ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
  • 1
    Publication Date: 2015-12-02
    Description: Garnet megacrysts found in the Cretaceous Group II Monteleo kimberlite (Free State province, South Africa) exhibit an unusual flattened and elongated morphology. Internally, the garnets are characterized by abundant kelyphite veins and microcracks, arranged as preferentially orientated microstructural sets. Numerous rod-like sulphide inclusions are present within the garnets, also characterized by a preferential orientation, with their long axes generally normal to the short axis of the host megacryst. The observed garnet megacryst morphologies and internal micro-structures are consistent with a shear-related deformation event, although the deformation mechanism remains unresolved. The deformation of the garnet megacrysts is inferred to have occurred prior to the entrainment of the garnets in their host kimberlite and is attributed to localized shearing in the lithospheric mantle, possibly associated with overlying crustal shearing that developed parallel to the Agulhas-Falkland Fracture Zone during Gondwana breakup. Variations in major and trace element concentrations indicate that the garnet megacrysts formed as a result of a simple fractional crystallization process, and pressure-temperature modelling indicates that they crystallized from a 〉1330°C melt at a depth of ~180 km, within a zone of metasomatism within the lithospheric mantle. A similarity in chemical composition between the megacrysts and garnets from associated lherzolitic lithologies suggests that percolation of the megacryst parental melt through the lithospheric mantle may have contributed to the metasomatism.
    Print ISSN: 1012-0750
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-15
    Description: Evidence for the existence of an equilibrium epitaxial complexion at the Au-MgAl 2 O 4 interface has been observed. The growth of crystalline MgAl 2 O 4 nanostructures, from a previously stable substrate in the presence of an Au overlayer and heat, is associated with this complexion. Prior to the nanostructures' self-assembly, Au nanoparticles crystalize, then reorient to align with the MgAl 2 O 4 substrate. The presented results contradict earlier conclusions based solely on SEM studies of the final assembled nanostructures. Those results suggested that the MgAl 2 O 4 grown pedestal and associated Au nanoparticle atop were both gold.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-11
    Description: A unique metal/oxide interfacial bilayer formed between Au nanoparticles and MgAl 2 O 4 substrates following thermal treatment is reported. Associated with the formation of the bilayer was the onset of an abnormal epitaxial growth of the substrate under the nanoparticle. According to the redistribution of atoms and the changes of their electronic structure probed across the interface by a transmission electron microscopy, we suggest two possible atomic models of the interfacial bilayer.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-04-23
    Description: Tissue-resident memory T (Trm) cells permanently localize to portals of pathogen entry, where they provide immediate protection against reinfection. To enforce tissue retention, Trm cells up-regulate CD69 and down-regulate molecules associated with tissue egress; however, a Trm-specific transcriptional regulator has not been identified. Here, we show that the transcription factor Hobit is specifically up-regulated in Trm cells and, together with related Blimp1, mediates the development of Trm cells in skin, gut, liver, and kidney in mice. The Hobit-Blimp1 transcriptional module is also required for other populations of tissue-resident lymphocytes, including natural killer T (NKT) cells and liver-resident NK cells, all of which share a common transcriptional program. Our results identify Hobit and Blimp1 as central regulators of this universal program that instructs tissue retention in diverse tissue-resident lymphocyte populations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mackay, Laura K -- Minnich, Martina -- Kragten, Natasja A M -- Liao, Yang -- Nota, Benjamin -- Seillet, Cyril -- Zaid, Ali -- Man, Kevin -- Preston, Simon -- Freestone, David -- Braun, Asolina -- Wynne-Jones, Erica -- Behr, Felix M -- Stark, Regina -- Pellicci, Daniel G -- Godfrey, Dale I -- Belz, Gabrielle T -- Pellegrini, Marc -- Gebhardt, Thomas -- Busslinger, Meinrad -- Shi, Wei -- Carbone, Francis R -- van Lier, Rene A W -- Kallies, Axel -- van Gisbergen, Klaas P J M -- New York, N.Y. -- Science. 2016 Apr 22;352(6284):459-63. doi: 10.1126/science.aad2035.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia. Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, Australia. lkmackay@unimelb.edu.au kallies@wehi.edu.au k.vangisbergen@sanquin.nl. ; Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria. ; Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, Netherlands. ; The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia. Department of Medical Biology, The University of Melbourne, Melbourne, Australia. ; Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, AMC, University of Amsterdam, Amsterdam, Netherlands. ; Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia. ; Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, Netherlands. The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia. Department of Medical Biology, The University of Melbourne, Melbourne, Australia. Department of Experimental Immunology, AMC, Amsterdam, Netherlands. ; Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia. Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, Australia. ; The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia. Department of Computing and Information Systems, The University of Melbourne, Melbourne, Australia. ; The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia. Department of Medical Biology, The University of Melbourne, Melbourne, Australia. lkmackay@unimelb.edu.au kallies@wehi.edu.au k.vangisbergen@sanquin.nl. ; Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, Netherlands. The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia. Department of Medical Biology, The University of Melbourne, Melbourne, Australia. Department of Experimental Immunology, AMC, Amsterdam, Netherlands. lkmackay@unimelb.edu.au kallies@wehi.edu.au k.vangisbergen@sanquin.nl.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27102484" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Gastrointestinal Tract/immunology ; *Gene Expression Regulation ; Genes, Regulator/genetics/*physiology ; Immunologic Memory/*genetics ; Kidney/immunology ; Killer Cells, Natural/*immunology ; Liver/immunology ; Lymphocyte Activation ; Mice ; Mice, Knockout ; Natural Killer T-Cells/*immunology ; Skin/immunology ; Transcription Factors/genetics/*physiology ; Transcription, Genetic ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1981-07-10
    Description: Ninety-two cases of brain tumor in children less than 10 years old were compared with 92 matched controls for parental occupational history. Cases were more likely than controls to show material occupations involving chemical exposure, paternal occupations involving solvents, and employment of father in the aircraft industry. These three factors were not affected by adjustment for the potential confounding variables examined in this study.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peters, F M -- Preston-Martin, S -- Yu, M C -- P01CA17054/CA/NCI NIH HHS/ -- R01CA20571/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1981 Jul 10;213(4504):235-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7244631" target="_blank"〉PubMed〈/a〉
    Keywords: Air Pollutants/*adverse effects ; Air Pollutants, Occupational/*adverse effects ; Brain Neoplasms/*chemically induced ; Child ; Child, Preschool ; Female ; Humans ; Infant ; Male ; *Maternal-Fetal Exchange ; Pregnancy ; Respiration ; Risk ; Skin Absorption ; Solvents
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
  • 8
    Publication Date: 2022-10-28
    Description: Author Posting. © Acoustical Society of America, 2022. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 151(5), (2022): 2885–2896, https://doi.org/10.1121/10.0010372.
    Description: coustic data were recorded on two vertical line arrays (VLAs) deployed in the New England Mud Patch during the Seabed Characterization Experiment 2017 in about 75 m of water. The sound recorded during the passage of merchant ships permits identification of singular points for the waveguide invariant β for mode pairs (1,𝑛):𝛽1,𝑛,for 𝑛=2,3,4,5, in the 15–80 Hz band. Using prior geophysical information and an acoustic data sample from the merchant ship KALAMATA, a geoacoustic model 𝔐 of the seabed was developed. Then, using data samples from other merchant ships, a feature-ensemble maximum entropy method is employed to infer the statistical properties of geoacoustic parameter values for the sound speeds in a surface mud layer and a deep sand layer. Technical challenges include a sparsity of observed singular points, the unique identification of mode pairs for an observed singular point, and the deviation of the waveguide from horizontal stratification. A geoacoustic model 𝔐 is developed that reproduced the observed 𝛽≈−1 for f 〈 20 Hz and mode cutoff features at about 15 Hz. The statistical low-frequency inference of the singular point structure from multiple ships provides evidence of an angle of intromission at the water sediment interface with an average sound speed ratio of about 0.986 and an average sound speed for the deeper sand layer of about 1775 m/s.
    Description: 2022-10-28
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-08-23
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Salas, A. K., Ballard, M. S., Mooney, T. A., & Wilson, P. S. Effects of frequency-dependent spatial variation in soundscape settlement cues for reef fish larvae. Marine Ecology Progress Series, 687, (2022): 1-21, https://doi.org/10.3354/meps14012.
