ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-03-23
    Description: Focused gas migration through the gas hydrate stability zone in vertical gas conduits is a global phenomenon. The process can lead to concentrated gas hydrate formation and seafloor gas seepage, which influences seafloor biodiversity and ocean biogeochemistry. However, much is unknown about how gas and gas hydrate co‐exist within and around gas conduits. We present seismic imaging of the gas hydrate system beneath a four‐way closure anticlinal ridge at New Zealand's southern Hikurangi subduction margin. Gas has accumulated beneath the base of gas hydrate stability to a thickness of up to ∼240 m, which has ultimately led to hydraulic fracturing and propagation of a vertical gas conduit to the seafloor. Despite the existence of an array of normal faults beneath the ridge, these structures are not exploited as long‐range gas flow conduits. Directly beneath the conduit, and extending upward from the regional base of gas hydrate stability, is a broad zone characterized by both negative‐ and positive‐polarity reflections. We interpret this zone as a volume of sediment hosting both gas hydrate and free gas, that developed due to partial gas trapping beneath a mass transport deposit. Similar highly reflective zones have been identified at the bases of other gas conduits, but they are not intrinsic to all gas conduits through gas hydrate systems. We suggest that pronounced intervening sealing units within the gas hydrate stability zone determine whether or not they form.
    Description: Plain Language Summary: Gas hydrates are ice‐like substances composed of natural gas and water. They form between sediment grains underneath large regions of the Earth's seafloor. An important reason to study gas hydrates is that they partly control the way that methane gas flows through sediments and out of the seafloor. It is this flow of methane that sustains some diverse biological communities on the seafloor and affects the chemistry of the oceans. In this study, we use reflected sound waves to explore how gas flow beneath the seafloor depends on the way in which sedimentary layers are folded and fractured. Our data reveal a 240‐m thick reservoir of gas that is trapped in a large sedimentary fold, ∼500 m beneath the seafloor. The buoyancy of the gas has caused a vertical fracture zone to propagate upward to the seafloor, where gas bubbles are venting into the ocean. Further, our data suggest that a broad accumulation of gas hydrates (together with gas) has formed beneath the vertical fracture zone. This gas hydrate deposit may grow larger with time, and it will continue to influence the way that gas flows through the sediments.
    Description: Key Points: 240 m thick free gas column accumulated beneath the base of hydrate stability, which led to hydraulic fracturing and gas chimney formation. Broad zone of free gas and gas hydrate formed beneath the gas chimney, extending upward from the regional base of hydrate stability. Such zones of hydrate and free gas likely form due to pronounced lithological contrasts (sealing layers) within the hydrate stability zone.
    Description: New Zealand's Ministry for Business Innovation and Employment (MBIE) http://dx.doi.org/10.13039/501100004629
    Keywords: ddc:553.28
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2007-04-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association of Petroleum Geologists (AAPG)
    Publication Date: 2014-02-03
    Description: Sandstone pressures follow the hydrostatic gradient in Miocene strata of the Mad Dog field, deep-water Gulf of Mexico, whereas pore pressures in the adjacent mudstones track a trend from well to well that can be approximated by the total vertical stress gradient. The sandstone pressures within these strata are everywhere less than the bounding mudstone pore pressures, and the difference between them is proportional to the total vertical stress. The mudstone pressure is predicted from its porosity with an exponential porosity-versus-vertical effective stress relationship, where porosity is interpreted from wireline velocity. Sonic velocities in mudstones bounding the regional sandstones fall within a narrow range throughout the field from which we interpret their vertical effective stresses can be approximated as constant. We show how to predict sandstone and mudstone pore pressure in any offset well at Mad Dog given knowledge of the local total vertical stress. At Mad Dog, the approach is complicated by the extraordinary lateral changes in total vertical stress that are caused by changing bathymetry and the presence or absence of salt. A similar approach can be used in other subsalt fields. We suggest that pore pressures within mudstones can be systematically different from those of the nearby sandstones, and that this difference can be predicted. Well programs must ensure that the borehole pressure is not too low, which results in borehole closure in the mudstone intervals, and not too high, which can result in lost circulation to the reservoir intervals.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-06-16
    Description: We use finite element modeling to show that upbuilding can be a significant component of salt diapir growth in tectonically stable systems when basin sediments are elastoplastic mudrocks. The ability of such sediments to deform plastically and the dependence of their strength on confining pressure enable structural thinning, which allows salt to pierce through a relatively thick roof. Once pierced, the originally continuous roof uplifts to form a megaflap. We show that the evolution to an upturned megaflap adjacent to a salt stock causes shortening of the bedding layers in the radial and vertical directions and extension in the hoop (circumferential) direction. These deformations lead to significant shear strains within the sediments; as a result, in some areas within the upturned megaflap, mudrocks have reached their maximum level of shear resistance and are failing. Thinning and shear failure of sediments are also significant near salt walls, despite the absence of out-of-plane deformation. We illustrate that cross-sectional area and bedding line lengths are not necessarily preserved. Based on our results, we re-evaluate traditional assumptions of kinematic restoration and show that established workflows may not properly restore salt systems that interact with shallow plastic sediments. Finally, we show that when wall rocks are deformable, salt diapir shapes are not necessarily a simple function of sedimentation and salt flux rates ( q fx / Å ) and that the diapir hourglass shape might result from lateral deformation of the megaflap.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-12-12
    Description: As part of the government response to the Deepwater Horizon blowout, a Well Integrity Team evaluated the geologic hazards of shutting in the Macondo Well at the seafloor and determined the conditions under which it could safely be undertaken. Of particular concern was the possibility that, under the anticipated high...
