ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (5,804,766)
  • Springer Nature  (1,070,391)
  • Blackwell Publishing Ltd  (182,058)
Collection
Publisher
Language
Years
  • 1
    Publication Date: 2024-06-11
    Description: The Southern Ocean is a major region of ocean carbon uptake, but its future changes remain uncertain under climate change. Here we show the projected shift in the Southern Ocean CO2 sink using a suite of Earth System Models, revealing changes in the mechanism, position and seasonality of the carbon uptake. The region of dominant CO2 uptake shifts from the Subtropical to the Antarctic region under the high-emission scenario. The warming-driven sea-ice melt, increased ocean stratification, mixed layer shoaling, and a weaker vertical carbon gradient is projected to together reduce the winter de-gassing in the future, which will trigger the switch from mixing-driven outgassing to solubility-driven uptake in the Antarctic region during the winter season. The future Southern Ocean carbon sink will be poleward-shifted, operating in a hybrid mode between biologically-driven summertime and solubility-driven wintertime uptake with further amplification of biologically-driven uptake due to the increasing Revelle Factor.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-06-11
    Description: In Central Yakutia (Siberia) livelihoods of local communities depend on alaas (thermokarst depression) landscapes and the lakes within. Development and dynamics of these alaas lakes are closely connected to climate change, permafrost thawing, catchment conditions, and land use. To reconstruct lake development throughout the Holocene we analyze sedimentary ancient DNA (sedaDNA) and biogeochemistry from a sediment core from Lake Satagay, spanning the last c. 10,800 calibrated years before present (cal yrs BP). SedaDNA of diatoms and macrophytes and microfossil diatom analysis reveal lake formation earlier than 10,700 cal yrs BP. The sedaDNA approach detected 42 amplicon sequence variants (ASVs) of diatom taxa, one ASV of Eustigmatophyceae (Nannochloropsis), and 12 ASVs of macrophytes. We relate diatom and macrophyte community changes to climate-driven shifts in water level and mineral and organic input, which result in variable water conductivity, in-lake productivity, and sediment deposition. We detect a higher lake level and water conductivity in the Early Holocene (c. 10,700–7000 cal yrs BP) compared to other periods, supported by the dominance of Stephanodiscus sp. and Stuckenia pectinata. Further climate warming towards the Mid-Holocene (7000–4700 cal yrs BP) led to a shallowing of Lake Satagay, an increase of the submerged macrophyte Ceratophyllum, and a decline of planktonic diatoms. In the Late Holocene (c. 4700 cal yrs BP–present) stable shallow water conditions are confirmed by small fragilarioid and staurosiroid diatoms dominating the lake. Lake Satagay has not yet reached the final stage of alaas development, but satellite imagery shows an intensification of anthropogenic land use, which in combination with future warming will likely result in a rapid desiccation of the lake.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-06-11
    Description: Highlights • Statistically different gas geochemistry was observed in two adjacent springs. • About 74% of helium was contributed by the mantle. • Excess N2 relative to Ar was attributed to subducted materials and seawater mixing. • Magmatic CO2 has been largely removed by calcite precipitation in the reaction zone. • The residual CO2 may also be supplied by microbial oxidation of alkanes. Gas emissions from hydrothermal systems can serve as indicators of subsurface activity. In addition to gas sources, hydrothermal gas geochemistry is strongly influenced by secondary processes that occur during/after hydrothermal circulation. Here, we observed statistically significant differences in the geochemical characteristics (except for helium isotopes) of bubbling gases discharged from two adjacent vents in the Northern Luzon Arc. Helium (3He/4He = 4.25–7.09 Ra) in both vents was controlled by mixing between mantle and crustal components, where about 74% of helium was contributed by the mantle. Differences in N2/Ar ratios (∼ 300–330) of the two neighboring springs are attributed to subducted materials and seawater mixing (contributing ∼2.5% N2 and Ar), rather than phase separation in the reaction zone. Specifically, Ar was mainly supplied by atmospheric components that dissolved in the percolated seawater with only 8%–9% contributed by the excess radiogenic 40Ar. Excess N2 relative to Ar was mainly supplied by the decomposition of subducted materials (83%–92%) of the South China Sea plate beneath the Philippine Sea Plate. The Lutao gases showed low CO2 concentrations (0.07–22.2 mmol/mol), despite the high 3He/4He ratios indicating a significant contribution of magmatic components. Magmatic CO2 may have been largely consumed by the high Ca Lutao vent fluids via carbonate precipitation in the reaction zone. Alternatively, stable carbon isotope compositions (δ13C) indicate that Lutao CO2 may be supplied by microbial oxidation of alkanes (e.g., CH4 with concentrations of 14.6–173 mmol/mol in the samples), with fractionation factor ΔCO2–CH4 ranging from −15‰ to −25‰ and conversion rates of 〈10%. Up to 65% of the CO2 in the 2016 samples experienced secondary calcite precipitation in the discharge zone. Our results indicate that recycled subducted materials could potentially affect the geochemical characteristics of gases discharged from arc-volcanic systems. In addition, the influence of secondary processes needs to be considered before tracing the sources of hydrothermal fluids and/or gases, especially in shallow-water hydrothermal systems.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-06-11
    Description: Abundant mineral resources in the deep sea are prospected for mining for the global metal market. Seafloor massive sulphide (SMS) deposits along the Mid-Atlantic Ridge are one of the potential sources for these metals. The extraction of SMS deposits will expose adjacent marine ecosystems to suspended particle plumes charged with elevated concentrations of heavy metals and other potentially toxic compounds. Up to date there is no information about the impact of mining activities on deep-sea benthic ecosystems such as abundant deep-sea sponge grounds in the North Atlantic Ocean. Sponge grounds play a major role in benthic-pelagic coupling and represent an important habitat for a diversity of vertebrates, invertebrates and microorganisms. To simulate the effects of mining plumes on benthic life in the deep sea, we exposed Geodia barretti, a dominant sponge species in the North Atlantic Ocean, and an associated brittle star species from the genus Ophiura spp. to a field-relevant concentration of 30 mg L−1 suspended particles of crushed SMS deposits. Three weeks of exposure to suspended particles of crushed SMS resulted in a tenfold higher rate of tissue necrosis in sponges. All brittle stars in the experiment perished within ten days of exposure. SMS particles were evidently accumulated in the sponge's mesohyl and concentrations of iron and copper were 10 times elevated in SMS exposed individuals. Oxygen consumption and clearance rates were significantly retarded after the exposure to SMS particles, hampering the physiological performance of G. barretti. These adverse effects of crushed SMS deposits on G. barretti and its associated brittle star species potentially cascade in disruptions of benthic-pelagic coupling processes in the deep sea. More elaborate studies are advisable to identify threshold levels, management concepts and mitigation measures to minimize the impact of deep-sea mining plumes on benthic life.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-06-07
    Description: Deep convection in the Subpolar Gyre (SPG) forms a link between the upper and lower limbs of the Atlantic Meridional Overturning Circulation (AMOC). The intensity of convection in ocean studies is usually estimated using mixed layer depth (MLD). Here MLD is derived using vertical profiles of potential density from the gridded ARMOR3D dataset and from in situ observations of the EN4 dataset. Given limited areas of convective chimneys, the robustness of the estimates from an available set of vertical profiles needs to be verified before accessing mechanisms of interannual variability of deep convection. For reaching this goal, we first outlined three convection domains in the SPG with a high frequency of deep convection events: the southwestern Labrador Sea (L-DC), the central Irminger Sea (I-DC), and the area south of Cape Farewell (F-DC). The minimum number of randomly scattered casts, required to be executed from January to April for a robust estimate of the maximum MLD, depends on the typical area of the convective regions within the domain and forms 50 casts for L-DC, 40 casts for I-DC and 10 casts for F-DC. For the investigated convection domains, a sufficient number of casts were collected for several standalone winters of the late 1990s, while continuous time series of the convection intensity can be obtained only since the mid-2000s.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-06-07
