ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,475)
  • 2020-2022  (433)
  • 1980-1984  (1,042)
  • Geology  (2)
  • 2.0.co;2.  (1)
  • 2.0.co;2.  (1)
  • 2.0.co;2.  (1)
  • 2.0.co;2.  (1)
  • 2.0.co;2.  (1)
  • 2.0.co;2.  (1)
  • 2.0.co;2.  (1)
  • 2.0.co;2.  (1)
  • 2.0.co;2.  (1)
  • 2.0.co;2.  (1)
  • 2.0.co;2.  (1)
  • 2.0.co;2.  (1)
  • 2.0.co;2.  (1)
  • 2.0.co;2.  (1)
  • 2.0.co;2.  (1)
  • 2.0.co;2.  (1)
  • 2.0.co;2.  (1)
  • 2.0.co;2.  (1)
  • 2.0.co;2.  (1)
  • 466
Collection
  • Articles  (1,475)
Years
Year
Journal
Topic
  • 1
    Publication Date: 2021-10-08
    Description: Constraining the positions of, and interrelationships between, Earth’s major continental blocks has played a major role in validating the concept of the supercontinent cycle. Minor continental fragments can provide additional key constraints on modes of supercontinent assembly and dispersal. The Tarim craton has been placed both at the core of Rodinia or on its periphery, and differentiating between the two scenarios has widespread implications for the breakup of Rodinia and subsequent assembly of Gondwana. In the South Tarim terrane, detrital zircon grains from Neoproterozoic–Silurian strata display two dominant populations at 950–750 and 550–450 Ma. Similarly, two main peaks at 1000–800 and 600–490 Ma characterize Neoproterozoic–Ordovician strata in northern India. Moreover, the two dominant peaks of South Tarim and north India lag two global peaks at 1200–1000 and 650–500 Ma, which reflect Rodinia and Gondwana assembly, arguing against a position within the heart of the two supercontinents. Ages and Hf isotopes of Tarim’s detrital zircons argue for a position on the margin of both supercontinents adjacent to north India with periodic dispersal through opening and closing of small ocean basins (e.g., the Proto-Tethys). Alternating tectonic transitions between advancing and retreating subduction in North Tarim coincide with periodic drift of South Tarim from north India in Rodinia and Gondwana, emphasizing the importance of retreating subduction in supercontinent dispersal. Moreover, the Rodinia-related orogenic belts spatially overlap the Gondwana-related orogenic belts in the two blocks, indicating no significant relative rotation of India and Tarim during the evolution from Rodinia to Gondwana.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-08
    Description: The geographic coincidence of the Chile Ridge slab window and the Patagonia ice fields offers a unique opportunity for assessing the effects of slab window rheology on glacial isostatic adjustment (GIA). Mass loss of these ice fields since the Little Ice Age causes rapid but variable crustal uplift, 12–24 mm/yr around the North Patagonia ice field, increasing to a maximum of 41 mm/yr around the South Patagonia ice field, as determined from newly collected or processed geodetic data. We used these observational constraints in a three-dimensional Maxwell viscoelastic finite element model of GIA response above both the subducting slab and slab window in which the upper-mantle viscosity was parameterized to be uniform with depth. We found that the viscosity of the northern part of the slab window, ~2 × 1018 Pa·s, is lower than that of the southern part by approximately an order of magnitude. We propose that this along-strike viscosity contrast is due to late Cenozoic ridge subduction beneath the northern part of the slab window, which increases asthenospheric temperature and reduces viscosity.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-08
    Description: The Paleocene-Eocene thermal maximum (PETM) was the most extreme example of an abrupt global warming event in the Cenozoic, and it is widely discussed as a past analog for contemporary climate change. Anomalous accumulation of terrigenous mud in marginal shelf environments and concentration of sand in terrestrial deposits during the PETM have both been inferred to represent an increase in fluvial sediment flux. A corresponding increase in water discharge or river slope would have been required to transport this additional sediment. However, in many locations, evidence for changes in fluvial slope is weak, and geochemical proxies and climate models indicate that while runoff variability may have increased, mean annual precipitation was unaffected or potentially decreased. Here, we explored whether changes in river morphodynamics under variable-discharge conditions could have contributed to increased fluvial sand concentration during the PETM. Using field observations, we reconstructed channel paleohydraulics, mobility, and avulsion behavior for the Wasatch Formation (Piceance Basin, Colorado, USA). Our data provide no evidence for changes in fluvial slope during the PETM, and thus no evidence for enhanced sediment discharge. However, our data do show evidence of increased fluvial bar reworking and advection of sediment to floodplains during channel avulsion, consistent with experimental studies of alluvial systems subjected to variable discharge. High discharge variability increases channel mobility and floodplain reworking, which retains coarse sediment while remobilizing and exporting fine sediment through the alluvial system. This mechanism can explain anomalous fine sediment accumulation on continental shelves without invoking sustained increases in fluvial sediment and water discharge.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-08
