugar kelp and skinny kelp, Saccharina spp., strains from the Northwest Atlantic. Journal of the World Aquaculture Society, (2021), https://doi.org/10.1111/jwas.12783.
    Description: Our team has initiated a selective breeding program for regional strains of sugar kelp, Saccharina latissima, to improve the competitiveness of kelp farming in the United States. Within our breeding program, we also include an endemic putative species, Saccharina angustissima, locally referred to as skinny kelp. We crossed uniclonal gametophyte cultures derived from 37 wild‐collected blades representing five sugar kelp strains and one skinny kelp strain to produce 104 unique crosses. Each cross was outplanted on a near‐shore research farm located in the Gulf of Maine (GOM). After the first farming season, our results indicated that sugar kelp and skinny kelp were interfertile, and produced mature and reproductively viable sporophytes. Morphological traits of individual blades varied depending on the parental contribution (sugar vs. skinny), with significant differences found in progeny blade length, width, thickness, and in stipe length and diameter. Despite these differences, wet weight and blade density per plot showed no statistical differences regardless of the cross. Given their published genetic similarity and their interfertility shown here, S. angustissima and S. latissima may not be different species, and may each contribute genetic diversity to breeding programs aimed at meeting ocean farming and market needs.
    Description: Funding was provided by the U.S. Department of Energy, ARPAe MARINER project contract number DE‐AR0000915 and DE‐AR0000911, AgCore Technologies of Rhode Island, and the Massachusetts Clean Energy Center, AmplifyMass Program.
    Keywords: Morphometrics ; Phenotyping ; Saccharina angustissima ; Saccharina latissima ; Seaweed aquaculture ; Selective breeding
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-10-20
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Walter, J. A., Castorani, M. C. N., Bell, T. W., Sheppard, L. W., Cavanaugh, K. C., & Reuman, D. C. Tail-dependent spatial synchrony arises from nonlinear driver-response relationships. Ecology Letters, 25, (2022): 1189– 1201, https://doi.org/10.1111/ele.13991.
    Description: Spatial synchrony may be tail-dependent, that is, stronger when populations are abundant than scarce, or vice-versa. Here, ‘tail-dependent’ follows from distributions having a lower tail consisting of relatively low values and an upper tail of relatively high values. We present a general theory of how the distribution and correlation structure of an environmental driver translates into tail-dependent spatial synchrony through a non-linear response, and examine empirical evidence for theoretical predictions in giant kelp along the California coastline. In sheltered areas, kelp declines synchronously (lower-tail dependence) when waves are relatively intense, because waves below a certain height do little damage to kelp. Conversely, in exposed areas, kelp is synchronised primarily by periods of calmness that cause shared recovery (upper-tail dependence). We find evidence for geographies of tail dependence in synchrony, which helps structure regional population resilience: areas where population declines are asynchronous may be more resilient to disturbance because remnant populations facilitate reestablishment.
    Description: This research was supported by NSF-OCE awards 2023555, 2023523, 2140335, 2023474, and the James S McDonnell Foundation. This project used data developed through the Santa Barbara Coastal Long Term Ecological Research project, funded through NSF-OCE 1831937.
    Keywords: Copula ; Disturbance ; Giant kelp ; Macrocystis pyrifera ; Nutrients ; Stability ; Synchrony ; Waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-10-20
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rypkema, N., Schmidt, H., & Fischell, E. Synchronous-clock range-angle relative acoustic navigation: a unified approach to multi-AUV localization, command, control, and coordination. Journal of Field Robotics, 2(1), (2022): 774–806, https://doi.org/10.55417/fr.2022026.
    Description: This paper presents a scalable acoustic navigation approach for the unified command, control, and coordination of multiple autonomous underwater vehicles (AUVs). Existing multi-AUV operations typically achieve coordination manually by programming individual vehicles on the surface via radio communications, which becomes impractical with large vehicle numbers; or they require bi-directional intervehicle acoustic communications to achieve limited coordination when submerged, with limited scalability due to the physical properties of the acoustic channel. Our approach utilizes a single, periodically broadcasting beacon acting as a navigation reference for the group of AUVs, each of which carries a chip-scale atomic clock and fixed ultrashort baseline array of acoustic receivers. One-way travel-time from synchronized clocks and time-delays between signals received by each array element allow any number of vehicles within receive distance to determine range, angle, and thus determine their relative position to the beacon. The operator can command different vehicle behaviors by selecting between broadcast signals from a predetermined set, while coordination between AUVs is achieved without intervehicle communication by defining individual vehicle behaviors within the context of the group. Vehicle behaviors are designed within a beacon-centric moving frame of reference, allowing the operator to control the absolute position of the AUV group by repositioning the navigation beacon to survey the area of interest. Multiple deployments with a fleet of three miniature, low-cost SandShark AUVs performing closed-loop acoustic navigation in real-time provide experimental results validated against a secondary long-baseline positioning system, demonstrating the capabilities and robustness of our approach with real-world data.
    Description: This work was partially supported by the Office of Naval Research, the Defense Advanced Research Projects Agency, Lincoln Laboratory, and the Reuben F. and Elizabeth B. Richards Endowed Funds at WHOI.
    Keywords: Underwater robotics ; Navigation ; Multirobot systems ; Localization ; Marine robotics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-10-20
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Castorani, M. C. N., Bell, T. W., Walter, J. A., Reuman, D. C., Cavanaugh, K. C., & Sheppard, L. W. Disturbance and nutrients synchronise kelp forests across scales through interacting Moran effects. Ecology Letters, 25(8), (2022): 1854-1868, https://doi.org/10.1111/ele.14066.
    Description: Spatial synchrony is a ubiquitous and important feature of population dynamics, but many aspects of this phenomenon are not well understood. In particular, it is largely unknown how multiple environmental drivers interact to determine synchrony via Moran effects, and how these impacts vary across spatial and temporal scales. Using new wavelet statistical techniques, we characterised synchrony in populations of giant kelp Macrocystis pyrifera, a widely distributed marine foundation species, and related synchrony to variation in oceanographic conditions across 33 years (1987–2019) and 〉900 km of coastline in California, USA. We discovered that disturbance (storm-driven waves) and resources (seawater nutrients)—underpinned by climatic variability—act individually and interactively to produce synchrony in giant kelp across geography and timescales. Our findings demonstrate that understanding and predicting synchrony, and thus the regional stability of populations, relies on resolving the synergistic and antagonistic Moran effects of multiple environmental drivers acting on different timescales.
    Description: This study was funded by the U.S. National Science Foundation (NSF) through linked NSF-OCE awards 2023555, 2023523, 2140335, and 2023474 to M.C.N.C., K.C.C., T.W.B., and D.C.R., respectively. The research was initiated during a synthesis working group at the Long Term Ecological Research Network Office and National Center for Ecological Analysis and Synthesis funded under NSF-DEB award 1545288. D.C.R. and L.W.S. were also partly supported by NSF award 1714195, the McDonnell Foundation, and the California Department of Fish and Wildlife Delta Science Program. This project used data developed through the Santa Barbara Coastal Long Term Ecological Research project, funded through NSF-OCE award 1831937.
    Keywords: Coherence ; Disturbance ; Moran effect ; Nitrate ; North Pacific Gyre Oscillation ; Oceanography ; Population dynamics ; Remote sensing ; Spatial synchrony ; Wavelet transforms
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-10-20
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Martins, M. C. I., Miller, C., Hamilton, P., Robbins, J., Zitterbart, D. P., & Moore, M. Respiration cycle duration and seawater flux through open blowholes of humpback (Megaptera novaeangliae) and North Atlantic right (Eubalaena glacialis) whales. Marine Mammal Science, (2020): 1-20, doi:10.1111/mms.12703.
    Description: Little is known about the dynamics of baleen whale respiratory cycles, especially the mechanics and activity of the blowholes and their interaction with seawater. In this study, the duration of complete respiration cycles (expiration/inhalation events) were quantified for the first time in two species: North Atlantic right whale (NARW) and humpback whale (HW) using high resolution, detailed imagery from an unoccupied aerial system (UAS). The mean duration of complete respiration cycles (expiration/inhalation event) in the NARW and HW were 3.07 s (SD = 0.503, n = 15) and 2.85 s (SD = 0.581, n = 21), respectively. Furthermore, we saw no significant differences in respiration cycle duration between age and sex classes in the NARW, but significant differences were observed between age classes in the HW. The observation of seawater covering an open blowhole was also quantified, with NARW having 20% of all breaths with seawater presence versus 90% in HW. Seawater incursion has not been described previously and challenges the general consensus that water does not enter the respiratory tract in baleen whales. Prevalent seawater has implications for the analysis and interpretation of exhaled respiratory vapor/mucosa samples, as well as for the potential inhalation of oil in spills.
    Description: Samples were collected under NMFS NOAA Permits 17355, 17355‐01, and 21371, and with approval from the Woods Hole Oceanographic Institution Institutional Animal Care and Use Committee. Funding by Ocean Life Institute of the Woods Hole Oceanographic Institution, NOAA NA14OAR4320158 and University College London Master of Research in Biodiversity, Evolution and Conservation program.
    Keywords: Humpback whale ; North Atlantic right whale ; Respiratory cycle ; Respiratory health ; Unoccupied aerial systems
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-10-20
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Caruso, F., Hickmott, L., Warren, J. D., Segre, P., Chiang, G., Bahamonde, P., Español-Jiménez, S., Li, S., & Bocconcelli, A. Diel differences in blue whale (Balaenoptera musculus) dive behavior increase nighttime risk of ship strikes in northern Chilean Patagonia. Integrative Zoology, (2020): 1-18, doi:10.1111/1749-4877.12501.
    Description: The northern Chilean Patagonia region is a key feeding ground and a nursing habitat in the southern hemisphere for blue whales (Balaenoptera musculus). From 2014 to 2019, during 6 separate research cruises, the dive behavior of 28 individual blue whales was investigated using bio‐logging tags (DTAGs), generating ≈190 h of data. Whales dove to significantly greater depths during the day compared to nighttime (day: 32.6 ± 18.7 m; night: 6.2 ± 2.7 m; P 〈 0.01). During the night, most time was spent close to the surface (86% ± 9.4%; P 〈 0.01) and at depths of less than 12 m. From 2016 to 2019, active acoustics (scientific echosounders) were used to record prey (euphausiids) density and distribution simultaneously with whale diving data. Tagged whales appeared to perform dives relative to the vertical migration of prey during the day. The association between diurnal prey migration and shallow nighttime dive behavior suggests that blue whales are at increased risk of ship collisions during periods of darkness since the estimated maximum ship draft of vessels operating in the region is also ≈12 m. In recent decades, northern Chilean Patagonia has seen a large increase in marine traffic due to a boom in salmon aquaculture and the passenger ship industry. Vessel strike risks for large whales are likely underestimated in this region. Results reported in this study may be valuable for policy and mitigation decisions regarding conservation of the endangered blue whale.
    Description: This work was conducted under Chilean research permit PINV 38–2014 Ballena Azul, Golfo Corcovado, from the Ministerio de Economia, Fomento y Turismo, Subsecreteria de Pesca y Acuicultura. We would like to thank the crews of the vessels Centinela, Khronos and Solidaridad for their involvement in the fieldwork. Special thanks to Rafaela Landea‐Briones, Gloria Howes, Esteban Tapia Brunet, Pepe Montt, Thomas Montt, and Daniel Casado for helping and welcoming us in Patagonia. Thanks to MERI Foundation and their students Carlos Cantergiani, Andrea Hirmas and Elvira Vergara for their support and contributions to field efforts. We extend our gratitude to our collaborators Laela Sayigh, Michael Moore, Daniel Zitterbart, Frants Jensen, Aran Mooney, John Durban, Jeremy Goldbogen, and Dave Cade. Thanks to WHOI for financial and technical support. The data analysis and paper writing was financially supported by the National Key Research and Development Program of China (Grant number 2016YFC0300802); the biodiversity investigation, observation and assessment program (2019‐2023) of the Ministry of Ecology and Environment of China; and Indian Ocean Ninety‐east Ridge Ecosystem and Marine Environment Monitoring and Protection, supported by the China Ocean Mineral Resources R&D Association (no. DY135‐E2‐4). Additionally, FC thanks the President's International Fellowship Initiative (PIFI) of the Chinese Academy of Sciences.
    Keywords: Bio‐logging tags ; Blue whale ; Diving profile ; Ocean conservation ; Prey distribution
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-10-20
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Billings, G., Walter, M., Pizarro, O., Johnson-Roberson, M., & Camilli, R. Towards automated sample collection and return in extreme underwater environments. Journal of Field Robotics, 2(1), (2022): 1351–1385, https://doi.org/10.55417/fr.2022045.
    Description: In this report, we present the system design, operational strategy, and results of coordinated multivehicle field demonstrations of autonomous marine robotic technologies in search-for-life missions within the Pacific shelf margin of Costa Rica and the Santorini-Kolumbo caldera complex, which serve as analogs to environments that may exist in oceans beyond Earth. This report focuses on the automation of remotely operated vehicle (ROV) manipulator operations for targeted biological sample-collection-and-return from the seafloor. In the context of future extraterrestrial exploration missions to ocean worlds, an ROV is an analog to a planetary lander, which must be capable of high-level autonomy. Our field trials involve two underwater vehicles, the SuBastian ROV and the Nereid Under Ice (NUI) hybrid ROV for mixed initiative (i.e., teleoperated or autonomous) missions, both equipped seven-degrees-of-freedom hydraulic manipulators. We describe an adaptable, hardware-independent computer vision architecture that enables high-level automated manipulation. The vision system provides a three-dimensional understanding of the workspace to inform manipulator motion planning in complex unstructured environments. We demonstrate the effectiveness of the vision system and control framework through field trials in increasingly challenging environments, including the automated collection and return of biological samples from within the active undersea volcano Kolumbo. Based on our experiences in the field, we discuss the performance of our system and identify promising directions for future research.
    Description: This work was funded under a NASA PSTAR grant, number NNX16AL08G, and by the National Science Foundation under grants IIS-1830660 and IIS-1830500. The authors would like to thank the Costa Rican Ministry of Environment and Energy and National System of Conservation Areas for permitting research operations at the Costa Rican shelf margin, and the Schmidt Ocean Institute (including the captain and crew of the R/V Falkor and ROV SuBastian) for their generous support and making the FK181210 expedition safe and highly successful. Additionally, the authors would like to thank the Greek Ministry of Foreign Affairs for permitting the 2019 Kolumbo Expedition to the Kolumbo and Santorini calderas, as well as Prof. Evi Nomikou and Dr. Aggelos Mallios for their expert guidance and tireless contributions to the expedition.
    Keywords: Underwater robotics ; Mobile manipulation ; Marine robotics ; Exploration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-10-14
    Description: Assessing the variations in space and time of groundwater circulation in volcanic islands is of paramount importance to the description of the hydro-geo-thermal system and implementation of hydrogeological, geochemical, and volcanic monitoring systems. In fact, the reliable reconstruction of the groundwater potentiometric surface in such composite volcanic aquifer systems can enable the identification of the most advantageous strategies for both the sustainable use of groundwater resources and the management of volcanic risk. Geographical Information System (GIS) platforms can support the integration and analysis of many spatial and temporal variables derived from monitoring of active volcanoes and the elaboration of spatially continuous data. However, open issues still affect the reliability and general applicability of common spatial interpolation methods in the case of groundwater potentiometric surfaces. This is related to the assessment of the main stratigraphic and volcano-tectonic features affecting the hydraulic head changes. With regard to the dynamically very active Ischia Island (Italy), this study illustrates a GIS-based hydrogeological approach to identify the most accurate interpolation method for mapping the potentiometric surface in complex hydrogeological terrains. The proposed approach has been applied to the existing dataset (1977–2003) stored by Istituto Nazionale di Geofisica e Vulcanologia. Based on a careful geological and hydrogeological survey, a total of 267 wells, from 5 to 250 m in depth, were processed. The data pre-processing involved four meteorological time-series data (1922–1997) and six long records of piezometric water levels (1930–1994). As a result, knowledge of the delineation of rather homogeneous stratigraphic and volcano-tectonic structures at the basin-scale has improved. Thus, new, more reliable potentiometric surfaces of the four main geothermal areas closest to the coast were produced during both dry and wet seasons. The reliability of the processed potentiometric surface was then validated by comparing the spatially continuous data with complementary field data. These findings point toward an optimal interpolation approach for representing the seasonal and areal distribution of main hydrogeological parameters in complex aquifer systems. Finally, insights into variations of hydrological behavior at an active volcanic area will foster an understanding of possible involvement of fresh and thermal waters in triggering phreatic explosions.
    Description: Published
    Description: 883719
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: groundwater map ; hydrothermal system ; conceptual model ; volcanic island hydrogeology ; spatial interpolation ; GIS ; Ischia Island
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-10-12
    Description: A marine sediment record from the central Bering Sea, spanning the last 20 thousand years (ka), was studied to unravel the depositional history with regard to terrigenous sediment supply and biogenic sedimentation. Methodic approaches comprised the inference of accumulation rates of siliciclastic and biogenic components, grain-size analysis, and (clay) mineralogy, as well as paleoclimatic modelling. Changes in the depositional history provides insight into land-ocean linkages of paleoenvironmental changes. During the finale of the Last Glacial Maximum, the depositional environment was characterized by hemipelagic background sedimentation. A marked change in the terrigenous sediment provenance during the late Heinrich 1 Stadial (15.7–14.5 ka), indicated by increases in kaolinite and a high glaciofluvial influx of clay, gives evidence of the deglaciation of the Brooks Range in the hinterland of Alaska. This meltwater pulse also stimulated the postglacial onset of biological productivity. Glacial melt implies regional climate warming during a time of widespread cooling on the northern hemisphere. Our simulation experiment with a coupled climate model suggests atmospheric teleconnections to the North Atlantic, with impacts on the dynamics of the Aleutian Low system that gave rise to warmer winters and an early onset of spring during that time. The late deglacial period between 14.5 and 11.0 ka was characterized by enhanced fluvial runoff and biological productivity in the course of climate amelioration, sea-level rise, seasonal sea-ice retreat, and permafrost thaw in the hinterland. The latter processes temporarily stalled during the Younger Dryas stadial (12.9-11.7 ka) and commenced again during the Preboreal (earliest Holocene), after 11.7 ka. High river runoff might have fertilized the Bering Sea and contributed to enhanced upper ocean stratification. Since 11.0 ka, advanced transgression has shifted the coast line and fluvial influence of the Yukon River away from the study site. The opening of the Bering Strait strengthened contour currents along the continental slope, leaving behind winnowed sand-rich sediments through the early to mid-Holocene, with non-deposition occurring since about 6.0 ka.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-09-23
    Description: For active volcanoes, knowledge about probabilities of eruption and impacted areas becomes valuable information for decision-makers to develop short- and long-term emergency plans, for which probabilistic volcanic hazard assessment (PVHA) is needed. High-resolution or spatially extended PVHA requires extreme-scale high-performance computing systems. Within the framework of ChEESE (Center of Excellence for Exascale in Solid Earth; www.cheese-coe.eu), an effort was made to generate exascale-suitable codes and workflows to collect and process in some hours the large amount of data that a quality PVHA requires. To this end, we created an optimized HPC-based workflow coined PVHA_HPC-WF to develop PVHA for a volcano. This tool uses the Bayesian event tree methodology to calculate eruption probabilities, vent-opening location(s), and eruptive source parameters (ESPs) based on volcano history, monitoring system data, and meteorological conditions. Then, the tool interacts with the chosen hazard model, performing a simulation for each ESP set or volcanic scenario (VS). Finally, the resulting information is processed by proof-of-concept-subjected high-performance data analytics (HPDA) scripts, producing the hazard maps which describe the probability over time of exceeding critical thresholds at each location in the investigated geographical domain. Although PVHA_HPC-WF can be adapted to other hazards, we focus here on tephra (i.e., lapilli and ash) transport and deposition. As an application, we performed PVHA for Campi Flegrei (CF), Italy, an active volcano located in one of the most densely inhabited areas in Europe and under busy air traffic routes. CF is currently in unrest, classified as being in an attention level by the Italian Civil Protection. We consider an approximate 2,000 × 2,000 × 40 km computational domain with 2 km grid resolution in the horizontal and 40 vertical levels, centered in CF. To explore the natural variability and uncertainty of the eruptive conditions, we consider a large number of VSs allowing us to include those of low probability but high impact, and simulations of tephra dispersal are performed for each of them using the FALL3D model. Results show the potential of HPC to timely execute a vast range of simulations of complex numerical models in large high-resolution computational domains and analyze great volumes of data to obtain quality hazard maps.