    Keywords: Science Applications in the Deepwater Horizon Oil Spill Special Feature
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-01-01
    Description: Channel-levee systems are responsible for constructing deep sea fans, among the largest sedimentary deposits on Earth. Levee height plays a key role in defining the volume and texture of the material that is deposited in the bounding levees, and thus the morphology of submarine fans. Models of channel formation and evolution generally assume that the levees aggrade in response to the cumulative overspill of turbidity flows, and that their height is controlled by these flows. In contrast, we show that levee growth in the Ursa Basin (Gulf of Mexico) is limited by the mechanical strength of the levee, not the flow behavior. While many studies document sidewall failures in levee systems, our poro-mechanical model is the first to demonstrate that collapse of levees is a large-scale, deep-seated process driven by the interaction of levee formation and high fluid pressure. Rapid deposition of a regional sand unit induced large fluid overpressure in the underlying mud, which preconditioned the system for levee failure, which then fed a large volume of sediment back into the channel-levee system. Long-lived levee failures continually reintroduced previously deposited levee material back into the channel system. This implies that a large volume of sediment is continuously recycled, which has not been previously understood. Turbidite flow models generally assume that flows progressively lose their fine-grained component due to levee overspill as they traverse the channel. In contrast, we show a mechanism by which fine-grained material can re-enter the system in large quantities, and this has significant and broad importance for models of channel and fan evolution. We also show that that levee failure introduces significant unconformities, in contrast with the common assumption that levees offer complete and high-resolution records of climate, tectonics, and sea level.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-05-01
    Description: We use a large strain geomechanical model and critical state soil mechanics to study the evolution of stress and deformation in an evolving fold-and-thrust belt and its underlying footwall sediments. Both mean effective stress and deviatoric stress contribute to porosity loss within the wedge with 35% of the porosity loss resulting from increased shear. As a result, porosity increases abruptly across the décollement because both mean-effective and shear stresses are much higher inside the wedge than in the footwall. As the basal friction coefficient (μb) increases, more shear stress is transmitted across the décollement, resulting in additional compaction of the footwall sediment and decrease in the porosity contrast across the décollement. As the internal friction coefficient (μs) increases, the wedge sediment is more compacted because it can withstand higher mean-effective and deviatoric stresses. Inside the wedge, the sediment experiences subhorizontal shortening strain and subvertical elongation strain. We predict a 10–30 km wide “transition zone” in which the shear-stress ratios and compaction curves change rapidly between compressional critical state failure and uniaxial strain (K0) state. Our model results agree with the taper angles and the stress orientations predicted by critical taper theory. This large-strain drained modeling approach provides first-order insights into the mechanical processes of loading and compaction in fold-and-thrust belts and a foundation for understanding field observations of pressure, stress, and deformation in thrust belt systems. ©2018. American Geophysical Union. All Rights Reserved.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2002-12-01
    Print ISSN: 0002-9599
    Electronic ISSN: 1945-452X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-06-11
    Description: Long-term geological storage of CO2 may be essential for greenhouse gas mitigation, so a number of storage strategies have been developed that utilize a variety of physical processes. Recent work shows that injection of combustion power plant effluent, a mixture of CO2 and N2, into CH4 hydrate-bearing reservoirs blends CO2 storage with simultaneous CH4 production where the CO2 is stored in hydrate, an immobile, solid compound. This strategy creates economic value from the CH4 production, reduces the preinjection complexity since costly CO2 distillation is circumvented, and limits leakage since hydrate is immobile. Here we explore the phase behavior of these types of injections and describe the individual roles of H2O, CO2, CH4, and N2 as these components partition into aqueous, vapor, hydrate, and liquid CO2 phases. Our results show that CO2 storage in subpermafrost or submarine hydrate-forming reservoirs requires coinjection of N2 to maintain two-phase flow and limit plugging. ©2017. American Geophysical Union. All Rights Reserved.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...