    Description: Most tungsten (W) and tin (Sn) deposits are associated with highly evolved granites derived from the anatexis of metasedimentary rocks. They are commonly separated in both space and time, and in the rare cases where the W and Sn mineralization are part of a single deposit, the two metals are temporally separate. The factors controlling this behavior, however, are not well understood. Our compilation of whole-rock geochemical data for W- and Sn-related granites in major W-Sn metallogenic belts shows that the Sn-related granites are generally the products of higher-temperature partial melting (~800 °C) than the W-related granites (~750 °C). Thermodynamic modeling of partial melting and metal partitioning shows that W is incorporated into the magma formed during low-temperature muscovite-dehydration melting, whereas most of the Sn is released into the magma at a higher temperature during biotite-dehydration melting; the Sn of the magma may be increased significantly if melt is extracted prior to biotite melting. At the same degree of partial melting, the concentrations of the two metals in the partial melt are controlled by their concentration in the protolith. Thus, the nature of the protolith and the melting temperature and subsequent evolution of the magma all influence the metallogenic potential of a magma and, in combination, helped control the spatial and temporal segregation of W and Sn deposits in all major W-Sn metallogenic belts.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-08
    Description: The Christiana-Santorini-Kolumbo volcanic field (CSKVF) in the Aegean Sea is one of the most active volcano-tectonic lineaments in Europe. Santorini has been an iconic site in volcanology and archaeology since the 19th century, and the onshore volcanic products of Santorini are one of the best-studied volcanic sequences worldwide. However, little is known about the chronology of volcanic activity of the adjacent submarine Kolumbo volcano, and even less is known about the Christiana volcanic island. In this study, we exploit a dense array of high-resolution marine seismic reflection profiles to link the marine stratigraphy to onshore volcanic sequences and present the first consistent chronological framework for the CSKVF, enabling a detailed reconstruction of the evolution of the volcanic rift system in time and space. We identify four main phases of volcanic activity, which initiated in the Pliocene with the formation of the Christiana volcano (phase 1). The formation of the current southwest-northeast–trending rift system (phase 2) was associated with the evolution of two distinct volcanic centers, the newly discovered Poseidon center and the early Kolumbo volcano. Phase 3 saw a period of widespread volcanic activity throughout the entire rift. The ongoing phase 4 is confined to the Santorini caldera and Kolumbo volcano. Our study highlights the fundamental tectonic control on magma emplacement and shows that the CSKVF evolved from a volcanic field with local centers that matured only recently to form the vast Santorini edifice.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-09-20
    Description: High-elevation, low-relief surfaces are widespread in many mountain belts. However, the origin of these surfaces has long been debated. In particular, the southeast Tibetan Plateau has extensive low-relief surfaces perched above deep valleys and in the headwaters of three of the world’s largest rivers (Salween, Mekong, and Yangtze Rivers). Various geologic data and geodynamic models show that many mountain belts grow first to a certain height and then laterally in an outward propagation sequence. By translating this information into a kinematic propagating uplift function in a landscape evolution model, we propose that the high-elevation, low-relief surfaces in the southeast Tibetan Plateau are simply a consequence of mountain growth and do not require a special process to form. The propagating uplift forms an elongated river network geometry with broad high-elevation, low-relief headwaters and interfluves that persist for tens of millions of years, consistent with the observed geochronology. We suggest that the low-relief interfluves can be long-lived because they lack the drainage networks necessary to keep pace with the rapid incision of the large main-stem rivers. The propagating uplift also produces spatial and temporal exhumation patterns and river profile morphologies that match observations. Our modeling therefore reconciles geomorphic observations with geodynamic models of uplift of the southeast Tibetan Plateau, and it provides a simple mechanism to explain the low-relief surfaces observed in several mountain belts on Earth.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-09-20
    Description: Authigenic components in marine sediments are important archives for past environment reconstructions. However, defining reliable age constraints and assessing the effects of post-depositional overprints in Precambrian sequences are challenging. We demonstrate a new laser-based analytical approach that has the potential to rapidly and accurately evaluate the depositional and alteration histories of Proterozoic shales. Our study employs a novel application of in situ Rb-Sr dating coupled with simultaneous trace-element analysis using reaction-cell laser ablation–inductively coupled plasma–tandem mass spectrometry (LA-ICPMS/MS). We present results from shales sourced from two wells in the Proterozoic McArthur Basin, northern Australia. These rocks have been widely used by previous studies as a key section for ancient biogeochemical and paleo-redox reconstructions. Shales from