    Description: Published
    Description: 941789
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-09-15
    Description: Phytoplankton stand at the base of the marine food-web, and play a major role in global carbon cycling. Rising CO2 levels and temperatures are expected to enhance growth and alter carbon:nutrient stoichiometry of marine phytoplankton, with possible consequences for the functioning of marine food-webs and the oceanic carbon pump. To date, however, the consistency of phytoplankton stoichiometric responses remains unclear. We therefore performed a meta-analysis on data from experimental studies on stoichiometric responses of marine phytoplankton to elevated pCO2 and 3–5° warming under nutrient replete and limited conditions. Our results demonstrate that elevated pCO2 increased overall phytoplankton C:N (by 4%) and C:P (by 9%) molar ratios under nutrient replete conditions, as well as phytoplankton growth rates (by 6%). Nutrient limitation amplified the CO2 effect on C:N and C:P ratios, with increases to 27% and 17%, respectively. In contrast to elevated pCO2, warming did not consistently alter phytoplankton elemental composition. This could be attributed to species- and study-specific increases and decreases in stoichiometry in response to warming. While our observed moderate CO2-driven changes in stoichiometry are not likely to drive marked changes in food web functioning, they are in the same order of magnitude as current and projected estimations of oceanic carbon export. Therefore, our results may indicate a stoichiometric compensation mechanism for reduced oceanic carbon export due to declining primary production in the near future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-09-15
    Description: The abundance of mantle-derived rocks and lavas, in combination with its tectonic evolution, render Mexico a perfect laboratory to investigate the chemical and the isotopic heterogeneity of the lithospheric mantle. New data on the composition of noble gases and CO2 in Mexican mantle xenoliths and lavas is reported. Our samples consist of six ultramafic nodules from the Durango Volcanic Field (DVF) and the San Quintin Volcanic Field (SQVF), monogenetic complexes belonging to the Mexican Basin and Range province; and four lavas from the Sierra Chichinautzin (SCN), a Quaternary monogenetic volcanic field located in the Mexican volcanic arc. Ne and Ar isotopes in fluid inclusions reveal mixing between atmospheric and MORB-like fluids (e.g., 40Ar/36Ar 〈 1,200). DVF and SQVF nodules record low 40Ar/36Ar and 4He/20Ne that confirm the existence of recycled atmospheric-derived noble gases in the local mantle. The averages of the Rc/Ra ratios (3He/4He corrected for atmospheric contamination) measured in Mexican localities are within the MORB-like range: DVF= 8.39 ± 0.24 Ra, SQVF = 7.43 ± 0.19 Ra and SCN lavas = 7.15 ± 0.33 Ra (1σ). With the aim of assessing the isotopic variability of the Mexican lithospheric mantle, the above results were compared with similar data previously obtained from ultramafic nodules found in the Ventura Espiritu Santo Volcanic Field (VESVF), another Quaternary monogenetic volcanic complex belonging the Basin and Range. The higher 3He/4He ratios in DVF relative to those reported for the VESVF and the SQVF are explained as reflecting different ages of mantle refertilization, triggered by the retreating of the Farallon slab (~40 Ma ago) and associated delamination slab processes. We propose that the DVF mantle was refertilized more recently (〈10 Ma ago) than the mantle beneath the SQVF and VESVF (~40–20 Ma ago). On the other hand, He-Ne- Ar compositions of SCN olivines share similarities with VESVF xenoliths,suggesting a relatively homogeneous lithospheric mantle in central Mexico. Finally, DVF and the SCN samples exhibit δ13C values within the MORB range (comparable to other values previously reported in fluid inclusions and fumaroles from Popocatépetl, Colima—Ceboruco volcanoes). While we explain the MORB-like carbon signatures of the DVF samples as the result of the above-mentioned refertilization process, the SCN signatures likely reflect either (i) trapping of isotopically fractionated CO2 derived from magmatic degassing or (ii) a mantle source unaffected by subduction-related crustal carbon recycling.
    Description: Published
    Description: 973645
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Basin and Range province ; Trans-mexican Volcanic Belt ; Mexican mantle xenoliths ; arc lavas ; fluid inclusions ; noble gas isotopes ; CO2 isotopes ; carbon recycling ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-09-14
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Thomas, M., Jensen, F. H., Averly, B., Demartsev, V., Manser, M. B., Sainburg, T., Roch, M. A., & Strandburg-Peshkin, A. A practical guide for generating unsupervised, spectrogram-based latent space representations of animal vocalizations. The Journal of Animal Ecology, 91(8), (2022): 1567– 1581, https://doi.org/10.1111/1365-2656.13754.
    Description: 1. Background: The manual detection, analysis and classification of animal vocalizations in acoustic recordings is laborious and requires expert knowledge. Hence, there is a need for objective, generalizable methods that detect underlying patterns in these data, categorize sounds into distinct groups and quantify similarities between them. Among all computational methods that have been proposed to accomplish this, neighbourhood-based dimensionality reduction of spectrograms to produce a latent space representation of calls stands out for its conceptual simplicity and effectiveness. 2. Goal of the study/what was done: Using a dataset of manually annotated meerkat Suricata suricatta vocalizations, we demonstrate how this method can be used to obtain meaningful latent space representations that reflect the established taxonomy of call types. We analyse strengths and weaknesses of the proposed approach, give recommendations for its usage and show application examples, such as the classification of ambiguous calls and the detection of mislabelled calls. 3. What this means: All analyses are accompanied by example code to help researchers realize the potential of this method for the study of animal vocalizations.
    Description: This work was supported by HFSP Research Grant RGP0051/2019 to ASP, MBM and MAR, and funded by the Deutsche Forschungsgemeinschaft (DFG) under Germany's Excellence Strategy (EXC-2117-422037984). ASP received additional funding from the Gips-Schüle Stiftung, the Zukunftskolleg at the University of Konstanz and the Max-Planck-Institute of Animal Behaviour. VD was funded by the Minerva Stiftung and Alexander von Humboldt Foundation.
    Keywords: animal sounds ; animal vocalizations ; bioacoustics ; call classification ; dimensionality reduction ; spectrogram ; UMAP ; unsupervised learning
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-09-09
    Description: Volcanoes are complex systems that evolve in space and time as a result of their internal dynamics. These internal dynamics span both long and short time scales, reflecting the different steps for the magma to form, accumulate and evolve before being eventually erupted. All of these stages may be influenced by processes external to the volcano, although most of the evidence that has been gathered on this has considered influences on the magmatic fluids stored at crustal depths, or emerging at surface. External forcing acts either through the stress or gravitational fields that may accelerate or slow down the transfer of magma towards the surface. Changing tectonic stresses and Earth tides may induce changes in the dynamical state of volcanoes, ultimately providing the triggers that may lead to eruption. Water, which is ubiquitous on Earth, and present in its different fluid and solid envelopes, appears to play a key role, acting on volcanic systems from pore- to global-scale in various ways (hydrological modulation, ice cap loading), due to its physico-chemical properties. This Research Topic brings together contributions, which provide new constraints and lines of evidence on the nature and variety of external processes influencing activity at quiet, restless and erupting volcanoes.
    Description: Published
    Description: 999214
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: external forcing ; modulation of volcanic processes ; eruption triggering ; periodic variations and behaviors ; short and long time scales ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-08-31
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fay, R., Hamel, S., van de Pol, M., Gaillard, J.-M., Yoccoz, N. G., Acker, P., Authier, M., Larue, B., Le Coeur, C., Macdonald, K. R., Nicol-Harper, A., Barbraud, C., Bonenfant, C., Van Vuren, D. H., Cam, E., Delord, K., Gamelon, M., Moiron, M., Pelletier, F., Rotella, J., Teplitsky, C., Visser, M. E., Wells, C. P., Wheelwright, N. T., Jenouvrier, S., & Saether, B.-E. Temporal correlations among demographic parameters are ubiquitous but highly variable across species. Ecology Letters, 25(7), (2022): 1640-1654, https://doi.org/10.1111/ele.14026.
    Description: Temporal correlations among demographic parameters can strongly influence population dynamics. Our empirical knowledge, however, is very limited regarding the direction and the magnitude of these correlations and how they vary among demographic parameters and species’ life histories. Here, we use long-term demographic data from 15 bird and mammal species with contrasting pace of life to quantify correlation patterns among five key demographic parameters: juvenile and adult survival, reproductive probability, reproductive success and productivity. Correlations among demographic parameters were ubiquitous, more frequently positive than negative, but strongly differed across species. Correlations did not markedly change along the slow-fast continuum of life histories, suggesting that they were more strongly driven by ecological than evolutionary factors. As positive temporal demographic correlations decrease the mean of the long-run population growth rate, the common practice of ignoring temporal correlations in population models could lead to the underestimation of extinction risks in most species.
    Description: This project was funded by the CNRS, including a long-term support by the OSU-OREME. Data collection for Weddell seals was supported by the National Science Foundation, Division of Polar Programs under grant number ANT-1640481 to J.J. Rotella, R.A. Garrott and D.B. Siniff and prior NSF Grants to R. A. Garrott, J. J. Rotella, D. B. Siniff and J. Ward Testa. Stéphanie Jenouvrier acknowledges the support of the NSF 1840058.
    Keywords: capture-recapture ; demographic correlation ; demography ; environmental stochasticity ; slow-fast continuum ; stochastic population dynamics ; temporal covariation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-08-22
    Description: Open conduit volcanoes like Stromboli can display elusive changes in activity before major eruptive events. Starting on December 2020, Stromboli volcano displayed an increasing eruptive activity, that on 19 May 2021 led to a crater-rim collapse, with pyroclastic density currents (PDCs) that spread along the barren NWflank, entered the sea and ran across it for more than 1 km. This episode was followed by lava flow output from the crater rim lasting a few hours, followed by another phase of lava flow in June 2021. These episodes are potentially very dangerous on island volcanoes since a landslide of hot material that turns into a pyroclastic density current and spreads on the sea surface can threaten mariners and coastal communities, as happened at Stromboli on 3 July and 28 August 2019. In addition, on entering the sea, if their volume is large enough, landslides may trigger tsunamis, as occurred at Stromboli on 30 December 2002. In this paper, we present an integration of multidisciplinary monitoring data, including thermal and visible camera images, ground deformation data gathered from GNSS, tilt, strainmeter and GBInSAR, seismicity, SO2 plume and CO2 ground fluxes and thermal data from the ground and satellite imagery, together with petrological analyses of the erupted products compared with samples from previous similar events. We aim at characterizing the preparatory phase of the volcano that began on December 2020 and led to the May–June 2021 eruptive activity, distinguishing this small intrusion of magma from the much greater 2019 eruptive phase, which was fed by gas-rich magma responsible for the paroxysmal explosive and effusive phases of July–August 2019. These complex eruption scenarios have important implications for hazard assessment and the lessons learned at Stromboli volcano may prove useful for other open conduit active basaltic volcanoes.
    Description: This research was funded by the Project FIRSTForecastIng eRuptive activity at Stromboli volcano: Timing, eruptive style, size, intensity, and duration, INGV-Progetto Strategico Dipartimento Vulcani 2019 (Delibera n. 144/2020). This research was funded by the “Presidenza del Consiglio dei Ministri–Dipartimento della Protezione Civile,” through the UniFi-DPC 2019-2021 agreement (Scientific Responsibility: N.C.).
    Description: Published
    Description: 899635
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Stromboli volcano ; multi-disciplinary monitoring data ; crater-rim collapse ; pyroclastic density current ; hazard assessment ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-08-16
    Description: Most volcanoes on the Earth rise from the bottom of seas and oceans. Most of them do not reach the surface of sea and remain hidden to all conventional observations from surface and space. Only some of them rise above the sea level, forming islands and passing from submarine to subaerial volcanism. Volcanic islands develop in virtually all the geodynamic contexts on Earth, from mid-ocean ridges (Iceland), to intraplate (Hawaii), to volcanic arcs (Aeolian Islands). All the liquid-descent evolutive degrees of magma are finally represented, from primitive compositions up to strongly evolved rhyolite, trachyte and phonolite lavas. So, the eruptive styles of these volcanoes range consequently from mild effusions to plinian eruptions.
    Description: Published
    Description: 954902
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: volcanoes ; seafloor ; 04.08. Volcanology ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-08-16
    Description: Italy is the land of iconic volcanoes, whose activity has been witnessed, described and portrayed for centuries. This legacy has greatly contributed to shaping the public perception of volcanoes and their impact, well beyond the national borders. Stories about famous eruptions overlap and nowadays easily mix up with the impressive footage that is readily available from ongoing eruptions worldwide. As a result, the public discourse may flatten the wide spectrum of possible phenomena into an oversimplified sketch of volcanic eruptions and their impact, where all events seem equally probable and look alike. Actual volcanoes differ in size, eruption magnitude, state of activity, eruptive style, geographical position, and each is located within a specific social and cultural context. All these elements combine in defining the consequences of volcanic activity as well as in determining the severity of the damage and the size of the impacted area. How can we convey such a complexity to the general public? Can social media contribute to raise awareness and build a more resilient society? An effective hazard communication should propose a comprehensible yet realistic description of volcanic settings and provide adequate tools to recognize and understand the specific features of each phenomenon and volcanic area. As we write, two Italian volcanoes display persistent eruptive activity, while other two are going through unrest phases that started in 2012, at Campi Flegrei, and in late summer of 2021, at Vulcano Island. Other active volcanoes (Vesuvius, Ischia, Colli Albani, Lipari, and Pantelleria) have been dormant for tens, hundreds, or thousands of years. Communication in these different contexts also require different approaches that take into account the specific needs of local communities. Social media may provide a unique opportunity to quickly share relevant news and information. Yet, this type of communication has its challenges and volcano observatories can rarely rely on expert social media managers. Sharing experiences and lessons learned is a key to ensure the growth of the volcanological community and improve its ability to connect and engage local residents. Here we discuss the online communication strategies implemented by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) since 2018 to inform Internet and social media users about volcanoes, volcanology, and ongoing volcanic activity, both in Italy and abroad. We describe the internal procedures that we developed and practiced and the experience gathered so far, during both quiet periods and a few volcanic crises. Our experience confirms previous indications about the importance of a steady online presence and suggests that public interest is not always easily predictable.
    Description: Published
    Description: 926155
    Description: 2TM. Divulgazione Scientifica
    Description: 3TM. Comunicazione
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-08-15
    Description: The sinking of carbon fixed via net primary production (NPP) into the ocean interior is an important part of marine biogeochemical cycles. NPP measurements follow a log-normal probability distribution, meaning NPP variations can be simply described by two parameters despite NPP's complexity. By analyzing a global database of open ocean particle fluxes, we show that this log-normal probability distribution propagates into the variations of near-seafloor fluxes of particulate organic carbon (POC), calcium carbonate, and opal. Deep-sea particle fluxes at subtropical and temperate time-series sites follow the same log-normal probability distribution, strongly suggesting the log-normal description is robust and applies on multiple scales. This log-normality implies that 29% of the highest measurements are responsible for 71% of the total near-seafloor POC flux. We discuss possible causes for the dampening of variability from NPP to deep-sea POC flux, and present an updated relationship predicting POC flux from mineral flux and depth.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-08-15
    Description: The attenuation coefficient b is one of the most common ways to describe how strong the carbon flux is attenuated throughout the water column. Therefore, b is an essential input variable in many carbon flux and climate models. Marsay et al. (2015, https://doi.org/10.1073/pnas.1415311112) proposed that the median surface water temperature (0–500 m) may be a predictor of b, but our observations from Arctic waters challenge this hypothesis. We found a highly variable attenuation coefficient (b = 0.43–1.84) in cold Arctic waters (〈4.1 °C). Accordingly, we suggest that water temperature is not a globally valid predictor of the attenuation coefficient. We advocate instead that the phytoplankton composition and especially the relative abundance of diatoms can be used to parametrize the carbon flux attenuation in local and global carbon flux models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-07-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Carson, M., Doberneck, D., Hart, Z., Kelsey, H., Pierce, J., Porter, D., Richlen, M., Schandera, L., & Triezenberg, H. A strategic framework for community engagement in oceans and human health, Community Science, 1(1), (2022): e2022CSJ000001, https://doi.org/10.1029/2022csj000001.
    Description: Over the past two decades, scientific research on the connections between the health and resilience of marine ecosystems and human health, well-being, and community prosperity has expanded and evolved into a distinct “metadiscipline” known as Oceans and Human Health (OHH), recognized by the scientific community as well as policy makers. OHH goals are diverse and seek to improve public health outcomes, promote sustainable use of aquatic systems and resources, and strengthen community resilience. OHH research has historically included some level of community outreach and partner involvement; however, the increasing disruption of aquatic environments and urgency of public health impacts calls for a more systematic approach to effectively identify and engage with community partners to achieve project goals and outcomes. Herein, we present a strategic framework developed collaboratively by community engagement personnel from the four recently established U.S. Centers for Oceans and Human Health (COHH). This framework supports researchers in defining levels of community engagement and in aligning partners, purpose, activities, and approaches intentionally in their community engagement efforts. Specifically, we describe: (a) a framework for a range of outreach and engagement approaches; (b) the need for identifying partners, purpose, activities, and approaches; and (c) the importance of making intentional alignment among them. Misalignment across these dimensions may lead to wasting time or resources, eroding public trust, or failing to achieve intended outcomes. We illustrate the framework with examples from current COHH case studies and conclude with future directions for strategic community engagement in OHH and other environmental health contexts.
    Description: This publication was prepared by Heather Triezenberg and the team under award NA180AR4170102 from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce through the Regents of the University of Michigan, and supported by funding from the NIH (1P01ES028939-01) and the NSF (1840715) to the Bowling Green State University Great Lakes Center for Fresh Waters and Human Health. Funding for M. L. Richlen was provided by the NSF (OCE1840381) and NIH (1P01-ES028938-01) through the Woods Hole Center for Oceans and Human Health. Research at the Center for Oceans and Human Health and Climate Change Interactions (OHHC2I) at the University of South Carolina is supported by the NIH Award Number P01ES028942, granted to Principal Investigators Geoffrey Scott and Paul Sandifer. M. A. Carson, Z. Hart, H. Kelsey, D. E. Porter, and L. Schandera are Community Engagement Core investigators at this Center. Funding for J. Pierce is provided by the NSF (grant number OCE-1841811) and the NIH (P01ES028949) through the Greater Caribbean Center for Ciguatera Research at the Florida Gulf Coast University.