    Description: The impact of oxygen on the preservation of organic matter in marine surface sediments is still controversial. We revisited this long-standing debate by determining the burial efficiency of sedimentary organic matter in the Black Sea, the largest anoxic and euxinic basin in the modern ocean. Surface sediments were sampled in the Danube paleodelta on the northwestern margin of the Black Sea at 420–1550 m water depth. Steady-state modeling of solid species (particulate organic carbon and nitrogen) and solutes (ammonium, sulfate, and total alkalinity) in sediments was performed to quantify rates of mass accumulation, particulate organic matter (POM) degradation, and POM burial. We develop a novel analytical model to quantify these rates applying an inverse modelling approach to down core data accounting for molecular diffusion, sediment burial and compaction. Our model results indicate that 56.7 ± 6.6 % of the particulate organic matter deposited in the study area is not degraded in surface sediments but accumulates below 10 cm sediment depth. This burial efficiency is substantially higher than those previously derived for seafloor areas underlying oxygenated bottom waters. Hence, our study confirms previous studies showing that euxinic bottom water conditions promote the preservation of particulate organic matter in marine sediments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-06-07
    Description: We present a detailed field and petrological study of charnockites and ultra-high temperature (UHT) granulites from the Gruf Complex, eastern Central Alps. Charnockites occur as up to 0.5 km wide and 8 km long, internally boudinaged, opx-bearing sheet-like bodies within the regionally dominant migmatitic biotite-orthogneisses. Granulites occur as garnet–orthopyroxene–biotite–alkali feldspar-bearing schlieren (± sapphirine, sillimanite, cordierite, corundum, spinel, plagioclase, and quartz) within charnockites and as residual enclaves both in the charnockites and the migmatitic orthogneisses. Thermobarometric calculations, P–T pseudosections and orthopyroxene Al content, show that both charnockites and granulites equilibrated at metamorphic peak conditions of T = 920–940 °C and P = 8.5–9.5 kbar. Peak assemblages were subsequently overprinted by intergrowth, symplectite and corona textures involving orthopyroxene, sapphirine, cordierite and spinel at T = 720–740 °C and P = 7–7.5 kbar. We suggest that granulites and charnockites are lower crustal relicts preserved in the migmatitic orthogneisses. Garnet diffusion modelling shows that metamorphic garnet–opx ± sapphirine ± sillimanite peak assemblages and post-peak reaction textures always involving cordierite developed during two separate metamorphic cycles. Peak assemblages reflect UHT metamorphism related to post-Varican Permian extension, but post-peak coronae and symplectites formed during the mid-Tertiary, upper amphibolite facies, Alpine regional metamorphism. Fluid-absent partial melting of pelitic and psammitic sediments during the Permian UHT event lead to the formation of charnockitic magmas and granulitic residues. Intense melt loss and thorough dehydration of the granulites (although retaining biotite) favoured the partial preservation of peak mineral assemblages during Alpine metamorphism.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-06-07
    Description: Highlights • Development of an autonomous DIC analyzer based on Conductometric technique using a cell with 4 hollow brass electrodes. • CO2 extraction from seawater using a gas diffusion cell with a “Tube In A Tube” configuration and a gas permeable membrane. • Formulation of mathematical temperature and salinity correction to determine accurate DIC concentration. • Demonstration of the analyzer performance in the southwest Baltic Sea. Abstract Background The increase in anthropogenic CO2 concentrations in the Earth's atmosphere since the industrial revolution has resulted in an increased uptake of CO2 by the oceans, leading to ocean acidification. Dissolved Inorganic Carbon (DIC) is one of the key variables to characterize the seawater carbonate system. High quality DIC observations at a high spatial-temporal resolution is required to improve our understanding of the marine carbonate system. To meet the requirements, autonomous DIC analyzers are needed which offer a high sampling frequency, are cost-effective and have a low reagent and power consumption. Results We present the development and validation of a novel analyzer for autonomous measurements of DIC in seawater using conductometric detection. The analyzer employs a gas diffusion sequential injection approach in a “Tube In A Tube” configuration that facilitates diffusion of gaseous CO2 from an acidified sample through a gas permeable membrane into a stream of an alkaline solution. The change in conductivity in the alkaline medium is proportional to the DIC concentration of the sample and is measured using a detection cell constructed of 4 hollow brass electrodes. Physical and chemical optimizations of the analyzer yielded a sampling