ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice  (5,420)
Collection
Keywords
Years
  • 1
    Publication Date: 2016-04-30
    Description: Wakefulness is driven by the widespread release of neuromodulators by the ascending arousal system. Yet, it is unclear how these substances orchestrate state-dependent, global changes in neuronal activity. Here, we show that neuromodulators induce increases in the extracellular K(+) concentration ([K(+)]e) in cortical slices electrically silenced by tetrodotoxin. In vivo, arousal was linked to AMPA receptor-independent elevations of [K(+)]e concomitant with decreases in [Ca(2+)]e, [Mg(2+)]e, [H(+)]e, and the extracellular volume. Opposite, natural sleep and anesthesia reduced [K(+)]e while increasing [Ca(2+)]e, [Mg(2+)]e, and [H(+)]e as well as the extracellular volume. Local cortical activity of sleeping mice could be readily converted to the stereotypical electroencephalography pattern of wakefulness by simply imposing a change in the extracellular ion composition. Thus, extracellular ions control the state-dependent patterns of neural activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ding, Fengfei -- O'Donnell, John -- Xu, Qiwu -- Kang, Ning -- Goldman, Nanna -- Nedergaard, Maiken -- NS078167/NS/NINDS NIH HHS/ -- NS078304/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 29;352(6285):550-5. doi: 10.1126/science.aad4821.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA. Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China. ; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA. ; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA. Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark. nedergaard@urmc.rochester.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27126038" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/analysis/metabolism ; Cations/analysis/*metabolism ; Cerebral Cortex/chemistry/drug effects/*physiology ; Electroencephalography ; Magnesium/analysis/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Neurons/drug effects/metabolism/physiology ; Neurotransmitter Agents/metabolism/pharmacology ; Potassium/*metabolism ; Receptors, AMPA/metabolism ; Sleep/drug effects/*physiology ; Sodium Channel Blockers/pharmacology ; Tetrodotoxin/pharmacology ; Wakefulness/drug effects/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-30
    Description: Recent studies in human populations and mouse models reveal notable congruences in gut microbial taxa whose abundances are partly regulated by host genotype. Host genes associating with these taxa are related to diet sensing, metabolism, and immunity. These broad patterns are further validated in similar studies of nonmammalian microbiomes. The next generation of genome-wide association studies will expand the size of the data sets and refine the microbial phenotypes to fully capture these intriguing signatures of host-microbiome coevolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goodrich, Julia K -- Davenport, Emily R -- Waters, Jillian L -- Clark, Andrew G -- Ley, Ruth E -- R01 DK093595/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 29;352(6285):532-5. doi: 10.1126/science.aad9379.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Cornell University, Ithaca NY, USA. ; Department of Molecular Biology and Genetics, Cornell University, Ithaca NY, USA. Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tubingen, Germany. ; Department of Molecular Biology and Genetics, Cornell University, Ithaca NY, USA. Department of Microbiology, Cornell University, Ithaca NY, USA. Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tubingen, Germany. rel222@cornell.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27126034" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteria/*classification/genetics ; Diet ; *Genome-Wide Association Study ; Genotype ; Humans ; Mice ; Microbiota/genetics/*physiology ; Phenotype ; *Quantitative Trait Loci ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-04-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tuting, Thomas -- de Visser, Karin E -- New York, N.Y. -- Science. 2016 Apr 8;352(6282):145-6. doi: 10.1126/science.aaf7300.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Dermatology, University Hospital Magdeburg, Magdeburg, Germany. ; Division of Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands. k.d.visser@nki.nl.