    Keywords: harmful algal blooms ; human health ; pollutants ; ocean health
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-07-24
    Description: The availability of dissolved iron (dFe) exerts an important control on primary production. Recent ocean observation programs have provided information on dFe in many parts of the ocean, but knowledge is still limited concerning the rates of processes that control the concentrations and cycling of dFe in the ocean and hence the role of dFe as a determinant of global primary production. We constructed a three-dimensional gridded dataset of oceanic dFe concentrations by using both observations and a simple model of the iron cycle, and estimated the difference of processes among the ocean basins in controlling the dFe distributions. A Green's function approach was used to integrate the observations and the model. The reproduced three-dimensional dFe distribution indicated that iron influx from aeolian dust and from shelf sediment were 7.6 Gmol yr and 4.4 Gmol yr in the Atlantic Ocean and 0.4 Gmol yr and 4.1 Gmol yr in the Pacific Ocean. The residence times were estimated to be 12.2 years in the Atlantic and 80.4 years in the Pacific. These estimates imply large differences in the cycling of dFe between the two ocean basins that would need to be taken into consideration when projecting future iron biogeochemical cycling under different climate change scenarios. Although there is some uncertainty in our estimates, global estimates of iron cycle characteristics based on this approach can be expected to enhance our understanding of the material cycle and hence of the current and future rates of marine primary production.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-07-20
    Description: The Antarctic krill (Euphausia superba Dana) is a keystone species in the Southern Ocean that uses an arsenal of hydrolases for biomacromolecule decomposition to effectively digest its omnivorous diet. The present study builds on a hybrid-assembled transcriptome (13,671 ORFs) combined with comprehensive proteome profiling. The analysis of individual krill compartments allowed detection of significantly more different proteins compared to that of the entire animal (1,464 vs. 294 proteins). The nearby krill sampling stations in the Bransfield Strait (Antarctic Peninsula) yielded rather uniform proteome datasets. Proteins related to energy production and lipid degradation were particularly abundant in the abdomen, agreeing with the high energy demand of muscle tissue. A total of 378 different biomacromolecule hydrolysing enzymes were detected, including 250 proteases, 99 CAZymes, 14 nucleases and 15 lipases. The large repertoire in proteases is in accord with the protein-rich diet affiliated with E. superba’s omnivorous lifestyle and complex biology. The richness in chitin-degrading enzymes allows not only digestion of zooplankton diet, but also the utilization of the discharged exoskeleton after moulting.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-07-10
    Description: The bacterial communities of Caulerpa lentillifera were studied during an outbreak of an unknown disease in a sea grape farm from Vietnam. Clear differences between healthy and diseased cases were observed at the order, genus, and Operational Taxonomic Unit (OTU) level. A richer diversity was detected in the diseased thalli of C. lentillifera, as well as the dominance of the orders Flavobacteriales (phylum Bacteroidetes) and Phycisphaerales (Planctomycetes). Aquibacter, Winogradskyella, and other OTUs of the family Flavobacteriaceae were hypothesized as detrimental bacteria, this family comprises some well-known seaweed pathogens. Phycisphaera together with other Planctomycetes and Woeseia were probably saprophytes of C. lentillifera. The Rhodobacteraceae and Rhodovulum dominated the bacterial community composition of healthy C. lentillifera. The likely beneficial role of Bradyrhizobium, Paracoccus, and Brevundimonas strains on nutrient cycling and phytohormone production was discussed. The bleaching of diseased C. lentillifera might not only be associated with pathogens but also with an oxidative response. This study offers pioneering insights on the co-occurrence of C. lentillifera-attached bacteria, potential detrimental or beneficial microbes, and a baseline for understanding the C. lentillifera holobiont. Further applied and basic research is urgently needed on C. lentillifera microbiome, shotgun metagenomic, metatranscriptomic, and metabolomic studies as well as bioactivity assays are recommended.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-07-08
    Description: Volcanic and Seismic source Modeling (VSM) is an open-source Python tool to model ground deformation. VSM allows the user to choose one or more deformation sources of various shapes as a forward model among sphere, spheroid, ellipsoid, rectangular dislocation, and sill. It supports multiple datasets from most satellite and terrestrial geodetic techniques: Interferometric SAR, GNSS, leveling, Electronic Distance Measurements, tiltmeters, and strainmeters. Two sampling algorithms are available: one is a global optimization algorithm based on the Voronoi cells and yields the best-fitting solution and the second follows a probabilistic approach to parameters estimation based on the Bayes theorem and the Markov chain Monte Carlo method. VSM can be executed as Python script, in Jupyter Notebook environments, or by its Graphical User Interface. Its broad applications range from high-level research to teaching, from single studies to near real-time hazard estimates. Potential users range from early-career scientists to experts. It is freely available on GitHub (https://github.com/EliTras/VSM) and is accompanied by step-by-step documentation in Jupyter Notebooks. This study presents the functionalities of VSM and test cases to describe its use and comparisons among possible settings.
    Description: This work was jointly supported by the “Research Lifecycle Management technologies for Earth Science Communities and Copernicus users in EOSC” Reliance project funded by the European Commission’s H2020 2021-2022 (Grant Agreement no. 101017501); Pianeta Dinamico—Working Earth project (2020-2030) funded by the Italian Ministry of University and Research (Decree no. 1118 04/12/2019); and “Linking Surface Observables to sub-Volcanic Plumbing-System: A Multidisciplinary Approach for Eruption Forecasting at Campi Flegrei Caldera (Italy)” LOVE-CF (2020-2023) project funded by INGV (Internal Register no. 1865 17/07/2020).
    Description: Published
    Description: 917222
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: analytical model ; geodetic data ; natural hazards ; open science ; inverse theory ; InSAR ; 04.08. Volcanology ; 04.03. Geodesy ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-07-05
    Description: In this work we present and discuss new geodetic velocity and strain-rate fields for the Euro-Mediterranean region obtained from the analysis of continuous GNSS stations. We describe the procedures and methods adopted to analyze raw GPS observations from 〉4000 stations operating in the Euro-Mediterranean, Eurasian and African regions. The goal of this massive analysis is the monitoring of Earth’s crust deformation in response to tectonic processes, including plate- and micro-plate kinematics, geodynamics, active tectonics, earthquake-cycle, but also the study of a wide range of geophysical processes, natural and anthropogenic subsidence, sea-level changes, and hydrology. We describe the computational infrastructure, the methods and procedures adopted to obtain a threedimensional GPS velocity field, which is used to obtain spatial velocity gradients and horizontal strain-rates. We then focus on the Euro-Mediterranean region, where we discuss the horizontal and vertical velocities, and spatial velocity gradients, obtained from stations that have time-series lengths longer than 6 and 7 years, which are found to be the minimum spans to provide stable and reliable velocity estimates in the horizontal and vertical components, respectively. We compute the horizontal strain-rate field and discuss deformation patterns and kinematics along the major seismogenic belts of the Nubia-Eurasia plate boundary zone in the Mediterranean region. The distribution and density of continuous GNSS stations in our geodetic solution allow us to estimate the strain-rate field at a spatial scale of ~27 km over a large part of southern Europe, with the exclusion of the Dinaric mountains and Balkans.
    Description: The GNSS data analysis center described in this work is realized and maintained by different founding resources and projects, including EPOS-MIUR, the Department of Italian Civil Protection and Istituto Nazionale di Geofisica e Vulcanologia agreement (Annex A), Programma Operativo Nazionale (PON) GRINT, ILG Minerbio, MISE DGISSEGINGV 2020 agreement, Med-MFC. FP is supported by the project MUSE, funded by the Istituto Nazionale di Geofisica e Vulcanologia (INGV), within which the re-analysis discussed in this work has been developed.
    Description: Published
    Description: 907897
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: GNSS data processing ; time series analysis ; horizontal strain rates ; vertical ground velocities ; Euro- Mediterranean region
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-07-04
    Description: Collapse of permafrost coasts delivers large quantities of particulate organic carbon (POC) to arctic coastal areas. With rapidly‐changing environmental conditions, sediment and organic carbon (OC) mobilization and transport pathways are also changing. Here, we assess the sources and sinks of POC in the highly‐dynamic nearshore zone of Herschel Island ‐ Qikiqtaruk (Yukon, Canada). Our results show that POC concentrations sharply decrease, from 15.9 to 0.3 mg L‐1, within the first 100 – 300 meters offshore. Simultaneously, radiocarbon ages of POC drop from 16,400 to 3,600 14C years, indicating rapid settling of old permafrost POC to underlying sediments. This suggests that permafrost OC is, apart from a very narrow resuspension zone (〈5 m water depth), predominantly deposited in nearshore sediments. While long‐term storage of permafrost OC in marine sediments potentially limits biodegradation and its subsequent release as greenhouse gas, resuspension of fine‐grained, OC‐rich sediments in the nearshore zone potentially enhances OC turnover.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-06-29
    Description: Rapid and profound climatic and environmental changes have been predicted for the Antarctic Peninsula with so far unknown impact on the biogeochemistry of the continental shelves. In this study, we investigate benthic carbon sedimentation, remineralization and iron cycling using sediment cores retrieved on a 400 mile transect with contrasting sea ice conditions along the eastern shelf of the Antarctic Peninsula. Sediments at comparable water depths of 330-450 m showed sedimentation and remineralization rates of organic carbon, ranging from 2.5-13 and 1.8-7.2 mmol C m-2 d-1, respectively. Both rates were positively correlated with the occurrence of marginal sea ice conditions (5-35% ice cover) along the transect, suggesting a favorable influence of the corresponding light regime and water column stratification on algae growth and sedimentation rates. From south to north, the burial efficiency of organic carbon decreased from 58% to 27%, while bottom water temperatures increased from -1.9 to -0.1 °C. Net iron reduction rates, as estimated from pore-water profiles of dissolved iron, were significantly correlated with carbon degradation rates and contributed 0.7-1.2% to the total organic carbon remineralization. Tightly coupled phosphate-iron recycling was indicated by significant covariation of dissolved iron and phosphate concentrations, which almost consistently exhibited P/Fe flux ratios of 0.26. Iron efflux into bottom waters of 0.6-4.5 µmol Fe m-2 d-1 was estimated from an empirical model. Despite the deep shelf waters, a clear bentho-pelagic coupling is indicated, shaped by the extent and duration of marginal sea ice conditions during summer, and likely to be affected by future climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Oceans, Wiley, 126(12), pp. e2021JC017633, ISSN: 0148-0227
    Publication Date: 2022-06-29
    Description: The transient climate response (TCR) is 20% higher in the Alfred Wegener Institute Climate Model (AWI-CM) compared to the Max Planck Institute Earth System Model (MPI-ESM) whereas the equilibrium climate sensitivity (ECS) is by up to 10% higher in AWI-CM. These results are largely independent of the two considered model resolutions for each model. The two coupled CMIP6 models share the same atmosphere-land component ECHAM6.3 developed at the Max Planck Institute for Meteorology (MPI-M). However, ECHAM6.3 is coupled to two different ocean models, namely the MPIOM sea ice-ocean model developed at MPI-M and the FESOM sea ice-ocean model developed at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI). A reason for the different TCR is related to ocean heat uptake in response to greenhouse gas forcing. Specifically, AWI-CM simulations show stronger surface heating than MPI-ESM simulations while the latter accumulate more heat in the deeper ocean. The vertically integrated ocean heat content is increasing slower in AWI-CM model configurations compared to MPI-ESM model configurations in the high latitudes. Weaker vertical mixing in AWI-CM model configurations compared to MPI-ESM model configurations seems to be key for these differences. The strongest difference in vertical ocean mixing occurs inside the Weddell and Ross Gyres and the northern North Atlantic. Over the North Atlantic, these differences materialize in a lack of a warming hole in AWI-CM model configurations and the presence of a warming hole in MPI-ESM model configurations. All these differences occur largely independent of the considered model resolutions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-06-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Suca, J., Ji, R., Baumann, H., Pham, K., Silva, T., Wiley, D., Feng, Z., & Llopiz, J. Larval transport pathways from three prominent sand lance habitats in the Gulf of Maine. Fisheries Oceanography, 31(3), (2022): 333– 352, https://doi.org/10.1111/fog.12580.
    Description: Northern sand lance (Ammodytes dubius) are among the most critically important forage fish throughout the Northeast US shelf. Despite their ecological importance, little is known about the larval transport of this species. Here, we use otolith microstructure analysis to estimate hatch and settlement dates of sand lance and then use these measurements to parametrize particle tracking experiments to assess the source–sink dynamics of three prominent sand lance habitats in the Gulf of Maine: Stellwagen Bank, the Great South Channel, and Georges Bank. Our results indicate the pelagic larval duration of northern sand lance lasts about 2 months (range: 50–84 days) and exhibit a broad range of hatch and settlement dates. Forward and backward particle tracking experiments show substantial interannual variability, yet suggest transport generally follows the north to south circulation in the Gulf of Maine region. We find that Stellwagen Bank is a major source of larvae for the Great South Channel, while the Great South Channel primarily serves as a sink for larvae from Stellwagen Bank and Georges Bank. Retention is likely the primary source of larvae on Georges Bank. Retention within both Georges Bank and Stellwagen Bank varies interannually in response to changes in local wind events, while the Great South Channel only exhibited notable retention in a single year. Collectively, these results provide a framework to assess population connectivity among these sand lance habitats, which informs the species' recruitment dynamics and impacts its vulnerability to exploitation.
    Description: Funding came from the National Oceanic and Atmospheric Administration Woods Hole Sea Grant Program (Woods Hole Sea Grant, Woods Hole Oceanographic Institution, NA18OAR4170104, Project No. R/O-57; RJ, HB, and JKL), the Bureau of Ocean Energy Management (IA agreement M17PG0019; DNW, HB, and JKL) including a subaward via the National Marine Sanctuary Foundation (18-11-B-203), and a National Science Foundation Long-term Ecological Research grant for the Northeast US Shelf Ecosystem (OCE 1655686; RJ and JKL). JJS was funded by the National Science Foundation Graduate Research Fellowship program.
    Keywords: Gulf of Maine ; larval retention ; otolith microstructure ; particle tracking ; population connectivity ; sand lance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-06-27
    Description: Studying a large number of volcanic eruptions is a way to decipher general characteristics related to volcano dynamics but also on external forcing influencing it, such as solid Earth and ocean tides. Many studies have tackled this tidal influence on the onset of volcanic eruptions and more generally, on volcanic activity. However, the interplay between this quasi-permanent forcing and volcanic systems is still poorly understood. With the present study, we propose to consider a global viewpoint to address this interaction. We analyzed the number of monthly volcanic eruptions and the global mean sea level between 1880 and 2009 using the Singular Spectrum Analysis time-series analysis technique to evaluate the existence of common periodicities. We found multi-decadal components of similar periodicities present in both time-series which we link to those already recognized in the polar motion. Its multi-decadal variations result in a mass reorganization in the oceans whose associated stress changes may impact processes generating volcanic eruptions worldwide. Our results show the influence of global processes on volcanic activity and open many questions to further investigate these multi-scale interactions.
    Description: Published
    Description: 845511
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: external forcing ; volcanic activity ; global mean sea level ; solid Earth and ocean tides ; eruption triggering ; interaction external/internal processes ; singular spectrum analysis ; polar motion ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-06-24
    Description: A variety of tectonic processes spread along the circum-Mediterranean orogenic belts driven by the convergence of major plates, episodes of slab retreat and lateral and vertical mantle flows. Here, we provide an updated view of crustal stress and strain-rate fields for the Albanides belt in the eastern Adria-Eurasia convergence boundary. We framed a new geodetic-based source model for the 2019 Mw6.4 Durrёs earthquake in light of the regional deformation, propending for a transpressional west-dipping seismogenic fault. Our results highlight a fault-scale complexity which mirrors the long-time scale deformation of the Albanides plate boundary, where the rotation induced by the fast Hellenic rollback is accommodated also by transpression on inherited structures.
    Description: Published
    Description: 244–252
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-06-22
    Description: Silicic calderas are volcanic systems whose unrest evolution is more unpredictable than other volcano types because they often do not culminate in an eruption. Their complex structure strongly influences the post-collapse volcano-tectonic evolution, usually coupling volcanism and ground deformation. Among such volcanoes, the Campi Flegrei caldera (southern Italy) is one of the most studied. Significant long- and short-term ground deformations characterize this restless volcano. Several studies performed on the marinecontinental succession exposed in the central sector of the Campi Flegrei caldera provided a reconstruction of ground deformation during the last 15 kyr. However, considering that over one-third of the caldera is presently submerged beneath the Pozzuoli Gulf, a comprehensive stratigraphic on-land-offshore framework is still lacking. This study aims at reconstructing the offshore succession through analysis of high-resolution single and multichannel reflection seismic profiles and correlates the resulting seismic stratigraphic framework with the stratigraphy reconstructed on-land. Results provide new clues on the causative relations between the intra-caldera marine and volcaniclastic sedimentation and the alternating phases of marine transgressions and regressions originated by the interplay between ground deformation and sea-level rise. The volcano-tectonic reconstruction, provided in this work, connects the major caldera floor movements to the large Plinian eruptions of Pomici Principali (12 ka) and Agnano Monte Spina (4.55 ka), with the onset of the first post-caldera doming at ~10.5 ka. We emphasize that ground deformation is usually coupled with volcanic activity, which shows a self-similar pattern, regardless of its scale. Thus, characterizing the long-term deformation history becomes of particular interest and relevance for hazard assessment and definition of future unrest scenarios.
    Description: Published
    Description: 855-882
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Keywords: offshore stratigraphy ; seismic units ; La Starza succession ; volcanism, ; 04.08. Volcanology ; 04.04. Geology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-06-22
    Description: Thirteen samples of mortar collected from different masonry structures of the Curia of Pompey the Great and from three mixtilinear basins located within the Sacred Area of Largo Argentina were studied. Despite the use of the same volcanic deposit, known as "Pozzolane Rosse", to produce the fine aggregate in all these mortars, it was possible to highlight some distinctive features through the combination of geochemical analyses on selected trace elements and petrographic analysis under an optical microscope, allowing us to distinguish among the three groups of mortars. These types of mortars reflect a perfect coincidence between the diversity of the volcanic materials used and the different construction phases identified and documented by the analysis of the stratigraphic units: a first construction phase of Pompeian age, a second one of Augustan age and, finally, one of the medieval period. Furthermore, it was possible to ascertain two phases of construction of the basins, the second coeval with the interventions of the Augustan period. Finally, this study increases the knowledge on the methods of exploitation and selection of volcanic materials used to produce mortars in Roman times, identifying additional elements useful to establish their origin and chronology of use.
    Description: Published
    Description: 597-610
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-06-17
    Description: Sea wave monitoring is key in many applications in oceanography such as the validation of weather and wave models. Conventional in situ solutions are based on moored buoys whose measurements are often recognized as a standard. However, being exposed to a harsh environment, they are not reliable, need frequent maintenance, and the datasets feature many gaps. To overcome the previous limitations, we propose a system including a buoy, a micro-seismic measuring station, and a machine learning algorithm. The working principle is based on measuring the micro-seismic signals generated by the sea waves. Thus, the machine learning algorithm will be trained to reconstruct the missing buoy data from the micro-seismic data. As the micro-seismic station can be installed indoor, it assures high reliability while the machine learning algorithm provides accurate reconstruction of the missing buoy data. In this work, we present the methods to process the data, develop and train the machine learning algorithm, and assess the reconstruction accuracy. As a case of study, we used experimental data collected in 2014 from the Northern Tyrrhenian Sea demonstrating that the data reconstruction can be done both for significant wave height and wave period. The proposed approach was inspired from Data Science, whose methods were the foundation for the new solutions presented in this work. For example, estimating the period of the sea waves, often not discussed in previous works, was relatively simple with machine learning. In conclusion, the experimental results demonstrated that the new system can overcome the reliability issues of the buoy keeping the same accuracy.