    Description: The mechanisms that link reef soundscapes to larval fish settlement behaviors are poorly understood, yet the management of threatened reef communities requires we maintain the recruitment processes that recover and sustain populations. Using a field-calibrated sound propagation model, we predicted the transmission loss in the relevant frequency band as a function of range, depth, and azimuth to estimate the spatial heterogeneity in the acoustic cuescape. The model highlighted the frequency- and depth-dependence of the sound fields fishes may encounter, and we predict these complex spatial patterns influence how sounds function as settlement cues. Both modeling and field measurements supported a non-monotonic decline in amplitude with distance from the reef. We modeled acoustic fields created by sounds at frequencies from 2 common soniferous reef-based animals (snapping shrimps and toadfish) and estimated detection spaces of these sounds for larvae of 2 reef fish species. Results demonstrated that larval depth will influence cue availability and amplitude, and these spatial patterns of detection depend on cue frequency and the larval receiver’s auditory sensitivity. Estimated spatial scales of detection coupled with field measurements suggest cue amplitudes might allow some larvae to detect reef-based sounds at a range exposing them to the predicted spatial variation in the acoustic cuescape. In an individual-based model, cues available to even the shortest modeled distances improved settlement success. Our results emphasize the need to consider the frequency- and depth-dependence of the acoustic cues larval fishes encounter to increase understanding of the role of soundscapes in larval settlement.
    Description: We thank the following funding sources for partial support: The University of Texas at Austin Integrative Biology Department’s Zoology Scholarship Endowment for Excellence award (A.K.S.), Smithsonian Tropical Research Institute (STRI) Short-term Fellowship (A.K.S.), Office of Naval Research (P.S.W. and M.S.B), and National Science Foundation (OCE-15-36782; T.A.M). We thank P. Gondola for support through the STRI Bocas del Toro Research Station and Dr. Andrew Altieri for assistance in site selection and knowledge of local ecosystem.
    Keywords: Larval fish ; Settlement ; Acoustic cues ; Sound propagation ; Soundscapes ; Coral reefs ; Modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © Company of Biologists, 2019. This article is posted here by permission of Company of Biologists for personal use, not for redistribution. The definitive version was published in Journal of Experimental Biology 222(16), (2019): jeb.201962, doi:10.1242/jeb.201962.
    Description: Detecting acoustic pressure can improve a fish's survival and fitness through increased sensitivity to environmental sounds. Pressure detection results from interactions between the swim bladder and otoliths. In larval fishes, those interactions change rapidly as growth and development alter bladder dimensions and otolith–bladder distance. We used computed tomography imagery of lab-reared larval red drum (Sciaenops ocellatus) in a finite-element model to assess ontogenetic changes in acoustic pressure sensitivity in response to a plane wave at frequencies within the frequency range of hearing by fishes. We compared the acceleration at points on the sagitta, asteriscus and lapillus when the bladder was air filled with results from models using a water-filled bladder. For larvae of 8.5–18 mm in standard length, the air-filled bladder amplified simulated otolith motion by a factor of 54–3485 times that of a water-filled bladder at 100 Hz. Otolith–bladder distance increased with standard length, which decreased modeled amplification. The concomitant rapid increase in bladder volume partially compensated for the effect of increasing otolith–bladder distance. Calculated resonant frequency of the bladders was between 8750 and 4250 Hz, and resonant frequency decreased with increasing bladder volume. There was a relatively flat frequency dependence of these effects in the audible frequency range, but we found a small increase in amplification with increasing excitation frequency. Using idealized geometry, we found that the larval vertebrae and ribs have negligible influence on bladder motion. Our results help clarify the auditory consequences of ontogenetic changes in bladder morphology and otolith–bladder relationships during larval stages.
    Description: This work was supported by the American Museum of Natural History Lerner Gray Fund for Marine Research (to A.K.S.), the Perry R. Bass Endowment at the University of Texas Marine Science Institute (to L.A.F.), and the Office of Naval Research Ocean Acoustics Program (grant number N00014-15-1-2032 to P.S.W.).
    Description: 2020-08-01
    Keywords: Fish ; Larvae ; Ontogeny ; Hearing ; Otoliths ; Modeling ; Computed tomography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...