well UR5 yielded initial 87Sr/86Sr ratios, Rb-Sr ages, and rare earth element plus yttrium (REEY) patterns similar to those of a dolerite sampled from the same core. We propose that the UR5 samples chronicle hydrothermal alteration instigated by the dolerite intrusion. In contrast, a correlative shale from well UR6 yielded an age consistent with the expected depositional age (1577 ± 56 Ma) with REEY and initial 87Sr/86Sr ratios similar to ca. 1.5 Ga seawater. We suggest that this sample records the minimum depositional age and early marine diagenetic history for this unit. This new technique can date Proterozoic shales quickly, cheaply, and with minimum sample preparation. Importantly, ages are triaged to differentiate between those recording primary marine versus secondary processes. This novel approach provides a potentially powerful tool for dating and fingerprinting the vast array of ancient marine shales for further studies of Earth systems through deep time.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-09-20
    Description: Lake Magadi is an internally drained, saline and alkaline terminal sump in the southern Kenya Rift. Geochemistry of samples from an ~200 m core representing the past ~1 m.y. of the lake’s history shows some of the highest concentrations of transition metals and metalloids ever reported from lacustrine sediment, including redox-sensitive elements molybdenum, arsenic, and vanadium. Elevated concentrations of these elements represent times when the lake’s hypolimnion was euxinic—that is, anoxic, saline, and sulfide-rich. Euxinia was common after ca. 700 ka, and after that tended to occur during intervals of high orbital eccentricity. These were likely times when high-frequency hydrologic changes favored repeated episodes of euxinia and sulfide precipitation. High-amplitude environmental fluctuations at peak eccentricity likely impacted water balance in terrestrial habitats and resource availability for early hominins. These are associated with important events in human evolution, including the first appearance of Middle Stone Age technology between ca. 500 and 320 ka in the southern Kenya Rift.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-09-20
    Description: Tonalite-trondhjemite-granodiorite (TTG) suites are the dominant component of Earth’s first continents, but their origins are debated. The trace element concentrations of these rocks are conventionally linked to their source depths and inferred geodynamic settings with the implicit assumption that TTG compositions are source-controlled. Alternatively, their variable compositions may be caused by fractional crystallization in TTG plutons after emplacement and less clearly linked to source depth. Most TTGs in Archean mid-crustal exposures are the dominant component of igneous gray gneiss complexes; the processes that influence the evolution of TTG magmas in this setting are poorly understood. We present a petrological–geochemical model that explains the coexistence of TTGs in the middle crust with low-pressure and high-pressure geochemical trends, irrespective of tectonic setting or depth of the TTG source. We propose that mid-crustal TTGs were long-lived crystal mushes with compositions controlled by the separation of early-crystallizing plagioclase and melt. Using phase equilibrium modeling, we demonstrate that a suite of TTGs from the southern Superior Province in Canada represents variably plagioclase-rich and melt-rich fractions from a common parent magma. The behavior of plagioclase may have a strong influence on the geochemical trends of TTGs, including the degree of rare earth element fractionation. Our results suggest that trace element compositions of TTGs may not primarily reflect the depth of the source and cannot be used alone to infer Archean geodynamic settings.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-09-20
    Description: Correct interpretation of soft-bodied fossils relies on a thorough understanding of their taphonomy. While the focus has often been on the primary roles of decay and early diagenesis, the impacts of deeper burial and metamorphism on fossil preservation are less well understood. We document a sequence of late-stage mineral replacements in panarthropod fossils from the Sirius Passet Lagerstätte (North Greenland), an important early Cambrian Burgess Shale–type (BST) biota. Muscle and gut diverticula were initially stabilized by early diagenetic apatite, prior to being pervasively replaced by quartz and then subordinate chlorite, muscovite, and chloritoid during very low- to low-grade metamorphism. Each new mineral replicates the soft tissues with different precision and occurs in particular anatomical regions, imposing strong biases on the biological information retained. Muscovite and chloritoid largely obliterate the tissues’ original detail, suggesting that aluminum-rich protoliths may have least potential for conserving mineralized soft tissues in metamorphism. Overall, the fossils exhibit a marked shift toward mineralogical equilibration with the matrix, obscuring primary taphonomic modes. Sequential replacement of the phosphatized soft tissues released phosphorus to form new accessory monazite (and apatite and xenotime), whose presence in other BST biotas might signal the prior, more widespread, occurrence of this primary mode of preservation. Our results provide critical context for interpreting the Sirius Passet biota and for identifying late-stage overprints in other biotas.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...