    Description: Assist in Gravitation and Instrumentation srl Istituto Nazionale di Geofisica e Vulcanologia
    Description: Published
    Description: 798167
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Keywords: sea swell ; machine learning ; ocean waves ; micro-seismic data ; sea state ; sea wave period ; buoy ; Marine Science ; Oceanography
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jenouvrier, S., Judy, C.-C., Wolf, S., Holland, M., Labrousse, S., LaRue, M., Wienecke, B., Fretwell, P., Barbraud, C., Greenwald, N., Stroeve, J., & Trathan, P. N. The call of the emperor penguin: legal responses to species threatened by climate change. Global Change Biology, 27, (2021): 5008– 5029, https://doi.org/10.1111/gcb.15806.
    Description: Species extinction risk is accelerating due to anthropogenic climate change, making it urgent to protect vulnerable species through legal frameworks in order to facilitate conservation actions that help mitigate risk. Here, we discuss fundamental concepts for assessing climate change risks to species using the example of the emperor penguin (Aptenodytes forsteri), currently being considered for protection under the US Endangered Species Act (ESA). This species forms colonies on Antarctic sea ice, which is projected to significantly decline due to ongoing greenhouse gas (GHG) emissions. We project the dynamics of all known emperor penguin colonies under different GHG emission scenarios using a climate-dependent meta-population model including the effects of extreme climate events based on the observational satellite record of colonies. Assessments for listing species under the ESA require information about how species resiliency, redundancy and representation (3Rs) will be affected by threats within the foreseeable future. Our results show that if sea ice declines at the rate projected by climate models under current energy system trends and policies, the 3Rs would be dramatically reduced and almost all colonies would become quasi-extinct by 2100. We conclude that the species should be listed as threatened under the ESA.
    Description: We acknowledge support of NASA (80NSSC20K1289) to SJ, MH, and of NSF—OPP (1744794) to SJ, ML.
    Keywords: climate risk assessments ; Endangered Species Act ; foreseeable future ; population projections ; resiliency, redundancy and representation (3Rs) ; sea ice projections ; species distribution ; treatment of scientific uncertainty
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-05-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jenouvrier, S., Long, M. C., Coste, C. F. D., Holland, M., Gamelon, M., Yoccoz, N., & Saether, B.-E. Detecting climate signals in populations across life histories. Global Change Biology, 28, (2022): 2236– 2258, https://doi.org/10.1111/gcb.16041.
    Description: Climate impacts are not always easily discerned in wild populations as detecting climate change signals in populations is challenged by stochastic noise associated with natural climate variability, variability in biotic and abiotic processes, and observation error in demographic rates. Detection of the impact of climate change on populations requires making a formal distinction between signals in the population associated with long-term climate trends from those generated by stochastic noise. The time of emergence (ToE) identifies when the signal of anthropogenic climate change can be quantitatively distinguished from natural climate variability. This concept has been applied extensively in the climate sciences, but has not been explored in the context of population dynamics. Here, we outline an approach to detecting climate-driven signals in populations based on an assessment of when climate change drives population dynamics beyond the envelope characteristic of stochastic variations in an unperturbed state. Specifically, we present a theoretical assessment of the time of emergence of climate-driven signals in population dynamics (ToEpop). We identify the dependence of (ToEpop)on the magnitude of both trends and variability in climate and also explore the effect of intrinsic demographic controls on (ToEpop). We demonstrate that different life histories (fast species vs. slow species), demographic processes (survival, reproduction), and the relationships between climate and demographic rates yield population dynamics that filter climate trends and variability differently. We illustrate empirically how to detect the point in time when anthropogenic signals in populations emerge from stochastic noise for a species threatened by climate change: the emperor penguin. Finally, we propose six testable hypotheses and a road map for future research.
    Description: We acknowledge the support of NASA 80NSSC20K1289 to SJ, ML, and MH; NSF OPP 1744794 to SJ and NSF OPP 2037561 to SJ and MH.
    Keywords: climate change ; emperor penguin ; life histories ; population trend ; population variability ; signal to noise ; time of emergence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sequeira, A. M. M., O'Toole, M., Keates, T. R., McDonnell, L. H., Braun, C. D., Hoenner, X., Jaine, F. R. A., Jonsen, I. D., Newman, P., Pye, J., Bograd, S. J., Hays, G. C., Hazen, E. L., Holland, M., Tsontos, V. M., Blight, C., Cagnacci, F., Davidson, S. C., Dettki, H., Duarte, C. M., Dunn, D. C., Eguiluz, V. M., Fedak, M., Gleiss, A. C., Hammerschlag, N., Hindell, M. A., Holland, K., Janekovic, I., McKinzie, M. K., Muelbert, M. M. C., Pattiaratchi, C., Rutz, C., Sims, D. W., Simmons, S. E., Townsend, B., Whoriskey, F., Woodward, B., Costa, D. P., Heupel, M. R., McMahon, C. R., Harcourt, R., & Weise, M. A standardisation framework for bio-logging data to advance ecological research and conservation. Methods in Ecology and Evolution, 12, (2021): 996–1007, https://doi.org/10.1111/2041-210X.13593.
    Description: 1. Bio-logging data obtained by tagging animals are key to addressing global conservation challenges. However, the many thousands of existing bio-logging datasets are not easily discoverable, universally comparable, nor readily accessible through existing repositories and across platforms, slowing down ecological research and effective management. A set of universal standards is needed to ensure discoverability, interoperability and effective translation of bio-logging data into research and management recommendations. 2. We propose a standardisation framework adhering to existing data principles (FAIR: Findable, Accessible, Interoperable and Reusable; and TRUST: Transparency, Responsibility, User focus, Sustainability and Technology) and involving the use of simple templates to create a data flow from manufacturers and researchers to compliant repositories, where automated procedures should be in place to prepare data availability into four standardised levels: (a) decoded raw data, (b) curated data, (c) interpolated data and (d) gridded data. Our framework allows for integration of simple tabular arrays (e.g. csv files) and creation of sharable and interoperable network Common Data Form (netCDF) files containing all the needed information for accuracy-of-use, rightful attribution (ensuring data providers keep ownership through the entire process) and data preservation security. 3. We show the standardisation benefits for all stakeholders involved, and illustrate the application of our framework by focusing on marine animals and by providing examples of the workflow across all data levels, including filled templates and code to process data between levels, as well as templates to prepare netCDF files ready for sharing. 4. Adoption of our framework will facilitate collection of Essential Ocean Variables (EOVs) in support of the Global Ocean Observing System (GOOS) and inter-governmental assessments (e.g. the World Ocean Assessment), and will provide a starting point for broader efforts to establish interoperable bio-logging data formats across all fields in animal ecology.
    Description: We are thankful to ONR and UWA OI for funding the workshop, and to ARC for DP210103091. A.M.M.S. was funded by a 2020 Pew Fellowship in Marine Conservation, and also supported by AIMS. C.R. was the recipient of a Radcliffe Fellowship at the Radcliffe Institute for Advanced Study, Harvard University.
    Keywords: bio-logging template ; data accessibility and interoperability ; data standards ; metadata templates ; movement ecology ; sensors ; telemetry ; tracking
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Long, M. H., Rheuban, J. E., McCorkle, D. C., Burdige, D. J., & Zimmerman, R. C. Closing the oxygen mass balance in shallow coastal ecosystems. Limnology and Oceanography, 64(6), (2019): 2694-2708, doi: 10.1002/lno.11248.
    Description: The oxygen concentration in marine ecosystems is influenced by production and consumption in the water column and fluxes across both the atmosphere–water and benthic–water boundaries. Each of these fluxes has the potential to be significant in shallow ecosystems due to high fluxes and low water volumes. This study evaluated the contributions of these three fluxes to the oxygen budget in two contrasting ecosystems, a Zostera marina (eelgrass) meadow in Virginia, U.S.A., and a coral reef in Bermuda. Benthic oxygen fluxes were evaluated by eddy covariance. Water column oxygen production and consumption were measured using an automated water incubation system. Atmosphere–water oxygen fluxes were estimated by parameterizations based on wind speed or turbulent kinetic energy dissipation rates. We observed significant contributions of both benthic fluxes and water column processes to the oxygen mass balance, despite the often‐assumed dominance of the benthic communities. Water column rates accounted for 45% and 58% of the total oxygen rate, and benthic fluxes accounted for 23% and 39% of the total oxygen rate in the shallow (~ 1.5 m) eelgrass meadow and deeper (~ 7.5 m) reef site, respectively. Atmosphere–water fluxes were a minor component at the deeper reef site (3%) but a major component at the shallow eelgrass meadow (32%), driven by diel changes in the sign and strength of atmosphere–water gradient. When summed, the measured benthic, atmosphere–water, and water column rates predicted, with 85–90% confidence, the observed time rate of change of oxygen in the water column and provided an accurate, high temporal resolution closure of the oxygen mass balance.
    Description: This work was substantially improved by comments from two anonymous reviewers. We thank Victoria Hill, David Ruble, Jeremy Bleakney, and Brian Collister for assistance in the field and the staff of the Bermuda Institute of Ocean Sciences and the Anheuser‐Busch Coastal Research Center for logistical support. This work was supported by NSF OCE grants 1657727 (to M.H.L. and D.C.M.), 1635403 (to R.C.Z. and D.J.B.), and 1633951 (to M.H.L.).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems XX (2019): Tyne, R. L., Barry, P. H., Hillegonds, D. J., Hunt, A. G., Kulongoski, J. T., Stephens, M. J., Byrne, D. J., & Ballentine, C. J. A novel method for the extraction, purification, and characterization of noble gases in produced fluids. Geochemistry Geophysics Geosystems, 20, (2019): 5588-5597, doi: 10.1029/2019GC008552.
    Description: Hydrocarbon systems with declining or viscous oil production are often stimulated using enhanced oil recovery (EOR) techniques, such as the injection of water, steam, and CO2, in order to increase oil and gas production. As EOR and other methods of enhancing production such as hydraulic fracturing have become more prevalent, environmental concerns about the impact of both new and historical hydrocarbon production on overlying shallow aquifers have increased. Noble gas isotopes are powerful tracers of subsurface fluid provenance and can be used to understand the impact of EOR on hydrocarbon systems and potentially overlying aquifers. In oil systems, produced fluids can consist of a mixture of oil, water and gas. Noble gases are typically measured in the gas phase; however, it is not always possible to collect gases and therefore produced fluids (which are water, oil, and gas mixtures) must be analyzed. We outline a new technique to separate and analyze noble gases in multiphase hydrocarbon‐associated fluid samples. An offline double capillary method has been developed to quantitatively isolate noble gases into a transfer vessel, while effectively removing all water, oil, and less volatile hydrocarbons. The gases are then cleaned and analyzed using standard techniques. Air‐saturated water reference materials (n = 24) were analyzed and results show a method reproducibility of 2.9% for 4He, 3.8% for 20Ne, 4.5% for 36Ar, 5 .3% for 84Kr, and 5.7% for 132Xe. This new technique was used to measure the noble gas isotopic compositions in six produced fluid samples from the Fruitvale Oil Field, Bakersfield, California.
    Description: This work was supported by a Natural Environment Research Council studentship to R. L. Tyne (grant NE/L002612/1) and the USGS (grant 15‐080‐250), as part of the California State Water Resource Control Board's, Oil and Gas Regional Groundwater Monitoring Program (RMP). Data can be accessed in Tables 1 and 2 and in the data release from Gannon et al. (2018). We thank the owners and operators at the Fruitvale Oil Field for access to wells. We thank Stuart Gilfillan and an anonymous reviewer for their constructive reviews as well as Marie Edmonds for editorial handling. We also thank Matthew Landon and Myles Moor from the USGS who provided helpful comments on an earlier version of the manuscript. Any use of trade, firm or product names are for descriptive purposes only and do not imply endorsement by the U.S. Government.
    Description: 2020-04-14
    Keywords: Noble Gas ; Methods ; Produced Fluids
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chapman, A. S. A., Beaulieu, S. E., Colaco, A., Gebruk, A. V., Hilario, A., Kihara, T. C., Ramirez-Llodra, E., Sarrazin, J., Tunnicliffe, V., Amon, D. J., Baker, M. C., Boschen-Rose, R. E., Chen, C., Cooper, I. J., Copley, J. T., Corbari, L., Cordes, E. E., Cuvelier, D., Duperron, S., Du Preez, C., Gollner, S., Horton, T., Hourdez, S., Krylova, E. M., Linse, K., LokaBharathi, P. A., Marsh, L., Matabos, M., Mills, S. W., Mullineaux, L. S., Rapp, H. T., Reid, W. D. K., Rybakova (Goroslavskaya), E., Thomas, T. R. A., Southgate, S. J., Stohr, S., Turner, P. J., Watanabe, H. K., Yasuhara, M., & Bates, A. E. sFDvent: a global trait database for deep-sea hydrothermal-vent fauna. Global Ecology and Biogeography, 28(11), (2019): 1538-1551, doi: 10.1111/geb.12975.
    Description: Motivation Traits are increasingly being used to quantify global biodiversity patterns, with trait databases growing in size and number, across diverse taxa. Despite growing interest in a trait‐based approach to the biodiversity of the deep sea, where the impacts of human activities (including seabed mining) accelerate, there is no single repository for species traits for deep‐sea chemosynthesis‐based ecosystems, including hydrothermal vents. Using an international, collaborative approach, we have compiled the first global‐scale trait database for deep‐sea hydrothermal‐vent fauna – sFDvent (sDiv‐funded trait database for the Functional Diversity of vents). We formed a funded working group to select traits appropriate to: (a) capture the performance of vent species and their influence on ecosystem processes, and (b) compare trait‐based diversity in different ecosystems. Forty contributors, representing expertise across most known hydrothermal‐vent systems and taxa, scored species traits using online collaborative tools and shared workspaces. Here, we characterise the sFDvent database, describe our approach, and evaluate its scope. Finally, we compare the sFDvent database to similar databases from shallow‐marine and terrestrial ecosystems to highlight how the sFDvent database can inform cross‐ecosystem comparisons. We also make the sFDvent database publicly available online by assigning a persistent, unique DOI. Main types of variable contained Six hundred and forty‐six vent species names, associated location information (33 regions), and scores for 13 traits (in categories: community structure, generalist/specialist, geographic distribution, habitat use, life history, mobility, species associations, symbiont, and trophic structure). Contributor IDs, certainty scores, and references are also provided. Spatial location and grain Global coverage (grain size: ocean basin), spanning eight ocean basins, including vents on 12 mid‐ocean ridges and 6 back‐arc spreading centres. Time period and grain sFDvent includes information on deep‐sea vent species, and associated taxonomic updates, since they were first discovered in 1977. Time is not recorded. The database will be updated every 5 years. Major taxa and level of measurement Deep‐sea hydrothermal‐vent fauna with species‐level identification present or in progress. Software format .csv and MS Excel (.xlsx).
    Description: We would like to thank the following experts, who are not authors on this publication but made contributions to the sFDvent database: Anna Metaxas, Alexander Mironov, Jianwen Qiu (seep species contributions, to be added to a future version of the database) and Anders Warén. We would also like to thank Robert Cooke for his advice, time, and assistance in processing the raw data contributions to the sFDvent database using R. Thanks also to members of iDiv and its synthesis centre – sDiv – for much‐valued advice, support, and assistance during working‐group meetings: Doreen Brückner, Jes Hines, Borja Jiménez‐Alfaro, Ingolf Kühn and Marten Winter. We would also like to thank the following supporters of the database who contributed indirectly via early design meetings or members of their research groups: Malcolm Clark, Charles Fisher, Adrian Glover, Ashley Rowden and Cindy Lee Van Dover. Finally, thanks to the families of sFDvent working group members for their support while they were participating in meetings at iDiv in Germany. Financial support for sFDvent working group meetings was gratefully received from sDiv, the Synthesis Centre of iDiv (DFG FZT 118). ASAC was a PhD candidate funded by the SPITFIRE Doctoral Training Partnership (supported by the Natural Environmental Research Council, grant number: NE/L002531/1) and the University of Southampton at the time of submission. ASAC also thanks Dominic, Lesley, Lettice and Simon Chapman for their support throughout this project. AEB and VT are sponsored through the Canada Research Chair Programme. SEB received support from National Science Foundation Division of Environmental Biology Award #1558904 and The Joint Initiative Awards Fund from the Andrew W. Mellon Foundation. AC is supported by Program Investigador (IF/00029/2014/CP1230/CT0002) from Fundação para a Ciência e a Tecnologia (FCT). This study also had the support of Fundação para a Ciência e a Tecnologia, through the strategic project UID/MAR/04292/2013 granted to marine environmental sciences centre. Data compiled by AVG and EG were supported by Russian science foundation Grant 14‐50‐00095. AH was supported by the grant BPD/UI88/5805/2017 awarded by CESAM (UID/AMB/50017), which is financed by FCT/Ministério da Educação through national funds and co‐funded by fundo Europeu de desenvolvimento regional, within the PT2020 Partnership Agreement and Compete 2020. ERLL was partially supported by the MarMine project (247626/O30). JS was supported by Ifremer. Data on vent fauna from the East Scotia Ridge, Mid‐Cayman Spreading Centre, and Southwest Indian Ridge were obtained by UK natural environment research council Grants NE/D01249X/1, NE/F017774/1 and NE/H012087/1, respectively. REBR's contribution was supported by a Postdoctoral Fellowship at the University of Victoria, funded by the Canadian Healthy Oceans Network II Strategic Research Program (CHONe II). DC is supported by a post‐doctoral scholarship (SFRH/BPD/110278/2015) from FCT. HTR was supported by the Research Council of Norway through project number 70184227 and the KG Jebsen Centre for Deep Sea Research (University of Bergen). MY was partially supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China (project codes: HKU 17306014, HKU 17311316).
    Keywords: biodiversity ; collaboration ; conservation ; cross‐ecosystem ; database ; deep sea ; functional trait ; global‐scale ; hydrothermal vent ; sFDvent
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Weber, L., González-Díaz, P., Armenteros, M., Ferrer, V. M., Bretos, F., Bartels, E., Santoro, A. E., & Apprill, A. Microbial signatures of protected and impacted Northern Caribbean reefs: changes from Cuba to the Florida Keys. Environmental Microbiology, 22(1), (2019): 499-519, doi: 10.1111/1462-2920.14870.
    Description: There are a few baseline reef‐systems available for understanding the microbiology of healthy coral reefs and their surrounding seawater. Here, we examined the seawater microbial ecology of 25 Northern Caribbean reefs varying in human impact and protection in Cuba and the Florida Keys, USA, by measuring nutrient concentrations, microbial abundances, and respiration rates as well as sequencing bacterial and archaeal amplicons and community functional genes. Overall, seawater microbial composition and biogeochemistry were influenced by reef location and hydrogeography. Seawater from the highly protected ‘crown jewel’ offshore reefs in Jardines de la Reina, Cuba had low concentrations of nutrients and organic carbon, abundant Prochlorococcus, and high microbial community alpha diversity. Seawater from the less protected system of Los Canarreos, Cuba had elevated microbial community beta‐diversity whereas waters from the most impacted nearshore reefs in the Florida Keys contained high organic carbon and nitrogen concentrations and potential microbial functions characteristic of microbialized reefs. Each reef system had distinct microbial signatures and within this context, we propose that the protection and offshore nature of Jardines de la Reina may preserve the oligotrophic paradigm and the metabolic dependence of the community on primary production by picocyanobacteria.