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27124439" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bystander Effect ; Humans ; Immunotherapy/methods ; Leukocyte Count ; Mice ; Mice, Transgenic ; Neoplasm Metastasis/*immunology/*therapy ; Neoplasms, Experimental/immunology/pathology/therapy ; Neutrophils/*immunology/*pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-04-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, Jocelyn -- New York, N.Y. -- Science. 2016 Apr 8;352(6282):164-6. doi: 10.1126/science.352.6282.164.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27124448" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Marrow Cells/*pathology ; Bystander Effect ; Exosomes/*pathology ; Humans ; Lung Neoplasms/secondary ; Mice ; Neoplasm Invasiveness/*pathology ; Neoplasm Metastasis/*pathology ; Skin Neoplasms/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-04-29
    Description: Despite decades of study, there are still many unanswered questions about metastasis, the process by which a localized cancer becomes a systemic disease. One of these questions is the nature of the tumor cells that give rise to metastases. Although conventional models suggest that metastases are seeded by single cells from the primary tumor, there is growing evidence that seeding requires the collective action of tumor cells traveling together in clusters. Here, we review this evidence, which comes from analysis of both experimental models and patient samples. We present a model of metastatic dissemination that highlights the activities of clusters of tumor cells that retain and require their epithelial properties.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheung, Kevin J -- Ewald, Andrew J -- P30 CA006973/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 8;352(6282):167-9. doi: 10.1126/science.aaf6546.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. ; Departments of Cell Biology, Oncology, and Biomedical Engineering, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA. andrew.ewald@jhmi.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27124449" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Epithelial Cells/pathology ; Humans ; Mice ; *Models, Biological ; Neoplasm Metastasis/*pathology ; Neoplasm Seeding ; Neoplasms, Experimental/pathology ; Neoplastic Cells, Circulating/*pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-04-23
    Description: Tissue-resident memory T (Trm) cells permanently localize to portals of pathogen entry, where they provide immediate protection against reinfection. To enforce tissue retention, Trm cells up-regulate CD69 and down-regulate molecules associated with tissue egress; however, a Trm-specific transcriptional regulator has not been identified. Here, we show that the transcription factor Hobit is specifically up-regulated in Trm cells and, together with related Blimp1, mediates the development of Trm cells in skin, gut, liver, and kidney in mice. The Hobit-Blimp1 transcriptional module is also required for other populations of tissue-resident lymphocytes, including natural killer T (NKT) cells and liver-resident NK cells, all of which share a common transcriptional program. Our results identify Hobit and Blimp1 as central regulators of this universal program that instructs tissue retention in diverse tissue-resident lymphocyte populations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mackay, Laura K -- Minnich, Martina -- Kragten, Natasja A M -- Liao, Yang -- Nota, Benjamin -- Seillet, Cyril -- Zaid, Ali -- Man, Kevin -- Preston, Simon -- Freestone, David -- Braun, Asolina -- Wynne-Jones, Erica -- Behr, Felix M -- Stark, Regina -- Pellicci, Daniel G -- Godfrey, Dale I -- Belz, Gabrielle T -- Pellegrini, Marc -- Gebhardt, Thomas -- Busslinger, Meinrad -- Shi, Wei -- Carbone, Francis R -- van Lier, Rene A W -- Kallies, Axel -- van Gisbergen, Klaas P J M -- New York, N.Y. -- Science. 2016 Apr 22;352(6284):459-63. doi: 10.1126/science.aad2035.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia. Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, Australia. lkmackay@unimelb.edu.au kallies@wehi.edu.au k.vangisbergen@sanquin.nl. ; Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria. ; Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, Netherlands. ; The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia. Department of Medical Biology, The University of Melbourne, Melbourne, Australia. ; Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, AMC, University of Amsterdam, Amsterdam, Netherlands. ; Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia. ; Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, Netherlands. The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia. Department of Medical Biology, The University of Melbourne, Melbourne, Australia. Department of Experimental Immunology, AMC, Amsterdam, Netherlands. ; Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia. Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, Australia. ; The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia. Department of Computing and Information Systems, The University of Melbourne, Melbourne, Australia. ; The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia. Department of Medical Biology, The University of Melbourne, Melbourne, Australia. lkmackay@unimelb.edu.au kallies@wehi.edu.au k.vangisbergen@sanquin.nl. ; Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, Netherlands. The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia. Department of Medical Biology, The University of Melbourne, Melbourne, Australia. Department of Experimental Immunology, AMC, Amsterdam, Netherlands. lkmackay@unimelb.edu.au kallies@wehi.edu.au k.vangisbergen@sanquin.nl.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27102484" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Gastrointestinal Tract/immunology ; *Gene Expression Regulation ; Genes, Regulator/genetics/*physiology ; Immunologic Memory/*genetics ; Kidney/immunology ; Killer Cells, Natural/*immunology ; Liver/immunology ; Lymphocyte Activation ; Mice ; Mice, Knockout ; Natural Killer T-Cells/*immunology ; Skin/immunology ; Transcription Factors/genetics/*physiology ; Transcription, Genetic ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-04-23
    Description: Progression through the stages of lymphocyte development requires coordination of the cell cycle. Such coordination ensures genomic integrity while cells somatically rearrange their antigen receptor genes [in a process called variable-diversity-joining (VDJ) recombination] and, upon successful rearrangement, expands the pools of progenitor lymphocytes. Here we show that in developing B lymphocytes, the RNA-binding proteins (RBPs) ZFP36L1 and ZFP36L2 are critical for maintaining quiescence before precursor B cell receptor (pre-BCR) expression and for reestablishing quiescence after pre-BCR-induced expansion. These RBPs suppress an evolutionarily conserved posttranscriptional regulon consisting of messenger RNAs whose protein products cooperatively promote transition into the S phase of the cell cycle. This mechanism promotes VDJ recombination and effective selection of cells expressing immunoglobulin-mu at the pre-BCR checkpoint.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Galloway, Alison -- Saveliev, Alexander -- Lukasiak, Sebastian -- Hodson, Daniel J -- Bolland, Daniel -- Balmanno, Kathryn -- Ahlfors, Helena -- Monzon-Casanova, Elisa -- Mannurita, Sara Ciullini -- Bell, Lewis S -- Andrews, Simon -- Diaz-Munoz, Manuel D -- Cook, Simon J -- Corcoran, Anne -- Turner, Martin -- Medical Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2016 Apr 22;352(6284):453-9. doi: 10.1126/science.aad5978.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, UK. ; Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, UK. Department of Haematology, University of Cambridge, The Clifford Allbutt Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, UK. ; Laboratory of Nuclear Dynamics, The Babraham Institute, Cambridge CB22 3AT, UK. ; Laboratory of Signalling, The Babraham Institute, Cambridge CB22 3AT, UK. ; Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, UK. Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK. ; Bioinformatics Group, The Babraham Institute, Cambridge CB22 3AT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27102483" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/*cytology ; Conserved Sequence ; Cyclins/metabolism ; G0 Phase/genetics/physiology ; G1 Phase/genetics/physiology ; Gene Expression Regulation ; Immunoglobulin mu-Chains/genetics ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Nuclear Proteins/genetics/*physiology ; Pre-B Cell Receptors ; RNA, Messenger/metabolism ; RNA-Binding Proteins/genetics/*physiology ; S Phase/genetics/*physiology ; Selection, Genetic ; Transcription, Genetic ; Tristetraprolin/genetics/*physiology ; V(D)J Recombination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-04-23