frequency of 4 samples h−1 using sub mL reagent volumes for each measurement. Temperature and salinity effects on DIC measurements were mathematically corrected to increase accuracy. Analytical precision of ±4.9 μmol kg−1 and ±9.7 μmol kg−1 were achieved from measurements of a DIC reference material in the laboratory and during a field deployment in the southwest Baltic Sea, respectively. Significance This study describes a simple, cost-effective, autonomous, on-site benchtop DIC analyzer capable of measuring DIC in seawater at a high temporal resolution as a step towards an underwater DIC sensor. The analyzer is able to measure a wide range of DIC concentrations in both fresh and marine waters. The achieved accuracy and precision offer an excellent opportunity to employ the analyzer for ocean acidification studies and CO2 leakage detection in the context of Carbon Capture and Storage operations.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-06-07
    Description: The ocean region along the latitude of 40oS in the South Atlantic, characterized by enhanced primary productivity, forms a transition zone between the nutrient replete but iron depleted Southern Ocean, and the nitrate and iron depleted Subtropical Gyre. Here, we present distributions of nutrient-type dissolved and particulate trace metals (dTMs and pTMs) including cadmium (Cd), nickel (Ni), copper (Cu), and zinc (Zn) in the South Atlantic from the GEOTRACES GA10 cruises. Phytoplankton uptake, riverine and atmospheric inputs shaped dTM and pTM concentrations in surface waters (dCd 27.8±36.0 pmol kg-1, n=222; dCu 0.732±0.429 nmol kg-1, n=222; dNi 3.38±0.52 nmol kg-1, n=219; dZn 0.332±0.398 nmol kg-1, n=214). Subsurface nutrients and dTMs (dCd 563±184 pmol kg-1, n=335; dCu 1.819±0.773 nmol kg-1, n=334; dNi 6.19±1.06 nmol kg-1, n=330; dZn 3.71±2.10 nmol kg-1, n=333) were controlled by the mixing of Antarctic origin waters and North Atlantic Deep Waters (NADW) with negligible contributions from local remineralization. Dissolved and particulate TMs in the Argentine Basin showed elevated concentrations towards the seafloor because of benthic inputs. Direct hydrothermal inputs of dTMs and pTMs to deep waters were not observed along the transect. The Cd-Cu-Zn-phosphate stoichiometries of Antarctic origin waters were set by a combination of dynamic physical circulation and preferential uptake of Cd, Cu, and Zn relative to phosphate in surface waters because of a dominance by diatoms in the Southern Ocean. Water mass mixing subsequently produced convoluted dCu-P and dZn-P relationships and apparent linear dCd-P and dNi-P relationships in the South Atlantic. More importantly, endmember characteristics of Antarctic waters and NADW are largely fixed in their formation regions in high latitude oceans. Therefore, the highly dynamic high latitude oceans are key regions that supply nutrients and TMs at specific ratios to low latitude oceans via the thermohaline circulation. Changes to processes in the high latitude oceans may have consequences for marine primary productivity downstream, and hence the global carbon cycle.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-06-06
    Description: The boundary between the American and European plates emerges in Iceland, an outstanding natural laboratory where it is possible to analyse ongoing rifting processes. In the North Volcanic Zone, we studied with unprecedented detail an active rift, known as the Theistareykir Fissure Swarm (ThFS). We surveyed an area of 85 km2 with 694 measurement sites along 1537 post-Late Glacial Maximum extension fractures. In the southern sector of the study area, fractures strike N30–40° with opening directions about N120°. Fractures in the central sector strike about N00° and opening directions are N90–100°. In the northern sector, fractures strike about N30° with opening directions about N125°. Through a comparison with older faults cropping out in the substrate at the shoulder of the ThFS, we are able to suggest that variations in fracture strike are the effect of substrate structural inheritance as well as the possible interaction with the Tjörnes Fracture Zone. With regard to kinematics, we highlight that most fractures show a small, but systematic, strike-slip component (a more frequent right-lateral component and a less common, left-lateral one). This cannot be explained as the result of fracture strike rotation relative to the regional, tectonic least principal stress. We conclude that the net opening directions can result from the combination of tectonic offsets and events caused by shallow magma chamber inflation and/or dyke intrusions. The latter can produce transcurrent components of displacement along new or already existing fractures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...