    Description: We thank Justin Ossolinski, Sean McNally, Tom Lankiewicz, Lázaro García, and the crew from R/V Felipe Poey for assistance with sample collection and processing. We thank Marlin Nauticas and Marinas for the use of their dive facilities. We thank Chris Wright, Mark Band, and staff at the University of Illinois W. M. Keck Center for Comparative and Functional Genomics for sequencing assistance, Karen Selph for training in flow cytometry, Krista Longnecker for TOC and TN analyses, and Joe Jennings for nutrient analyses. Funding was provided to A.A. and A.E.S. by a Dalio Explore award from the Dalio Foundation (now 'OceanX') and analysis time was supported with the NSF Graduate Research Fellowship award to L.W. and NSF award OCE 1736288 to A.A. Research was conducted under the LH112 AN (25) 2015 licence granted by the Cuban Center for Inspection and Environmental Control.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Staudinger, M. D., Goyert, H., Suca, J. J., Coleman, K., Welch, L., Llopiz, J. K., Wiley, D., Altman, I., Applegate, A., Auster, P., Baumann, H., Beaty, J., Boelke, D., Kaufman, L., Loring, P., Moxley, J., Paton, S., Powers, K., Richardson, D., Robbins, J., Runge, J., Smith, B., Spiegel, C., & Steinmetz, H. The role of sand lances (Ammodytes sp.) in the Northwest Atlantic ecosystem: a synthesis of current knowledge with implications for conservation and management. Fish and Fisheries, 00, (2020): 1-34, doi:10.1111/faf.12445.
    Description: The American sand lance (Ammodytes americanus, Ammodytidae) and the Northern sand lance (A. dubius, Ammodytidae) are small forage fishes that play an important functional role in the Northwest Atlantic Ocean (NWA). The NWA is a highly dynamic ecosystem currently facing increased risks from climate change, fishing and energy development. We need a better understanding of the biology, population dynamics and ecosystem role of Ammodytes to inform relevant management, climate adaptation and conservation efforts. To meet this need, we synthesized available data on the (a) life history, behaviour and distribution; (b) trophic ecology; (c) threats and vulnerabilities; and (d) ecosystem services role of Ammodytes in the NWA. Overall, 72 regional predators including 45 species of fishes, two squids, 16 seabirds and nine marine mammals were found to consume Ammodytes. Priority research needs identified during this effort include basic information on the patterns and drivers in abundance and distribution of Ammodytes, improved assessments of reproductive biology schedules and investigations of regional sensitivity and resilience to climate change, fishing and habitat disturbance. Food web studies are also needed to evaluate trophic linkages and to assess the consequences of inconsistent zooplankton prey and predator fields on energy flow within the NWA ecosystem. Synthesis results represent the first comprehensive assessment of Ammodytes in the NWA and are intended to inform new research and support regional ecosystem‐based management approaches.
    Description: This manuscript is the result of follow‐up work stemming from a working group formed at a two‐day multidisciplinary and international workshop held at the Parker River National Wildlife Refuge, Massachusetts in May 2017, which convened 55 experts scientists, natural resource managers and conservation practitioners from 15 state, federal, academic and non‐governmental organizations with interest and expertise in Ammodytes ecology. Support for this effort was provided by USFWS, NOAA Stellwagen Bank National Marine Sanctuary, U.S. Department of the Interior, U.S. Geological Survey, Northeast Climate Adaptation Science Center (Award # G16AC00237), an NSF Graduate Research Fellowship to J.J.S., a CINAR Fellow Award to J.K.L. under Cooperative Agreement NA14OAR4320158, NSF award OCE‐1325451 to J.K.L., NSF award OCE‐1459087 to J.A.R, a Regional Sea Grant award to H.B. (RNE16‐CTHCE‐l), a National Marine Sanctuary Foundation award to P.J.A. (18‐08‐B‐196) and grants from the Mudge Foundation. The contents of this paper are the responsibility of the authors and do not necessarily represent the views of the National Oceanographic and Atmospheric Administration, U.S. Fish and Wildlife Service, New England Fishery Management Council and Mid‐Atlantic Fishery Management Council. This manuscript is submitted for publication with the understanding that the United States Government is authorized to reproduce and distribute reprints for Governmental purposes. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
    Keywords: Ammodytes ; ecosystem‐based management ; forage fish ; life history ; sand lance ; trophic ecology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sosa, O. A., Burrell, T. J., Wilson, S. T., Foreman, R. K., Karl, D. M., & Repeta, D. J. Phosphonate cycling supports methane and ethylene supersaturation in the phosphate-depleted western North Atlantic Ocean. Limnology and Oceanography, (2020), doi:10.1002/lno.11463.
    Description: In oligotrophic ocean regions, dissolved organic phosphorus (DOP) plays a prominent role as a source of phosphorus (P) to microorganisms. An important bioavailable component of DOP is phosphonates, organophosphorus compounds with a carbon‐phosphorus (C‐P) bond, which are ubiquitous in high molecular weight dissolved organic matter (HMWDOM). In addition to being a source of P, the degradation of phosphonates by the bacterial C‐P lyase enzymatic pathway causes the release of trace hydrocarbon gases relevant to climate and atmospheric chemistry. In this study, we investigated the roles of phosphate and phosphonate cycling in the production of methane (CH4) and ethylene (C2H4) in the western North Atlantic Ocean, a region that features a transition in phosphate concentrations from coastal to open ocean waters. We observed an inverse relationship between phosphate and the saturation state of CH4 and C2H4 in the water column, and between phosphate and the relative abundance of the C‐P lyase marker gene phnJ . In phosphate‐depleted waters, methylphosphonate and 2‐hydroxyethylphosphonate, the C‐P lyase substrates that yield CH4 and C2H4, respectively, were readily degraded in proportions consistent with their abundance and bioavailability in HMWDOM and with the concentrations of CH4 and C2H4 in the water column. We conclude that phosphonate degradation through the C‐P lyase pathway is an important source and a common production pathway of CH4 and C2H4 in the phosphate‐depleted surface waters of the western North Atlantic Ocean and that phosphate concentration can be an important control on the saturation state of these gases in the upper ocean.
    Description: We thank the captain and crew of the R/V Neil Armstrong and chief scientist Benjamin Van Mooy for supporting and leading research at sea. Chiara Santinelli and Eric Grabowski provided analyses of dissolved organic carbon. This research was funded by NSF Chemical Oceanography award OCE‐1634080 to D.J.R. Additional support was provided by the Gordon and Betty Moore Foundation grant 3794 to D.M.K. and grant 6000 to D.J.R., and the Simons Collaboration on Ocean Processes and Ecology (SCOPE) program grant 329108 to D.M.K., E.F.D., and D.J.R.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2021. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Journal of Phycology, doi:10.1111/jpy.13135.
    Description: Gymnodinium gracile, described from the coasts of Denmark in 1881, is one of the first described unarmored dinoflagellates. Individuals which morphologically fit with the original description were isolated from the English Channel (North‐East Atlantic). The SSU rRNA gene sequences were identical to the sequences identified as Balechina pachydermata and Gymnodinium amphora from the Mediterranean Sea and Brazil. We propose the transfer of Gymnodinium gracile into the genus Balechina as B. gracilis comb. nov. These sequences constitute an independent lineage, clustering with numerous environmental sequences from polar to tropical waters. The widespread distribution, the high plasticity in size, shape and coloration and the difficulties in discerning the fine longitudinal striae have contributed to the description of numerous synonyms: Amphidinium vasculum, Balechina pachydermata (=Gymnodinium pachydermatum), Gymnodinium achromaticum, G. abbreviatum, G. amphora, G. dogielii, G. lohmannii (=G. roseum sensu Lohmann 1908), G. situla and Gyrodinium cuneatum (=G. gracile sensu Pouchet 1885).
    Description: F.G. was supported by the convention #2101893310 between CNRS INSU and the French Ministry of Ecology (MTES) for the implementation of the Monitoring Program of the European Marine Strategy Framework directive (MSFD) for pelagic habitats and the descriptor ‘biodiversity’. Samples were collected during the ECOPEL Manche 2018 spring and summer cruises (CNRS-LOG) onboard R/V "Antea" (IRD, Institut de Recherche pour le Développement) in the frame of the cited convention and the CPER ‘Hauts de France’ project MARCO supported by the French state, the ‘Hauts de France’ French Region and the European Regional Development Founds (ERDF).
    Keywords: Dinophyta ; naked Dinoflagellata ; Gymnodiniales ; new combination ; taxonomy ; molecular phylogenetics
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sakinan, S., Lawson, G. L., Wiebe, P. H., Chu, D., & Copley, N. J. Accounting for seasonal and composition-related variability in acoustic material properties in estimating copepod and krill target strength. Limnology and Oceanography-Methods, 17, (2019): 607-625, doi: 10.1002/lom3.10336.
    Description: Estimation of abundance or biomass, using acoustic techniques requires knowledge of the frequency dependent acoustic backscatter characteristics, or target strength, of organisms. Target strength of zooplankton is typically estimated from physics‐based models that involve multiple parameters, notably including the acoustic material properties (i.e., the contrasts in density and sound speed between the animal and surrounding seawater). In this work, variability in the acoustic material properties of two zooplankton species in the Gulf of Maine, the copepod (Calanus finmarchicus) and krill (Meganyctiphanes norvegica), was investigated relative to changing season as well as, for the copepod, temperature and depth. Increases in the density and sound speed contrasts of these species from fall to spring were observed. Target strength predictions based on these measurements varied between fall and spring by 2‐3 dB in krill. Measurements were also conducted on C. finmarchicus lipid extract at changing temperature and pressure. The density contrast of the extract varied negatively with temperature, while the sound speed contrast changed by more than 10 % over the temperature and pressure ranges that the organism expected to occupy. C. finmarchicus target strength predictions showed that the combined effect of temperature and pressure can be significant (more than 10 dB) due to the varying response of lipids. The large vertical migration ranges and lipid accumulation characteristics of these species (e.g., the diapause behaviour of Calanus copepods) suggest that it is necessary for seasonal and environmental variability in material properties to be taken into account to achieve reliable measurements.
    Description: We thank Captain Ken Houtler and Mate Ian Hanley on the R/V Tioga for assistance at sea. Al Bradley kindly loaned and provided assistance with the pressure chamber. We would also like to thank Phil Alatalo and Taylor Crockford for their assistance with at‐sea sampling, Dave Kulis and Jennifer Johnson for their assistance in the laboratory, and Andone Lavery for advice and loaning of the data acquisition system. Special thanks to Alex Bergan for general logistics and overall support. Funding was provided by the WHOI Ocean Life Institute. S.S. was supported by TUBITAK 2219 ‐ International Postdoctoral Research Fellowship Program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Weber, L., Gonzalez-Diaz, P., Armenteros, M., & Apprill, A. The coral ecosphere: a unique coral reef habitat that fosters coral-microbial interactions. Limnology and Oceanography, 64(6), (2019): 2373-2388, doi: 10.1002/lno.11190.
    Description: Scleractinian corals are bathed in a sea of planktonic and particle‐associated microorganisms. The metabolic products of corals influence the growth and composition of microorganisms, but interactions between corals and seawater microorganisms are underexplored. We conducted a field‐based survey to compare the biomass, diversity, composition, and functional capacity of microorganisms in small‐volume seawater samples collected adjacent to five coral species with seawater collected 〉 1 m away from the reef substrate on the same reefs. Seawater collected close to corals generally harbored copiotrophic‐type bacteria and its bacterial and archaeal composition was influenced by coral species as well as the local reef environment. Trends in picoplankton abundances were variable and either increased or decreased away from coral colonies based on coral species and picoplankton functional group. Genes characteristic of surface‐attached and potentially virulent microbial lifestyles were enriched in near‐coral seawater compared to reef seawater. There was a prominent association between the coral Porites astreoides and the coral symbiont Endozoicomonas, suggesting recruitment and/or shedding of these cells into the surrounding seawater. This evidence extends our understanding of potential species‐specific and reef site‐influenced microbial interactions that occur between corals and microorganisms within this near‐coral seawater environment that we propose to call the “coral ecosphere.” Microbial interactions that occur within the coral ecosphere could influence recruitment of coral‐associated microorganisms and facilitate the transfer of coral metabolites into the microbial food web, thus fostering reef biogeochemical cycling and a linkage between corals and the water column.
    Description: This project was funded by the Dalio Foundation through the Dalio Ocean Initiative, which helped establish a new partnership between U.S. and Cuban scientists. Data analysis and manuscript preparation support was provided by NSF GRFP award to L. W. and NSF OCE‐1736288 to A. A. Special thanks to our colleague Alyson Santoro (University of California, Santa Barbara) for project advice and discussion, Fernando Bretos (The Ocean Foundation) for cruise conceptualization and organization, and Justin Ossolinski, Sean McNally, Thomas Lankiewicz, as well as the fellow scientists on the missions for field assistance. Thanks to the crew of the R/V Felipe Poey as well as the La Reina vessel and the Avalon diving center. We are grateful for Karen Selph of the University of Hawai‘i School of Ocean and Earth Science and Technology for training in flow cytometry methods and Chris Wright and the University of Illinois W. M. Keck Center for Comparative and Functional Genomics for sequencing support. We would also like to thank Greg Fournier, Elizabeth Kujawinski, and Stefan Sievert for comments on this manuscript.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hunter-Cevera, K. R., Neubert, M. G., Olson, R. J., Shalapyonok, A., Solow, A. R., & Sosik, H. M. Seasons of Syn. Limnology and Oceanography. (2019), doi: 10.1002/lno.11374.
    Description: Synechococcus is a widespread and important marine primary producer. Time series provide critical information for identifying and understanding the factors that determine abundance patterns. Here, we present the results of analysis of a 16‐yr hourly time series of Synechococcus at the Martha's Vineyard Coastal Observatory, obtained with an automated, in situ flow cytometer. We focus on understanding seasonal abundance patterns by examining relationships between cell division rate, loss rate, cellular properties (e.g., cell volume, phycoerythrin fluorescence), and environmental variables (e.g., temperature, light). We find that the drivers of cell division vary with season; cells are temperature‐limited in winter and spring, but light‐limited in the fall. Losses to the population also vary with season. Our results lead to testable hypotheses about Synechococcus ecophysiology and a working framework for understanding the seasonal controls of Synechococcus cell abundance in a temperate coastal system.
    Description: We would like to thank E. T. Crockford, E. E. Peacock, J. Fredericks, Z. Sandwith, the MVCO Operations Team, divers of the WHOI diving program, and captain Houtler and first mate Hanley of the R/V Tioga for logistical support; S. Laney for assistance with radiometer data processing; and P. Henderson of the Woods Hole Oceanographic Institution (WHOI) Nutrient Analytical Facility for analytical support. This work was supported by U.S. NSF grants OCE‐0119915, OCE‐0530830, OCE‐1031256, OCE‐1655686, DEB‐1145017, and DEB‐1257545; NASA grants NNX11AF07G and NNX13AC98G; Gordon and Betty Moore Foundation grant GGA#934; the Investment in Science Fund, given primarily by WHOI Trustee and Corporation Members; Simons Foundation award 561126; National Defense Science and Engineering graduate fellowship from the U.S. Department of Defense, and the Hibbitt Early Career Fellowship at the Marine Biological Laboratory.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bhatnagar, S., Cowley, E. S., Kopf, S. H., Pérez Castro, S., Kearney, S., Dawson, S. C., Hanselmann, K., & Ruff, S. E. Microbial community dynamics and coexistence in a sulfide-driven phototrophic bloom. Environmental Microbiome, 15(1),(2020): 3, doi:10.1186/s40793-019-0348-0.
    Description: Background: Lagoons are common along coastlines worldwide and are important for biogeochemical element cycling, coastal biodiversity, coastal erosion protection and blue carbon sequestration. These ecosystems are frequently disturbed by weather, tides, and human activities. Here, we investigated a shallow lagoon in New England. The brackish ecosystem releases hydrogen sulfide particularly upon physical disturbance, causing blooms of anoxygenic sulfur-oxidizing phototrophs. To study the habitat, microbial community structure, assembly and function we carried out in situ experiments investigating the bloom dynamics over time. Results: Phototrophic microbial mats and permanently or seasonally stratified water columns commonly contain multiple phototrophic lineages that coexist based on their light, oxygen and nutrient preferences. We describe similar coexistence patterns and ecological niches in estuarine planktonic blooms of phototrophs. The water column showed steep gradients of oxygen, pH, sulfate, sulfide, and salinity. The upper part of the bloom was dominated by aerobic phototrophic Cyanobacteria, the middle and lower parts by anoxygenic purple sulfur bacteria (Chromatiales) and green sulfur bacteria (Chlorobiales), respectively. We show stable coexistence of phototrophic lineages from five bacterial phyla and present metagenome-assembled genomes (MAGs) of two uncultured Chlorobaculum and Prosthecochloris species. In addition to genes involved in sulfur oxidation and photopigment biosynthesis the MAGs contained complete operons encoding for terminal oxidases. The metagenomes also contained numerous contigs affiliating with Microviridae viruses, potentially affecting Chlorobi. Our data suggest a short sulfur cycle within the bloom in which elemental sulfur produced by sulfide-oxidizing phototrophs is most likely reduced back to sulfide by Desulfuromonas sp. Conclusions: The release of sulfide creates a habitat selecting for anoxygenic sulfur-oxidizing phototrophs, which in turn create a niche for sulfur reducers. Strong syntrophism between these guilds apparently drives a short sulfur cycle that may explain the rapid development of the bloom. The fast growth and high biomass yield of Chlorobi-affiliated organisms implies that the studied lineages of green sulfur bacteria can thrive in hypoxic habitats. This oxygen tolerance is corroborated by oxidases found in MAGs of uncultured Chlorobi. The findings improve our understanding of the ecology and ecophysiology of anoxygenic phototrophs and their impact on the coupled biogeochemical cycles of sulfur and carbon.
    Description: This work was carried out at the Microbial Diversity summer course at the Marine Biological Laboratory in Woods Hole, MA. The course was supported by grants from National Aeronautics and Space Administration, the US Department of Energy, the Simons Foundation, the Beckman Foundation, and the Agouron Institute. Additional funding for SER was provided by the Marine Biological Laboratory.
    Keywords: Microbial succession ; Green sulfur bacteria ; Prosthecochloris ; Syntrophy ; Brackish coastal ecosystem ; Anoxygenic phototrophy ; Microviridae ; Sulfur cycling ; CRISPR-Cas ; Resilience
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Addamo, A. M., Miller, K. J., Haussermann, V., Taviani, M., & Machordom, A. Global-scale genetic structure of a cosmopolitan cold-water coral species. Aquatic Conservation: Marine and Freshwater Ecosystems, (2020): 1-14, doi:10.1002/aqc.3421.