    Description: Influenza A virus (IAV) causes up to half a million deaths worldwide annually, 90% of which occur in older adults. We show that IAV-infected monocytes from older humans have impaired antiviral interferon production but retain intact inflammasome responses. To understand the in vivo consequence, we used mice expressing a functional Mx gene encoding a major interferon-induced effector against IAV in humans. In Mx1-intact mice with weakened resistance due to deficiencies in Mavs and Tlr7, we found an elevated respiratory bacterial burden. Notably, mortality in the absence of Mavs and Tlr7 was independent of viral load or MyD88-dependent signaling but dependent on bacterial burden, caspase-1/11, and neutrophil-dependent tissue damage. Therefore, in the context of weakened antiviral resistance, vulnerability to IAV disease is a function of caspase-dependent pathology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pillai, Padmini S -- Molony, Ryan D -- Martinod, Kimberly -- Dong, Huiping -- Pang, Iris K -- Tal, Michal C -- Solis, Angel G -- Bielecki, Piotr -- Mohanty, Subhasis -- Trentalange, Mark -- Homer, Robert J -- Flavell, Richard A -- Wagner, Denisa D -- Montgomery, Ruth R -- Shaw, Albert C -- Staeheli, Peter -- Iwasaki, Akiko -- 5T32HL066987-13/HL/NHLBI NIH HHS/ -- AI062428/AI/NIAID NIH HHS/ -- AI064705/AI/NIAID NIH HHS/ -- AI081884/AI/NIAID NIH HHS/ -- F31 AG039163/AG/NIA NIH HHS/ -- HHSN272201100019C/PHS HHS/ -- K24 AG02489/AG/NIA NIH HHS/ -- K24 AG042489/AG/NIA NIH HHS/ -- N01 AI500031/AI/NIAID NIH HHS/ -- P30 AG21342/AG/NIA NIH HHS/ -- R01HL102101/HL/NHLBI NIH HHS/ -- R01HL125501/HL/NHLBI NIH HHS/ -- T32 AI007019-36/AI/NIAID NIH HHS/ -- T32 AI007019-38/AI/NIAID NIH HHS/ -- T32 AI055403/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Apr 22;352(6284):463-6. doi: 10.1126/science.aaf3926.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA. ; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. ; Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA. ; Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA. ; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA. ; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA. Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT 06520, USA. ; Section of Rheumatology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA. ; Institut fur Medizinische Mikrobiologie und Hygiene, Institute of Virology, University Medical Center Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany. ; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA. Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT 06520, USA. akiko.iwasaki@yale.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27102485" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/genetics/metabolism ; Adult ; Aged ; Aged, 80 and over ; Animals ; Bacterial Infections/etiology/*immunology ; Caspase 1/metabolism ; Caspases/metabolism ; Female ; Humans ; Immunity, Innate/genetics/*immunology ; Influenza A virus/*immunology ; Influenza, Human/complications/*immunology ; Interferon-beta/immunology ; Male ; Membrane Glycoproteins/genetics/metabolism ; Mice ; Monocytes/immunology ; Myxovirus Resistance Proteins/genetics/*physiology ; Neutrophils/immunology ; Orthomyxoviridae Infections/*immunology ; Respiratory Tract Infections/*immunology/microbiology ; Toll-Like Receptor 7/genetics/metabolism ; Viral Load ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-04-23
    Description: The microtubule (MT) cytoskeleton can transmit mechanical signals and resist compression in contracting cardiomyocytes. How MTs perform these roles remains unclear because of difficulties in observing MTs during the rapid contractile cycle. Here, we used high spatial and temporal resolution imaging to characterize MT behavior in beating mouse myocytes. MTs deformed under contractile load into sinusoidal buckles, a behavior dependent on posttranslational "detyrosination" of alpha-tubulin. Detyrosinated MTs associated with desmin at force-generating sarcomeres. When detyrosination was reduced, MTs uncoupled from sarcomeres and buckled less during contraction, which allowed sarcomeres to shorten and stretch with less resistance. Conversely, increased detyrosination promoted MT buckling, stiffened the myocyte, and correlated with impaired function in cardiomyopathy. Thus, detyrosinated MTs represent tunable, compression-resistant elements that may impair cardiac function in disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Robison, Patrick -- Caporizzo, Matthew A -- Ahmadzadeh, Hossein -- Bogush, Alexey I -- Chen, Christina Yingxian -- Margulies, Kenneth B -- Shenoy, Vivek B -- Prosser, Benjamin L -- HL089847/HL/NHLBI NIH HHS/ -- HL105993/HL/NHLBI NIH HHS/ -- R00-HL114879/HL/NHLBI NIH HHS/ -- R01EB017753/EB/NIBIB NIH HHS/ -- T32AR053461-09/AR/NIAMS NIH HHS/ -- T32HL007954/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 22;352(6284):aaf0659. doi: 10.1126/science.aaf0659.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. ; Department of Materials Science and Engineering, University of Pennsylvania School of Engineering and Applied Science, Philadelphia, PA 19104, USA. ; Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. ; Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. bpros@mail.med.upenn.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27102488" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Desmin/metabolism ; Elasticity ; Heart Failure/metabolism/physiopathology ; Humans ; Male ; Mice ; Microtubules/*metabolism ; Models, Biological ; *Myocardial Contraction ; Myocytes, Cardiac/metabolism/*physiology ; Peptide Synthases/genetics/metabolism ; *Protein Processing, Post-Translational ; RNA, Small Interfering/genetics ; Rats ; Rats, Sprague-Dawley ; Sarcomeres/metabolism ; Tubulin/*metabolism ; Tyrosine/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-04-16
    Description: Drug resistance compromises control of malaria. Here, we show that resistance to a commonly used antimalarial medication, atovaquone, is apparently unable to spread. Atovaquone pressure selects parasites with mutations in cytochrome b, a respiratory protein with low but essential activity in the mammalian blood phase of the parasite life cycle. Resistance mutations rescue parasites from the drug but later prove lethal in the mosquito phase, where parasites require full respiration. Unable to respire efficiently, resistant parasites fail to complete mosquito development, arresting their life cycle. Because cytochrome b is encoded by the maternally inherited parasite mitochondrion, even outcrossing with wild-type strains cannot facilitate spread of resistance. Lack of transmission suggests that resistance will be unable to spread in the field, greatly enhancing the utility of atovaquone in malaria control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goodman, Christopher D -- Siregar, Josephine E -- Mollard, Vanessa -- Vega-Rodriguez, Joel -- Syafruddin, Din -- Matsuoka, Hiroyuki -- Matsuzaki, Motomichi -- Toyama, Tomoko -- Sturm, Angelika -- Cozijnsen, Anton -- Jacobs-Lorena, Marcelo -- Kita, Kiyoshi -- Marzuki, Sangkot -- McFadden, Geoffrey I -- AI031478/AI/NIAID NIH HHS/ -- RR00052/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 15;352(6283):349-53. doi: 10.1126/science.aad9279.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia. gim@unimelb.edu.au deang@unimelb.edu.au. ; School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia. Eijkman Institute for Molecular Biology, JI Diponegoro no. 69, Jakarta, 10430, Indonesia. Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. ; School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia. ; Johns Hopkins University Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Malaria Research Institute, Baltimore, MD 21205, USA. ; Eijkman Institute for Molecular Biology, JI Diponegoro no. 69, Jakarta, 10430, Indonesia. Department of Parasitology, Faculty of Medicine, Hasanuddin University, Jalan Perintis Kemerdekaan Km10, Makassar 90245, Indonesia. ; Division of Medical Zoology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan. ; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. ; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan. ; Eijkman Institute for Molecular Biology, JI Diponegoro no. 69, Jakarta, 10430, Indonesia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27081071" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anopheles/*parasitology ; Antimalarials/*pharmacology/therapeutic use ; Atovaquone/*pharmacology/therapeutic use ; Cell Line ; Cytochromes b/*genetics ; Drug Resistance/*genetics ; Genes, Mitochondrial/genetics ; Humans ; Life Cycle Stages/drug effects/genetics ; Malaria/drug therapy/*parasitology/transmission ; Male ; Mice ; Mitochondria/*genetics ; Mutation ; Plasmodium berghei/*drug effects/genetics/growth & development ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...