    Description: 1. When considering widely distributed marine organisms with low dispersal capabilities, there is often an implication that the distribution of cosmopolitan species is an artefact of taxonomy, constrained by the absence of characters for delimiting either sibling or cryptic species. Few studies have assessed the relationship among populations across the global range of the species' distribution, and the presence of oceanographic barriers that might influence gene flow among populations are underestimated. 2. In this study, evolutionary and ecological drivers of connectivity patterns have been inferred among populations of the cold‐water coral Desmophyllum dianthus, a common and widespread solitary scleractinian species, whose reproduction strategy and larval dispersal are still poorly unknown. 3. The genetic structure of D. dianthus was explored using 30 microsatellites in 347 specimens from 13 localities distributed in the Mediterranean Sea and Atlantic and Pacific Oceans. 4. Results clearly reveal genetically differentiated populations in the Northern and Southern Hemispheres (FST = 0.16, FSC = 0.01, FCT = 0.15, P‐values highly significant), and Chilean and New Zealand populations with independent genetic profiles. 5. Marine connectivity patterns at different spatial scales are discussed to characterize larval dispersal and gene flow through the Northern and Southern Hemispheres.
    Description: This research was supported by the Spanish Ministry of Science and Innovation (CGL2011‐23306), and EU CoCoNET—“Towards COast to COast NETworks of marine protected areas (from the shore to the high and deep sea), coupled with sea‐based wind energy potential”—from FP7‐KKBE of the European Commission (project ID: 287844). This scientific contribution commits to EESF Cocarde, Italian Flag Ritmare, and Region Apulia Biomap programmes. This is scientific publication no. 1888 Ismar‐CNR Bologna. Funding to VH was partially provided through Fondecyt project nos. 1131039 and 1161699. This is publication no. 179 of Huinay Scientific Field Station.
    Keywords: cold‐water corals ; cosmopolitan species ; gene flow ; larval dispersal ; microsatellite ; molecular ecology ; population structure
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ralston, D. K., Yellen, B., Woodruff, J. D., & Fernald, S. Turbidity hysteresis in an estuary and tidal river following an extreme discharge event. Geophysical Research Letters, 47(15), (2020): e2020GL088005, doi:10.1029/2020GL088005.
    Description: Nonlinear turbidity‐discharge relationships are explored in the context of sediment sourcing and event‐driven hysteresis using long‐term (≥12‐year) turbidity observations from the tidal freshwater and saline estuary of the Hudson River. At four locations spanning 175 km, turbidity generally increased with discharge but did not follow a constant log‐log dependence, in part due to event‐driven adjustments in sediment availability. Following major sediment inputs from extreme precipitation and discharge events in 2011, turbidity in the tidal river increased by 20–50% for a given discharge. The coherent shifts in the turbidity‐discharge relationship along the tidal river over the subsequent 2 years suggest that the 2011 events increased sediment availability for resuspension. In the saline estuary, changes in the sediment‐discharge relationship were less apparent after the high discharge events, indicating that greater background turbidity due to internal sources make event‐driven inputs less important in the saline estuary at interannual time scales.
    Description: This work was sponsored by the National Estuarine Research Reserve System Science Collaborative, funded by the National Oceanic and Atmospheric Administration and managed by the University of Michigan Water Center (NAI4NOS4190145), with additional support to Yellen and Woodruff from USGS Cooperative Agreement No. G19AC00091.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Barone, B., Nicholson, D., Ferron, S., Firing, E., & Karl, D. The estimation of gross oxygen production and community respiration from autonomous time-series measurements in the oligotrophic ocean. Limnology and Oceanography-Methods, 17, (2019): 650-664, doi: 10.1002/lom3.10340.
    Description: Diel variations in oxygen concentration have been extensively used to estimate rates of photosynthesis and respiration in productive freshwater and marine ecosystems. Recent improvements in optical oxygen sensors now enable us to use the same approach to estimate metabolic rates in the oligotrophic waters that cover most of the global ocean and for measurements collected by autonomous underwater vehicles. By building on previous methods, we propose a procedure to estimate photosynthesis and respiration from vertically resolved diel measurements of oxygen concentration. This procedure involves isolating the oxygen variation due to biological processes from the variation due to physical processes, and calculating metabolic rates from biogenic oxygen changes using linear least squares analysis. We tested our method on underwater glider observations from the surface layer of the North Pacific Subtropical Gyre where we estimated rates of gross oxygen production and community respiration both averaging 1.0 mmol O2 m−3 d−1, consistent with previous estimates from the same environment. Method uncertainty was computed as the standard deviation of the fitted parameters and averaged 0.6 and 0.5 mmol O2 m−3 d−1 for oxygen production and respiration, respectively. The variability of metabolic rates was larger than this uncertainty and we were able to discern covariation in the biological production and consumption of oxygen. The proposed method resolved variability on time scales of approximately 1 week. This resolution can be improved in several ways including by measuring turbulent mixing, increasing the number of measurements in the surface ocean, and adopting a Lagrangian approach during data collection.
    Description: This study would not have been possible without the skilled contribution of Steve Poulos (University of Hawaii) who directed glider operations including deployments, recoveries, and piloting. We thank Steve and all the other people involved in these activities including Sarah Searson, Gabe Foreman, Jim Burkitt, and Blake Watkins (University of Hawaii). We thank Henry Bittig (Laboratoire d'Océanographie de Villefranche) for his advice on the inverse filtering correction. We thank Saulo Soares, Andrei Natarov, and Kelvin Richards (University of Hawaii) for their comments on an early draft of this manuscript. We also thank Sam Wilson, Tara Clemente, Dan Sadler, Susan Curless, and Walt Deppe (University of Hawaii) for leading the oceanographic cruises used for glider deployments and recoveries. We thank the HOT‐SCOPE team for measuring the Winkler O2 concentration used for optode calibration. We thank Jesse M. Wilson for providing us the period of the CR measurements reported in Wilson et al. (2014). Finally, we thank captains and crews of R/V Kilo Moana and R/V Ka'imikai‐O‐Kanaloa, and the Ocean Technology Group of the University of Hawaii for their assistance at sea. Glider data used in this article are available on the ftp server of the School of Ocean and Earth Science and Technology of the University of Hawaii (ftp://ftp.soest.hawaii.edu/pilot/). Blended Sea Winds are distributed by NOAA‐NCDC and are available at https://www.ncdc.noaa.gov. Sea‐level pressure from the NCEP/NCAR reanalysis is available at https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html. Satellite PAR is distributed by NASA and available at https://oceandata.sci.gsfc.nasa.gov. This research was supported by the 2015 Balzan Prize to D.M.K., the Simons Foundation (SCOPE award 329108 to D.M.K. and E.F. DeLong), the Gordon and Betty Moore Foundation (grant #3794 to D.M.K.), and the National Science Foundation through grants to C‐MORE (EF‐0424599 to D.M.K.) and HOT (OCE‐1260164 to D.M.K). D.N. was supported by NSF (OCE‐1129644) and an Independent Study Award from the Woods Hole Oceanographic Institution.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gadol, O., Tibor, G., ten Brink, U., Hall, J. K., Groves-Gidney, G., Bar-Ann, G., Huebscher, C., & Makovsky, Y. Semi-automated bathymetric spectral decomposition delineates the impact of mass wasting on the morphological evolution of the continental slope, offshore Israel. Basin Research, (2019): 1-28, doi: 10.1111/bre.12420.
    Description: Understanding continental‐slope morphological evolution is essential for predicting basin deposition. However, separating the imprints and chronology of different seafloor shaping processes is difficult. This study explores the utility of bathymetric spectral decomposition for separating and characterizing the variety of interleaved seafloor imprints of mass wasting, and clarifying their role in the morphological evolution of the southeastern Mediterranean Sea passive‐margin slope. Bathymetric spectral decomposition, integrated with interpretation of seismic profiles, highlights the long‐term shape of the slope and separates the observed mass transport elements into several genetic groups: (1) a series of ~25 km wide, now‐buried slide scars and lobes; (2) slope‐parallel bathymetric scarps representing shallow faults; (3) slope‐perpendicular, open slope slide scars; (4) bathymetric roughness representing debris lobes; (5) slope‐confined gullies. Our results provide a multi‐scale view of the interplay between sediment transport, mass transport and shallow faulting in the evolution of the slope morphology. The base of the slope and focused disturbances are controlled by ~1 km deep salt retreat, and mimic the Messinian base of slope. The top of the open‐slope is delimited by faults, accommodating internal collapse of the margin. The now‐buried slides were slope‐confined and presumably cohesive, and mostly nucleated along the upper‐slope faults. Sediment accumulations, infilling the now‐buried scars, generated more recent open‐slope slides. These latter slides transported ~10 km3 of sediments, depositing a significant fraction (~3 m in average) of the sediments along the base of the studied slope during the past 〈 50 ka. South to north decrease in the volume of the open‐slope slides highlight their role in counterbalancing the northwards diminishing sediment supply and helping to maintain a long‐term steady‐state bathymetric profile. The latest phase slope‐confined gullies were presumably created by channelling of bottom currents into slide‐scar depressions, possibly establishing incipient canyon headword erosion.
    Description: Funding for this study was provided by the State of Israel Ministry of Science and Technology grant 3–9145. Omri Gadol studies were supported by the State of Israel Ministry of Energy grants program, the Dr. Moses Strauss Department of Marine Geosciences and the Hatter Department of Marine Technologies. We thank the Oil Commissioner Office, State of Israel Ministry of Energy, Delek Drilling, Adira Energy and Modiin Energy for data sharing and permitting; and Emerson‐Paradigm for sponsoring their software. We also thank Alexander Surdyaev, AMEL, for his constant support; and David Mosher, Glen Sherman and Jason Chaytor for their valuable reviews.
    Keywords: landslide volume ; Levant Basin ; mass transport complexes ; morphometric analyses ; semi‐automated mapping ; slope confined gullies ; submarine slide ; thin skin faulting
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Blakeslee, A. M. H., Manousaki, T., Vasileiadou, K., & Tepolt, C. K. An evolutionary perspective on marine invasions. Evolutionary Applications, 13, (2020): 479-485, doi:10.1111/eva.12906.
    Description: Species distributions are rapidly changing as human globalization increasingly moves organisms to novel environments. In marine systems, species introductions are the result of a number of anthropogenic mechanisms, notably shipping, aquaculture/mariculture, the pet and bait trades, and the creation of canals. Marine invasions are a global threat to human and non‐human populations alike and are often listed as one of the top conservation concerns worldwide, having ecological, evolutionary, and social ramifications. Evolutionary investigations of marine invasions can provide crucial insight into an introduced species’ potential impacts in its new range, including: physiological adaptation and behavioral changes to exploit new environments; changes in resident populations, community interactions, and ecosystems; and severe reductions in genetic diversity that may limit evolutionary potential in the introduced range. This special issue focuses on current research advances in the evolutionary biology of marine invasions and can be broadly classified into a few major avenues of research: the evolutionary history of invasive populations, post‐invasion reproductive changes, and the role of evolution in parasite introductions. Together, they demonstrate the value of investigating marine invasions from an evolutionary perspective, with benefits to both fundamental and applied evolutionary biology at local and broad scales.
    Description: We thank the organizers of Marine Evolution 2018 for bringing together a dynamic group of researchers working in all aspects of marine evolutionary biology and for facilitating the discussion of evolution in marine invasion. We also thank Evolutionary Applications for providing an avenue to share the results of this meeting more broadly and hope it will encourage continued research and discussion of this topic.
    Keywords: adaptation ; estuarine ; evolutionary history ; host–parasite interactions ; introduction ; non‐native ; reproduction ; sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kuloyo, O., Ruff, S. E., Cahill, A., Connors, L., Zorz, J. K., de Angelis, I. H., Nightingale, M., Mayer, B., & Strous, M. Methane oxidation and methylotroph population dynamics in groundwater mesocosms. Environmental Microbiology. (2020), doi:10.1111/1462-2920.14929.
    Description: Extraction of natural gas from unconventional hydrocarbon reservoirs by hydraulic fracturing raises concerns about methane migration into groundwater. Microbial methane oxidation can be a significant methane sink. Here, we inoculated replicated, sand‐packed, continuous mesocosms with groundwater from a field methane release experiment. The mesocosms experienced thirty‐five weeks of dynamic methane, oxygen and nitrate concentrations. We determined concentrations and stable isotope signatures of methane, carbon dioxide and nitrate and monitored microbial community composition of suspended and attached biomass. Methane oxidation was strictly dependent on oxygen availability and led to enrichment of 13C in residual methane. Nitrate did not enhance methane oxidation under oxygen limitation. Methylotrophs persisted for weeks in the absence of methane, making them a powerful marker for active as well as past methane leaks. Thirty‐nine distinct populations of methylotrophic bacteria were observed. Methylotrophs mainly occurred attached to sediment particles. Abundances of methanotrophs and other methylotrophs were roughly similar across all samples, pointing at transfer of metabolites from the former to the latter. Two populations of Gracilibacteria (Candidate Phyla Radiation) displayed successive blooms, potentially triggered by a period of methane famine. This study will guide interpretation of future field studies and provides increased understanding of methylotroph ecophysiology.
    Description: The authors acknowledge funding from the Alberta Innovates Technology Futures (AITF), and University of Calgary Eyes High Doctoral Scholarships (O.O.K., J.K.Z.) and AITF/Eyes High Postdoctoral Fellowships (S.E.R.), as well as the PROMOS Internship Abroad Scholarship by the German Academic Exchange Service (I.H.d.A.). Additional support was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC), Strategic Project Grant no. 463045‐14, the Campus Alberta Innovation Chair Program (M.S.), Alberta Innovates, The Canadian Foundation for Innovation (M.S.), the Alberta Small Equipment Grant Program (M.S.) and an NSERC Discovery Grant (M.S. and B.M.).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Liu, S., Parsons, R., Opalk, K., Baetge, N., Giovannoni, S., Bolanos, L. M., Kujawinski, E. B., Longnecker, K., Lu, Y., Halewood, E., & Carlson, C. A. Different carboxyl-rich alicyclic molecules proxy compounds select distinct bacterioplankton for oxidation of dissolved organic matter in the mesopelagic Sargasso Sea. Limnology and Oceanography, (2020), doi:10.1002/lno.11405.
    Description: Marine dissolved organic matter (DOM) varies in its recalcitrance to rapid microbial degradation. DOM of varying recalcitrance can be exported from the ocean surface to depth by subduction or convective mixing and oxidized over months to decades in deeper seawater. Carboxyl‐rich alicyclic molecules (CRAM) are characterized as a major component of recalcitrant DOM throughout the oceanic water column. The oxidation of CRAM‐like compounds may depend on specific bacterioplankton lineages with oxidative enzymes capable of catabolizing complex molecular structures like long‐chain aliphatics, cyclic alkanes, and carboxylic acids. To investigate the interaction between bacteria and CRAM‐like compounds, we conducted microbial remineralization experiments using several compounds rich in carboxyl groups and/or alicyclic rings, including deoxycholate, humic acid, lignin, and benzoic acid, as proxies for CRAM. Mesopelagic seawater (200 m) from the northwest Sargasso Sea was used as media and inoculum and incubated over 28 d. All amendments demonstrated significant DOC removal (2–11 μmol C L−1) compared to controls. Bacterioplankton abundance increased significantly in the deoxycholate and benzoic acid treatments relative to controls, with fast‐growing Spongiibacteracea, Euryarcheaota, and slow‐growing SAR11 enriched in the deoxycholate treatment and fast‐growing Alteromonas, Euryarcheaota, and Thaumarcheaota enriched in the benzoic acid treatment. In contrast, bacterioplankton grew slower in the lignin and humic acid treatments, with oligotrophic SAR202 becoming significantly enriched in the lignin treatment. Our results indicate that the character of the CRAM proxy compounds resulted in distinct bacterioplankton removal rates of DOM and affected specific lineages of bacterioplankton capable of responding.
    Description: We thank Z. Landry for the inspiring idea of SAR202 catabolism of CRAM. We thank the University of California, Santa Barbara Marine Science Institute Analytical Laboratory for analyzing inorganic nutrient samples. We thank C. Johnson for her help in FISH sample processing and BATS group in supporting our project. We thank N. K. Rubin‐Saika and R. Padula for their help with amino acid sample preparation. We thank Z. Liu, J. Xue, K. Lu, and Y. Shen for their help with amino acid protocol development and validation. We thank B. Stephens for his help on microscopic image analysis. We thank M. Dasenko and the staff of the CGRB at Oregon State University for amplicon library preparation and DNA sequencing. We are grateful for the help provided by the officers and crews of the R/V Atlantic Explorer. Bermuda Institute of Ocean Sciences (BIOS) provides us tremendous support in terms of facilities and lab space. We thank Bermuda government for its allowance of our water sampling and sample export (export permit number SP160904, issued 07 October 2016 under the Fisheries Act, 1972). This project was supported by Simons Foundation International's BIOS‐SCOPE program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Goldmann, K., Boeddinghaus, R. S., Klemmer, S., Regan, K. M., Heintz-Buschart, A., Fischer, M., Prati, D., Piepho, H., Berner, D., Marhan, S., Kandeler, E., Buscot, F., & Wubet, T. Unraveling spatiotemporal variability of arbuscular mycorrhizal fungi in a temperate grassland plot. Environmental Microbiology, 22(3),(2020): 873-888, doi:10.1111/1462-2920.14653.
    Description: Soils provide a heterogeneous environment varying in space and time; consequently, the biodiversity of soil microorganisms also differs spatially and temporally. For soil microbes tightly associated with plant roots, such as arbuscular mycorrhizal fungi (AMF), the diversity of plant partners and seasonal variability in trophic exchanges between the symbionts introduce additional heterogeneity. To clarify the impact of such heterogeneity, we investigated spatiotemporal variation in AMF diversity on a plot scale (10 × 10 m) in a grassland managed at low intensity in southwest Germany. AMF diversity was determined using 18S rDNA pyrosequencing analysis of 360 soil samples taken at six time points within a year. We observed high AMF alpha‐ and beta‐diversity across the plot and at all investigated time points. Relationships were detected between spatiotemporal variation in AMF OTU richness and plant species richness, root biomass, minimal changes in soil texture and pH. The plot was characterized by high AMF turnover rates with a positive spatiotemporal relationship for AMF beta‐diversity. However, environmental variables explained only ≈20% of the variation in AMF communities. This indicates that the observed spatiotemporal richness and community variability of AMF was largely independent of the abiotic environment, but related to plant properties and the cooccurring microbiome.
    Description: We thank the managers of the three Exploratories, Kirsten Reichel‐Jung, Swen Renner, Katrin Hartwich, Sonja Gockel, Kerstin Wiesner, and Martin Gorke for their work in maintaining the plot and project infrastructure; Christiane Fischer and Simone Pfeiffer for giving support through the central office, Michael Owonibi and Andreas Ostrowski for managing the central data base, and Eduard Linsenmair, Dominik Hessenmöller, Jens Nieschulze, Ernst‐Detlef Schulze, Wolfgang W. Weisser and the late Elisabeth Kalko for their role in setting up the Biodiversity Exploratories project. The work has been funded by the DFG Priority Program 1374 ‘Infrastructure‐Biodiversity‐Exploratories’ (BU 941/22‐1, BU 941/22‐3, KA 1590/8‐2, KA 1590/8‐3). Field work permits were issued by the responsible state environmental office of Baden‐Württemberg (according to § 72 BbgNatSchG). Likewise, we kindly thank Beatrix Schnabel, Melanie Günther and Sigrid Härtling for 454 sequencing in Halle. AHB gratefully acknowledges the support of the German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig funded by the German Research Foundation (FZT 118). Authors declare no conflict of interests.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Davis, G. E., Baumgartner, M. F., Corkeron, P. J., Bell, J., Berchok, C., Bonnell, J. M., Thornton, J. B., Brault, S., Buchanan, G. A., Cholewiak, D. M., Clark, C. W., Delarue, J., Hatch, L. T., Klinck, H., Kraus, S. D., Martin, B., Mellinger, D. K., Moors-Murphy, H., Nieukirk, S., Nowacek, D. P., Parks, S. E., Parry, D., Pegg, N., Read, A. J., Rice, A. N., Risch, D., Scott, A., Soldevilla, M. S., Stafford, K. M., Stanistreet, J. E., Summers, E., Todd, S., & Van Parijs, S. M. Exploring movement patterns and changing distributions of baleen whales in the western North Atlantic using a decade of passive acoustic data. Global Change Biology, (2020): 1-30, doi:10.1111/gcb.15191.
    Description: Six baleen whale species are found in the temperate western North Atlantic Ocean, with limited information existing on the distribution and movement patterns for most. There is mounting evidence of distributional shifts in many species, including marine mammals, likely because of climate‐driven changes in ocean temperature and circulation. Previous acoustic studies examined the occurrence of minke (Balaenoptera acutorostrata ) and North Atlantic right whales (NARW; Eubalaena glacialis ). This study assesses the acoustic presence of humpback (Megaptera novaeangliae ), sei (B. borealis ), fin (B. physalus ), and blue whales (B. musculus ) over a decade, based on daily detections of their vocalizations. Data collected from 2004 to 2014 on 281 bottom‐mounted recorders, totaling 35,033 days, were processed using automated detection software and screened for each species' presence. A published study on NARW acoustics revealed significant changes in occurrence patterns between the periods of 2004–2010 and 2011–2014; therefore, these same time periods were examined here. All four species were present from the Southeast United States to Greenland; humpback whales were also present in the Caribbean. All species occurred throughout all regions in the winter, suggesting that baleen whales are widely distributed during these months. Each of the species showed significant changes in acoustic occurrence after 2010. Similar to NARWs, sei whales had higher acoustic occurrence in mid‐Atlantic regions after 2010. Fin, blue, and sei whales were more frequently detected in the northern latitudes of the study area after 2010. Despite this general northward shift, all four species were detected less on the Scotian Shelf area after 2010, matching documented shifts in prey availability in this region. A decade of acoustic observations have shown important distributional changes over the range of baleen whales, mirroring known climatic shifts and identifying new habitats that will require further protection from anthropogenic threats like fixed fishing gear, shipping, and noise pollution.
    Description: We thank Chris Pelkie, David Wiley, Michael Thompson, Chris Tessaglia‐Hymes, Eric Matzen, Chris Tremblay, Lance Garrison, Anurag Kumar, John Hildebrand, Lynne Hodge, Russell Charif, Kathleen Dudzinski, and Ann Warde for help with project planning, field work support, and data management. For all the support and advice, thanks to the NEFSC Protected Species Branch, especially the passive acoustics group, Josh Hatch, and Leah Crowe. We thank the field and crew teams on all the ships that helped in the numerous deployments and recoveries. This research was funded and supported by many organizations, specified by projects as follows: data recordings from region 1 were provided by K. Stafford (funding: National Science Foundation #NSF‐ARC 0532611). Region 2 data: D. K. Mellinger and S. Nieukirk, National Oceanic and Atmospheric Administration (NOAA) PMEL contribution #5055 (funding: NOAA and the Office of Naval Research #N00014–03–1–0099, NOAA #NA06OAR4600100, US Navy #N00244‐08‐1‐0029, N00244‐09‐1‐0079, and N00244‐10‐1‐0047). Region 3A data: D. Risch (funding: NOAA and Navy N45 programs). Region 3 data: H. Moors‐Murphy and Fisheries and Oceans Canada (2005–2014 data), and the Whitehead Lab of Dalhousie University (eastern Scotian Shelf data; logistical support by A. Cogswell, J. Bartholette, A. Hartling, and vessel CCGS Hudson crew). Emerald Basin and Roseway Basin Guardbuoy data, deployment, and funding: Akoostix Inc. Region 3 Emerald Bank and Roseway Basin 2004 data: D. K. Mellinger and S. Nieukirk, NOAA PMEL contribution #5055 (funding: NOAA). Region 4 data: S. Parks (funding: NOAA and Cornell University) and E. Summers, S. Todd, J. Bort Thornton, A. N. Rice, and C. W. Clark (funding: Maine Department of Marine Resources, NOAA #NA09NMF4520418, and #NA10NMF4520291). Region 5 data: S. M. Van Parijs, D. Cholewiak, L. Hatch, C. W. Clark, D. Risch, and D. Wiley (funding: National Oceanic Partnership Program (NOPP), NOAA, and Navy N45). Region 6 data: S. M. Van Parijs and D. Cholewiak (funding: Navy N45 and Bureau of Ocean and Energy Management (BOEM) Atlantic Marine Assessment Program for Protected Species [AMAPPS] program). Region 7 data: A. N. Rice, H. Klinck, A. Warde, B. Martin, J. Delarue, and S. Kraus (funding: New York State Department of Environmental Conservation, Massachusetts Clean Energy Center, and BOEM). Region 8 data: G. Buchanan, and K. Dudzinski (funding: New Jersey Department of Environmental Protection and the New Jersey Clean Energy Fund) and A. N. Rice, C. W. Clark, and H. Klinck (funding: Center for Conservation Bioacoustics at Cornell University and BOEM). Region 9 data: J. E. Stanistreet, J. Bell, D. P. Nowacek, A. J. Read, and S. M. Van Parijs (funding: NOAA and US Fleet Forces Command). Region 10 data: L. Garrison, M. Soldevilla, C. W. Clark, R. A. Chariff, A. N. Rice, H. Klinck, J. Bell, D. P. Nowacek, A. J. Read, J. Hildebrand, A. Kumar, L. Hodge, and J. E. Stanistreet (funding: US Fleet Forces Command, BOEM, NOAA, and NOPP). Region 11 data: C. Berchok as part of a collaborative project led by the Fundacion Dominicana de Estudios Marinos, Inc. (Dr. Idelisa Bonnelly de Calventi; funding: The Nature Conservancy [Elianny Dominguez]) and D. Risch (funding: World Wildlife Fund, NOAA, and Dutch Ministry of Economic Affairs).
    Keywords: baleen whales ; changes in distribution ; conservation ; North Atlantic Ocean ; passive acoustic monitoring ; seasonal occurrence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Romagnoni, G., Kvile, K. o., Dagestad, K., Eikeset, A. M., Kristiansen, T., Stenseth, N. C., & Langangen, O. Influence of larval transport and temperature on recruitment dynamics of North Sea cod (Gadus morhua) across spatial scales of observation. Fisheries Oceanography, (2020): 1-16, doi:10.1111/fog.12474.
    Description: The survival of fish eggs and larvae, and therefore recruitment success, can be critically affected by transport in ocean currents. Combining a model of early‐life stage dispersal with statistical stock–recruitment models, we investigated the role of larval transport for recruitment variability across spatial scales for the population complex of North Sea cod (Gadus morhua ). By using a coupled physical–biological model, we estimated the egg and larval transport over a 44‐year period. The oceanographic component of the model, capable of capturing the interannual variability of temperature and ocean current patterns, was coupled to the biological component, an individual‐based model (IBM) that simulated the cod eggs and larvae development and mortality. This study proposes a novel method to account for larval transport and success in stock–recruitment models: weighting the spawning stock biomass by retention rate and, in the case of multiple populations, their connectivity. Our method provides an estimate of the stock biomass contributing to recruitment and the effect of larval transport on recruitment variability. Our results indicate an effect, albeit small, in some populations at the local level. Including transport anomaly as an environmental covariate in traditional stock–recruitment models in turn captures recruitment variability at larger scales. Our study aims to quantify the role of larval transport for recruitment across spatial scales, and disentangle the roles of temperature and larval transport on effective connectivity between populations, thus informing about the potential impacts of climate change on the cod population structure in the North Sea.
    Description: G.R. was supported by the Norden Top‐level Research Initiative sub‐programme “Effect Studies and Adaptation to Climate Change” through the Nordic Centre for Research on Marine Ecosystems and Resources under Climate Change (NorMER). K.Ø.K. was supported by the WHOI John H. Steele Post‐doctoral Scholar award and VISTA – a basic research program in collaboration between The Norwegian Academy of Science and Letters, and Equinor. We thank an anonymous referee for valuable comments that substantially improved the article.
    Keywords: Atlantic cod ; biophysical model ; larval transport ; North Sea ; populations ; stock–recruitment ; temperature
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2022-05-25
    Description: Ecological stability under environmental change is determined by both interspecific and intraspecific processes. Particularly for planktonic microorganisms, it is challenging to follow intraspecific dynamics over space and time. We propose a new method, microsatellite PoolSeq barcoding (MPB), for tracing allele frequency changes in protist populations. We successfully applied this method to experimental community incubations and field samples of the diatom Thalassiosira hyalina from the Arctic, a rapidly changing ecosystem. Validation of the method found compelling accuracy in comparison with established genotyping approaches within different diversity contexts. In experimental and environmental samples, we show that MPB can detect meaningful patterns of population dynamics, resolving allelic stability and shifts within a key diatom species in response to experimental treatments as well as different bloom phases and years. Through our novel MPB approach, we produced a large dataset of populations at different time‐points and locations with comparably little effort. Results like this can add insights into the roles of selection and plasticity in natural protist populations under stable experimental but also variable field conditions. Especially for organisms where genotype sampling remains challenging, MPB holds great potential to efficiently resolve eco‐evolutionary dynamics and to assess the mechanisms and limits of resilience to environmental stressors.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2022-05-24
    Description: We have reinterpreted the causative fault parameters of the 2005 Zarand earthquake in the light of a new imagery study using Interferometric Synthetic Aperture Radar (InSAR). By conducting a joint inversion of two InSAR datasets, we can characterize the rupture as it relates to complex local structures. At first, the mainshock ruptured a nearly pure reverse fault, dipping ~65° NNW in the basement below the southeastern area of Zarand. Two more fault segments were subsequently activated: an oblique‐normal fault segment parallel to the first segment, dipping 61° to the south, and a normal‐oblique fault segment at the eastern termination of the rupture zone. The first fault segment ruptured the surface, while slip along the other two segments was confined to the lower sedimentary strata.
    Description: Published
    Description: 274-283
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2022-05-24
    Description: Pyroclastic currents are described as gravity currents, and the classic conceptual model gives a first-order importance to the density of such currents. This directs quantitative models to assume specific flow structures (shallow water or equilib rium turbulent boundary layer), which may apply to restricted volcanic areas inde pendently of source dynamics or may correspond to source dynamics separate from topographic interaction. The recent introduction of two end-members of pyroclastic currents, inertial and forced, is further developed here, leading to a global conceptual model in which source dynamics and topographic interaction are both taken into account. The concept of energy facies is defined here as the ensemble of the first order indicators of pyroclastic currents (topological aspect ratio, competence ratio and emplacement temperature) that are proxies of the energy of such currents. Nine energy facies are introduced with general applicability and with the goal to globally characterize pyroclastic currents from vent to deposit.
    Description: Published
    Description: 1-11
    Description: 4V. Processi pre-eruttivi
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Energy facies ; pyroclastic currents
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2022-05-16
    Description: The island of Ischia, an active volcanic field emerging in the western sector of the Gulf of Naples (Southern Italy), represents an archetypal case of caldera that underwent a very large resurgence related to the intrusion of a shallow magma body. The resurgence culminated with the formation of a structural high in the central sector of the island, i.e., the Mt. Epomeo block. This is bordered by a system of faults along which volcanic activity occurred up to 1302 A.D., and damaging earthquakes were generated in historical and recent time. The seismicity is located prevalently in the northern sector of the island and appears to be correlated with the most recent phase (〈5 ka) of ground movement (subsidence), although the mechanism of earthquakes’ generation is still debated. By jointly analyzing offshore and onshore data (seismic profile and stratigraphy wells, respectively) and new petrological and geochemical data related to the most recent phase of volcano-tectonic activity, we develop a geological and structural layout of the northern sector of the island. In particular, we identify the seismogenic fault associated with the historical and recent destructive earthquakes of Ischia. This fault formed in the northern sector of the island during the final stage of the resurgence.We also propose a conceptual volcano-tectonic model of the northern sector of the Ischia Island, depicting the displacement of the fault zones in the off-shore area and the possible mechanism of stress loading and release in the on-shore zone, which is mainly driven by the subsidence of the Mt. Epomeo block. Our results are crucial for evaluating the dynamics of the seismogenic structures in the framework
    Description: Published
    Description: 730023
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2022-05-16
    Description: SOURCE utility for reprocessing, calibration, and evaluation is a software designed for web applications that permits to calibrate and validate ocean models within a selected spatial domain using in-situ observations. Nowadays, in-situ observations can be freely accessed online through several marine data portals together with the metadata information about the data provenance and its quality. Metadata information and compliance with modern data standards allow the user to select and filter the data according to the level of quality required for the intended use and application. However, the available data sets might still contain anomalous data, bad data flagged as good, due to several reasons, i.e., the general quality assurance procedures adopted by the data infrastructure, the selected data type, the timeliness of delivery, etc. In order to provide accurate model skill scores, the SOURCE utility performs a secondary quality check, or re-processing, of observations through gross check tests and a recursive statistical quality control. This first and basic SOURCE implementation uses Near Real Time moored temperature and salinity observations distributed by the Copernicus Marine Environment and Monitoring Service (CMEMS) and two model products from Istituto Nazionale di Geofisica e Vulcanologia (INGV), the first an analysis and the second a reanalysis, distributed during CMEMS phase I for the Mediterranean Sea. The SOURCE tool is freely available to the scientific community through the ZENODO open access repository, consistent with the open science principles and for that it has been designed to be relocatable, to manage multiple model outputs, and different data types. Moreover, its observation reprocessing module provides the possibility to characterize temperature and salinity variability at each mooring site and continuously monitor the ocean state. Highest quality mooring time series at 90 sites and the corresponding model values have been obtained and used to compute model skill scores. The SOURCE output also includes mooring climatologies, trends, Probability Density Functions and averages at different time scales. Model skill scores and site statistics can be used to visually inspect both model and sensor performance in Near Real Time at the single site or at the basin scale. The SOURCE utility uptake allows the interested user to adapt it to its specific purpose or domain, including for example additional parameters and statistics for early warning applications.
    Description: This work has been co-funded by the Italian RITMARE Flagship Project and the INGV internal project Relocatable integrated Cal/Val system for sea observations reprocessing and ocean models evaluation (project code 9999.526 - RL2019)
    Description: Published
    Description: 750387
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2022-05-03
    Description: Shallow seabed depressions attributed to focused fluid seepage, known as pock- marks, have been documented in all continental margins. In this study, we dem- onstrate how pockmark formation can be the result of a combination of multiple factors— fluid type, overpressures, seafloor sediment type, stratigraphy and bot- tom currents. We integrate multibeam echosounder and seismic reflection data, sediment cores and pore water samples, with numerical models of groundwa- ter and gas hydrates, from the Canterbury Margin (off New Zealand). More than 6800 surface pockmarks, reaching densities of 100 per km2, and an undefined number of buried pockmarks, are identified in the middle to outer shelf and lower continental slope. Fluid conduits across the shelf and slope include shal- low to deep chimneys/pipes. Methane with a biogenic and/or thermogenic origin is the main fluid forming flow and escape features, although saline and fresh- ened groundwaters may also be seeping across the slope. The main drivers of fluid flow and seepage are overpressure across the slope generated by sediment loading and thin sediment overburden above the overpressured interval in the outer shelf. Other processes (e.g. methane generation and flow, a reduction in hydrostatic pressure due to sea- level lowering) may also account for fluid flow and seepage features, particularly across the shelf. Pockmark occurrence coin- cides with muddy sediments at the seafloor, whereas their planform is elongated by bottom currents.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2022-05-02
    Description: The entanglement between active tectonics and karst systems is well-known in the literature. Karst systems are sound recorders of continental deformation in terms of brittle structures and seismic features and have been successfully used as markers for reconstructing tectonic stresses and assessing preferential directions of increased permeability in oil and gas fields. Karst systems could also be exploited to evaluate the past activity of faults bounding karst hydrostructures, thus providing useful data for the assessment of the seismic hazard of a specific area. In this work, we look into the complex relationship among karst development, recent tectonics and groundwater flow, which appear to be strongly interconnected with each other, to assess the activity of faults bounding karst hydrostructures. We focused our attention on an active karst area located in the Mesozoic and Cenozoic carbonate reliefs of the Italian central Apennines. In this context, the morphological and morphometric features of the karst landforms (dolines, dry valleys, and cave entrances), identified with geomorphological surveys, and their mutual relationship with fractures and fault segments, identified employing geostructural analysis, document stasis and deepening events in karst evolution. Such events are related to changes in the groundwater table and the consequent variation of the paleokarst base level associated with the Quaternary fault activity. A comprehensive evaluation of the evolution of karst systems at local and regional scales, considering the hydrogeological influence on base levels, allows us to use karst landforms as a proxy to unravel fault activity and evolution in Italy and in other similar karst environments.
    Description: Published
    Description: 891319
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2022-04-28
    Description: Submarine hydrothermal systems along active volcanic ridges and arcs are highly dynamic, responding to both oceanographic (e.g., currents, tides) and deep-seated geological forcing (e.g., magma eruption, seismicity, hydrothermalism, and crustal deformation, etc.). In particular, volcanic and hydrothermal activity may also pose profoundly negative societal impacts (tsunamis, the release of climate-relevant gases and toxic metal(loid)s). These risks are particularly significant in shallow (〈1000m) coastal environments, as demonstrated by the January 2022 submarine paroxysmal eruption by the Hunga Tonga-Hunga Ha’apai Volcano that destroyed part of the island, and the October 2011 submarine eruption of El Hierro (Canary Islands) that caused vigorous upwelling, floating lava bombs, and natural seawater acidification. Volcanic hazards may be posed by the Kolumbo submarine volcano, which is part of the subduction-related Hellenic Volcanic Arc at the intersection between the Eurasian and African tectonic plates. There, the Kolumbo submarine volcano, 7 km NE of Santorini and part of Santorini’s volcanic complex, hosts an active hydrothermal vent field (HVF) on its crater floor (~500m b.s.l.), which degasses boiling CO2–dominated fluids at high temperatures (~265°C) with a clear mantle signature. Kolumbo’s HVF hosts actively forming seafloor massive sulfide deposits with high contents of potentially toxic, volatile metal(loid)s (As, Sb, Pb, Ag, Hg, and Tl). The proximity to highly populated/tourist areas at Santorini poses significant risks. However, we have limited knowledge of the potential impacts of this type of magmatic and hydrothermal activity, including those from magmatic gases and seismicity. To better evaluate such risks the activity of the submarine system must be continuously monitored with multidisciplinary and high resolution instrumentation as part of an in-situ observatory supported by discrete sampling and measurements. This paper is a design study that describes a new long-term seafloor observatory that will be installed within the Kolumbo volcano, including cutting-edge and innovative marine-technology that integrates hyperspectral imaging, temperature sensors, a radiation spectrometer, fluid/gas samplers, and pressure gauges. These instruments will be integrated into a hazard monitoring platform aimed at identifying the precursors of potentially disastrous explosive volcanic eruptions, earthquakes, landslides of the hydrothermally weakened volcanic edifice and the release of potentially toxic elements into the water column.
    Description: Published
    Description: 796376
    Description: 1V. Storia eruttiva
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Description: 4A. Oceanografia e clima
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2022-04-24
    Description: Hillaire‐Marcelet al. bring forward several physical and geochemical arguments against our finding of an Arctic glaciolacustrine system in the past. In brief, we find that a physical approach to further test our hypothesis should additionally consider the actual bathymetry of the Greenland–Scotland Ridge (GSR), the density maximum of freshwater at 3–4°C, the sensible heat flux from rivers, and the actual volumes that are being mixed and advected. Their geochemical considerations acknowledge our original argument, but they also add a number of assumptions that are neither required to explain the observations, nor do they correspond to the lithology of the sediments. Rather than being additive in nature, their arguments of high particle flux, low particle flux, export of 230Th and accumulation of 230Th, are mutually exclusive. We first address the arguments above, before commenting on some misunderstandings of our original claim in their contribution, especially regarding our dating approach.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2022-04-22
    Description: Integrated electron microprobe analyses (EMPAs) on glass and Sr–Nd isotope analyses have been performed on 17 tephras from the Middle Pleistocene Mercure lacustrine succession, southern Apennines. Two 40Ar/39Ar ages and the recognition of four relevant tephras from Colli Albani, Sabatini and possibly Roccamonfina volcanoes allowed us to ascribe the investigated succession to the late Marine Isotope Stage (MIS) 15–12 interval (560–440 ka). The Sr–Nd isotopes and major element glass compositions allowed us to attribute 10 out of the other 13 tephras to a poorly known activity of the Roccamofina volcano, whereas two layers were tentatively attributed to previously unknown Middle Pleistocene activity of Ponza Island or Campanian volcanoes, and one to Salina Island. The tephrostratigraphic correlation of the Mercure tephras with the Acerno lacustrine pollen record (Campania) also allowed us to evaluate the climatostratigraphic position of the tephras within the framework of the MIS 15–12 climatic variability. These results were obtained by combining the Sr–Nd isotope ratio with EMPA and 40Ar/39Ar geochronological data. This confirms the notable consistency of this approach for studying the Mediterranean Middle Pleistocene tephrostratigraphy, which, despite its great potential for both volcanology and Quaternary studies, has been hitherto barely explored.
    Description: Published
    Description: 232–248
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 4V. Processi pre-eruttivi
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: 40Ar/39Ar dating; EMPA glass compositions ; Middle Pleistocene; ; peri-Tyrrhenian explosive volcanisms ; Sr isotopes.
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2022-04-21
    Description: We use a novel technique named global-phase seismic interferometry (GloPSI) to image the lithospheric structure, and in particular the Moho, below two parallel north-south transects belonging to the GANSSER network (2013–2014). The profiles cross the Himalayan orogenic wedge in Bhutan, a tectonically important area within the largest continent-continent collision zone on Earth that is still undergoing crustal thickening and represents a challenging imaging target for the GloPSI approach. GloPSI makes use of direct waves from distant earthquakes and receiver-side reverberations with near vertical incidence. Reflections are isolated from earthquake recordings by solving a correlation integral and are turned into a reflectivity image of the lithosphere below the arrays. Our results compare favorably with first-order features observed from a previous receiver function (RF) study. We show that a combined interpretation of GloPSI and RF results allows for a more in-depth understanding of the lithospheric structure across the orogenic wedge in Bhutan.
    Description: Published
    Description: 658146
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2022-03-29
    Description: Earthquake Early Warning Systems (EEWSs) represent a technical-scientific challenge aimed at improving the chance of the population exposed to the earthquake shaking of surviving or being less affected. The ability of an EEWS to affect the risk and, in particular, vulnerability and exposure, may determine serious legal responsibilities for people involved in the system, as scientists and experts. The main question concerns, in fact, the relationship between EEWSs and the predictability and avoidability of earthquake effects-i.e., the ground shaking affecting citizens and infrastructures - and the possibility for people to adopt self-protective behavior and/or for industrial infrastructures to be secured. In Italy, natural disasters, such as the 2009 L’Aquila earthquake, teach us that the relationship between science and law is really difficult. So, before EEW’s become operational in Italy, it is necessary to: 1) examine the legislative and technical solutions adopted by some of the international legal systems in countries where this service is offered to citizens; 2) reconstruct the international and European regulatory framework that promotes the introduction of EW systems as life-saving tools for the protection of the right to life and understand whether and how these regulatory texts can impose an obligation on the Italian legal system to develop EEWS; 3) understand what responsibilities could be ascribed to the scientists and technicians responsible for managing EEWS in Italy, analyzing the different impact of vulnerability and exposure on the predictability and avoidability of the harmful event; 4) reflect on the lessons that our legal system will have to learn from other Countries when implementing EEW systems. In order to find appropriate solutions, it is essential to reflect on the opportunity to provide shared and well-structured protocols and creating detailed disclaimers clearly defining the limits of the service. A central role must be recognized to education, because people should not only expect to receive a correct alarm but must be able to understand the uncertainties involved in rapid estimates, be prepared to face the risk, and react in the right way.
    Description: This work has been carried out within the Project ART-IT (Allerta Rapida Terremoti in Italia), funded by the Italian Ministry of University and Research (Progetto Premiale 2015, DM. 850/2017).
    Description: Published
    Description: 685153
    Description: 1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami
    Description: JCR Journal
    Keywords: earthquake, early warning, criminal liability, negligence, risk ; Early warning, criminal law, human rights
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Limnology and Oceanography Letters, Wiley, 7(2), pp. 167-174, ISSN: 2378-2242
    Publication Date: 2022-03-25
    Description: The end of the polar night with the concurrent onset of photosynthetic biomass production ultimately leads to the spring bloom, which represents the most important event of primary production for the Arctic marine ecosystem. This dataset shows, for the first time, significant in situ biomass accumulation during the dark–light transition in the high Arctic, as well as the earliest recorded positive net primary production rates together with constant chlorophyll a-normalized potential for primary production through winter and spring. The results indicate a high physiological capacity to perform photosynthesis upon re-illumination, which is in the same range as that observed during the spring bloom. Put in context with other data, the results of this study indicate that also active cells originating from the low winter standing stock in the water column, rather than solely resting stages from the sediment, can seed early spring bloom assemblages.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2022-03-22
    Description: On May 14, 2019, a strong Mw = 7.6 shallow earthquake occurred in Papua New Guinea. This paper explores for the first time the analysis of total electron content (TEC) products measured for 6 months by GPS antenna onboard Swarm satellites, to detect possible seismo-ionospheric anomalies around the time and location of the above-mentioned earthquake. The night-time vertical total electron content (VTEC) time series measured using Swarm satellites Alpha and Charlie, inside the earthquake Dobrovolsky’s area show striking anomalies 31 and 35 days before the event. We successfully verified the possible presence of concomitant anomalous values of in situ electron density detected by the new Chinese satellite dedicated to search for electromagnetic earthquake precursors [China Seismo-Electromagnetic Satellite (CSES)-01]. On the other hand, the analysis of VTEC night time measured by Swarm Bravo shows gradual and abnormal increase of the VTEC parameter from about 23 days before the earthquake, which descends 3 days before the earthquake and reaches its lowest level around the earthquake day. We also analyzed the time series and tracks of other six in situ parameters measured by Swarm satellites, electron density from CSES, and also GPS-TEC measurements. As it is expected from the theory, the electron density anomalous variations acknowledge the Swarm VTEC anomalies, confirming that those anomalies are real and not an artifact of the analysis. The comparative analysis with measurements of other Swarm and CSES sensors emphasizes striking anomalies about 2.5 weeks before the event, with a clear pattern of the whole anomalies typical of a critical system as the earthquake process is for Earth. A confutation analysis outside the Dobrovolsky area and without significant seismicity shows no anomalies. Therefore based on our study, the VTEC products of Swarm satellites could be an appropriate precursor aside from the other measured plasma and magnetic parameters using Alpha, Bravo, and Charlie Swarm and CSES satellites that can be simultaneously analyzed to reduce the overall uncertainty.
    Description: Published
    Description: 820189
    Description: 7T. Variazioni delle caratteristiche crostali e "precursori"
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2022-03-21
    Description: During the lithospheric buildup to an earthquake, complex physical changes occur within the earthquake hypocenter. Data pertaining to the changes in the ionosphere may be obtained by satellites, and the analysis of data anomalies can help identify earthquake precursors. In this paper, we present a deep-learning model, SeqNetQuake, that uses data from the first China Seismo-Electromagnetic Satellite (CSES) to identify ionospheric perturbations prior to earthquakes. SeqNetQuake achieves the best performance [F-measure (F1) = 0.6792 and Matthews correlation coefficient (MCC) = 0.427] when directly trained on the CSES dataset with a spatial window centered on the earthquake epicenter with the Dobrovolsky radius and an input sequence length of 20 consecutive observations during night time. We further explore a transferring learning approach, which initially trains the model with the larger Electro-Magnetic Emissions Transmitted from the Earthquake Regions (DEMETER) dataset, and then tunes the model with the CSES dataset. The transfer-learning performance is substantially higher than that of direct learning, yielding a 12% improvement in the F1 score and a 29% improvement in the MCC value. Moreover, we compare the proposed model SeqNetQuake with other five benchmarking classifiers on an independent test set, which shows that SeqNetQuake demonstrates a 64.2% improvement in MCC and approximately a 24.5% improvement in the F1 score over the second-best convolutional neural network model. SeqNetSquake achieves significant improvement in identifying pre-earthquake ionospheric perturbation and improves the performance of earthquake prediction using the CSES data.
    Description: Published
    Description: 779255
    Description: 7T. Variazioni delle caratteristiche crostali e "precursori"
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2022-03-21
    Description: The oceans are a fundamental source for climate balance, sustainability of resources and life on Earth, therefore society has a strong and pressing interest in maintaining and, where possible, restoring the health of the marine ecosystems. Effective, integrated ocean observation is key to suggesting actions to reduce anthropogenic impact from coastal to deep-sea environments and address the main challenges of the 21st century, which are summarized in the UN Sustainable Development Goals and Blue Growth strategies. The European Multidisciplinary Seafloor and water column Observatory (EMSO), is a European Research Infrastructure Consortium (ERIC), with the aim of providing long-term observations via fixed-point ocean observatories in key environmental locations across European seas from the Arctic to the Black Sea. These may be supported by ship-based observations and autonomous systems such as gliders. In this paper, we present the EMSO Generic Instrument Module (EGIM), a deployment ready multi-sensor instrumentation module, designed to measure physical, biogeochemical, biological and ecosystem variables consistently, in a range of marine environments, over long periods of time. Here, we describe the system, features, configuration, operation and data management. We demonstrate, through a series of coastal and oceanic pilot experiments that the EGIM is a valuable standard ocean observation module, which can significantly improve the capacity of existing ocean observatories and provides the basis for new observatories. The diverse examples of use included the monitoring of fish activity response upon oceanographic variability, hydrothermal vent fluids and particle dispersion, passive acoustic monitoring of marine mammals and time series of environmental variation in the water column. With the EGIM available to all the EMSO Regional Facilities, EMSO will be reaching a milestone in standardization and interoperability, marking a key capability advancement in addressing issues of sustainability in resource and habitat management of the oceans.
    Description: project EMSODEV (Grant agreement No 676555)
    Description: Published
    Description: 801033
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Description: JCR Journal
    Keywords: fixed-point observatories, multi-parametric monitoring, seafloor, water column, EMSO, EGIM, EOV ; seafloor observatories
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2022-03-16
    Description: Tectono-stratigraphic interpretation and sequential restoration modelling was performed over two high-resolution seismic profiles crossing the Western Ionian Basin of southern Italy. This analysis was undertaken in order to provide greater insights and a more reliable assessment of the deformation rate affecting the area. Offshore seismic profiling illuminates the sub-seafloor setting where a belt of active normal faults slice across the foot of the Malta Escarpment, a regional-scale structural boundary inherited from the Permo-Triassic palaeotectonic setting. A sequential restoration workflow was established to back-deform the entire investigated sector with the primary aim of analysing the deformation history of the three major normal faults affecting the area. Restoration of the tectono-stratigraphic model reveals how deformation rates evolved through time. In the early stage, the studied area experienced a significant deformation with the horizontal component prevailing over the vertical element. In this context, the three major faults contribute to only one third of the total deformation. The overall throw and extension then notably reduced through time towards the present day and, since the middle Pliocene, ongoing crustal deformation is accommodated almost entirely by the three major normal faults. Unloading and decompaction indicate that when compared to the unrestored seismic sections, a revision and a reduction of roughly one third of the vertical displacement of the faults offset is required. This analysis ultimately allows us to better understand the seismic potential of the region.
    Description: Published
    Description: 321-341
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2022-03-11
    Description: As the Arctic coast erodes, it drains thermokarst lakes, transforming them into lagoons and, eventually, integrates them into subsea permafrost. Lagoons represent the first stage of a thermokarst lake transition to a marine setting and possibly more saline and colder upper boundary conditions. In this research, borehole data, electrical resistivity surveying, and modelling of heat and salt diffusion were carried out at Polar Fox Lagoon on the Bykovsky Peninsula, Siberia. Polar Fox Lagoon is a seasonally isolated water body connected to Tiksi Bay through a channel, leading to hypersaline waters under the ice cover. The boreholes in the centre of the lagoon revealed floating ice and a saline cryotic bed underlain by a saline cryotic talik, a thin ice‐bearing permafrost layer, and unfrozen ground. The bathymetry showed that most of the lagoon was ice‐grounded in spring. In bedfast ice areas, the electrical resistivity profiles suggest that an unfrozen saline layer was underlain by a thick layer of refrozen talik. The modelling suggests thermokarst lake taliks refreeze when submerged in saltwater with mean annual bottom water temperatures below or slightly above 0 °C. This occurs, because the top‐down chemical degradation of newly formed ice‐bearing permafrost is slower than the cooling of the talik. Hence, lagoons may pre‐condition taliks with a layer of ice‐bearing permafrost before encroachment by the sea and this frozen layer may act as a cap on gas migration out of the underlying talik.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2022-03-07
    Description: Fjords are recognized as hotspots of organic carbon (OC) burial in the coastal ocean. In fjords with glaciated catchments, glacier discharge carries large amounts of suspended matter. This sedimentary load includes OC from bedrock and terrigenous sources (modern vegetation, peat, soil deposits), which is either buried in the fjord or remineralized during export, acting as a potential source of CO2 to the atmosphere. In sub-Antarctic South Georgia, fjord-terminating glaciers have been retreating during the past decades, likely as a response to changing climate conditions. We determine sources of OC in surface sediments of Cumberland Bay, South Georgia, using lipid biomarkers and the bulk 14C isotopic composition, and quantify OC burial at present and for the time period of documented glacier retreat (between 1958 and 2017). Petrogenic OC is the dominant type of OC in proximity to the present-day calving fronts (60.4 ± 1.4% to 73.8 ± 2.6%) and decreases to 14.0 ± 2.7% outside the fjord, indicating that petrogenic OC is effectively buried in the fjord. Beside of marine OC, terrigenous OC comprises 2.7 ± 0.5% to 7.9 ± 5.9% and is mostly derived from modern plants and Holocene peat and soil deposits that are eroded along the flanks of the fjord, rather than released by the retreating fjord glaciers. We estimate that the retreat of tidewater glaciers between 1958 and 2017 led to an increase in petrogenic carbon accumulation of 22% in Cumberland West Bay and 6.5% in Cumberland East Bay, suggesting that successive glacier retreat does not only release petrogenic OC into the fjord, but also increases the capacity of OC burial.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2022-03-07
    Description: Decades of geochemical monitoring at active crater lakes worldwide have confirmed that variations in major elements and physico-chemical parameters are useful to detect changes in volcanic activity. However, it is still arduous to identify precursors of single phreatic eruptions. During the unrest phase of 2009–2016, at least 679 phreatic eruptions occurred at the hyperacid and hypersaline crater lake Laguna Caliente of Poás volcano (Costa Rica). In this study, we investigate the temporal variations of Rare Earth Elements (REE) dissolved in Laguna Caliente in order to 1) scrutinize if they can be used as a new geochemical tool to monitor changes of phreatic activity at hyperacid crater lakes and 2) identify the geochemical processes responsible for the variations of REE concentrations in the lake. The total concentration of REE varies from 950 to 2,773 μg kg−1. (La/Pr)N-local rock ratios range from 0.93 to 1.35, and Light REE over Heavy REE (LREE/HREE)N-local rock ratios vary from 0.71 to 0.95. These same parameters vary in relation to significant changes in phreatic activity; in particular, the (La/Pr)N-local rock ratio increases as phreatic activity increases, while that of (LREE/HREE)N-local rock decreases when phreatic activity increases. REE concentrations and their ratios were compared with the variations of major elements and physico-chemical parameters of the lake. Calcium versus (La/Pr)N-local rock and versus (LREE/HREE)N-local rock ratios show different trends compared to the other major elements (Na, K, Mg, Al, Fe, SO4, and Cl). Moreover, a higher loss of Ca (up to 2,835 ppm) in lake water was found with respect to the loss of Al, K, and Na. This loss of Ca is argued to be due to gypsum precipitation, a process corroborated by the mass balance calculation simulating the precipitation of gypsum and the contemporaneous removal of REE from the lake water. The observed relations between REE, changes in phreatic activity, and the parameters commonly used for the monitoring of hyperacid volcanic lakes encourage investigating more on the temporal and cause-effect relationship between REE dynamics and changes in phreatic activity at crater lake-bearing volcanoes.
    Description: Published
    Description: 716970
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: Rare Earth Elements ; Poas Volcano ; phreatic eruptions ; geochemical monitoring ; hyperacid volcanic lakes ; Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2022-03-07
    Description: Coastal and ocean island volcanoes are renowned for having unstable flanks. This can lead to flank deformation on a variety of temporal and spatial scales ranging from slow creep to catastrophic sector collapse. A large section of these unstable flanks is often below sea level, where information on the volcano-tectonic structure and ground deformation is limited. Consequently, kinematic models that attempt to explain measured ground deformation onshore associated with flank instability are poorly constrained in the offshore area. Here, we attempt to determine the locations and the morpho-tectonic structures of the boundaries of the submerged unstable southeastern flank of Mount Etna (Italy). The integration of new marine data (bathymetry, microbathymetry, offshore seismicity, reflection seismic lines) and published marine data (bathymetry, seafloor geodesy, reflection seismic lines) allows identifying the lineament north of Catania Canyon as the southern lateral boundary with a high level of confidence. The northern and the distal (seaward) boundaries are less clear because no microbathymetric or seafloor geodetic data are available. Hypotheses for their locations are presented. Geophysical imaging suggests that the offshore Timpe Fault System is a shallow second-order structure that likely results from extensional deformation within the moving flank. Evidence for active uplift and compression upslope of the amphitheater-shaped depression from seismic data along with subsidence of the onshore Giarre Wedge block observed in ground deformation data leads us to propose that this block is a rotational slump, which moves on top of the large-scale instability. The new shoreline-crossing structural assessment may now inform and improve kinematic models.
    Description: Published
    Description: 810790
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: seafloor ; fault ; flank dynamics ; hydroacoustic ; geodesy ; seismic profiles ; 04.07. Tectonophysics ; 04.08. Volcanology ; 04.06. Seismology ; 04.02. Exploration geophysics ; 05.02. Data dissemination
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...