ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-03-23
    Description: Focused gas migration through the gas hydrate stability zone in vertical gas conduits is a global phenomenon. The process can lead to concentrated gas hydrate formation and seafloor gas seepage, which influences seafloor biodiversity and ocean biogeochemistry. However, much is unknown about how gas and gas hydrate co‐exist within and around gas conduits. We present seismic imaging of the gas hydrate system beneath a four‐way closure anticlinal ridge at New Zealand's southern Hikurangi subduction margin. Gas has accumulated beneath the base of gas hydrate stability to a thickness of up to ∼240 m, which has ultimately led to hydraulic fracturing and propagation of a vertical gas conduit to the seafloor. Despite the existence of an array of normal faults beneath the ridge, these structures are not exploited as long‐range gas flow conduits. Directly beneath the conduit, and extending upward from the regional base of gas hydrate stability, is a broad zone characterized by both negative‐ and positive‐polarity reflections. We interpret this zone as a volume of sediment hosting both gas hydrate and free gas, that developed due to partial gas trapping beneath a mass transport deposit. Similar highly reflective zones have been identified at the bases of other gas conduits, but they are not intrinsic to all gas conduits through gas hydrate systems. We suggest that pronounced intervening sealing units within the gas hydrate stability zone determine whether or not they form.
    Description: Plain Language Summary: Gas hydrates are ice‐like substances composed of natural gas and water. They form between sediment grains underneath large regions of the Earth's seafloor. An important reason to study gas hydrates is that they partly control the way that methane gas flows through sediments and out of the seafloor. It is this flow of methane that sustains some diverse biological communities on the seafloor and affects the chemistry of the oceans. In this study, we use reflected sound waves to explore how gas flow beneath the seafloor depends on the way in which sedimentary layers are folded and fractured. Our data reveal a 240‐m thick reservoir of gas that is trapped in a large sedimentary fold, ∼500 m beneath the seafloor. The buoyancy of the gas has caused a vertical fracture zone to propagate upward to the seafloor, where gas bubbles are venting into the ocean. Further, our data suggest that a broad accumulation of gas hydrates (together with gas) has formed beneath the vertical fracture zone. This gas hydrate deposit may grow larger with time, and it will continue to influence the way that gas flows through the sediments.
    Description: Key Points: 240 m thick free gas column accumulated beneath the base of hydrate stability, which led to hydraulic fracturing and gas chimney formation. Broad zone of free gas and gas hydrate formed beneath the gas chimney, extending upward from the regional base of hydrate stability. Such zones of hydrate and free gas likely form due to pronounced lithological contrasts (sealing layers) within the hydrate stability zone.
    Description: New Zealand's Ministry for Business Innovation and Employment (MBIE) http://dx.doi.org/10.13039/501100004629
    Keywords: ddc:553.28
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-29
    Description: Although submarine landslides have been studied for decades, a persistent challenge is the integration of diverse geoscientific datasets to characterize failure processes. We present a core‐log‐seismic integration study of the Tuaheni Landslide Complex to investigate intact sediments beneath the undeformed seafloor as well as post‐failure landslide deposits. Beneath the undeformed seafloor are coherent reflections underlain by a weakly‐reflective and chaotic seismic unit. This chaotic unit is characterized by variable shear strength that correlates with density fluctuations. The basal shear zone of the Tuaheni landslide likely exploited one (or more) of the low shear strength intervals. Within the landslide deposits is a widespread “Intra‐debris Reflector”, previously interpreted as the landslide's basal shear zone. This reflector is a subtle impedance drop around the boundary between upper and lower landslide units. However, there is no pronounced shear strength change across this horizon. Rather, there is a pronounced reduction in shear strength ∼10–15 m above the Intra‐debris Reflector that presumably represents an induced weak layer that developed during failure. Free gas accumulates beneath some regions of the landslide and is widespread deeper in the sedimentary sequence, suggesting that free gas may have played a role in pre‐conditioning the slope to failure. Additional pre‐conditioning or failure triggers could have been seismic shaking and associated transient fluid pressure. Our study underscores the importance of detailed core‐log‐seismic integration approaches for investigating basal shear zone development in submarine landslides.
    Description: Plain Language Summary: Submarine landslides move enormous amounts of sediment across the seafloor and have the potential to generate damaging tsunamis. To understand how submarine landslides develop, we need to be able to image and sample beneath the seafloor in regions where landslides have occurred. To image beneath the seafloor we generate sound waves in the ocean and record reflections from those waves, enabling us to produce “seismic images” of sediment layers and structures beneath the seafloor. We then use scientific drilling to sample the sediment layers and measure physical properties. In this study, we combine seismic images and drilling results to investigate a submarine landslide east of New Zealand's North Island. Drilling next to the landslide revealed a ∼25 m‐thick layer of sediment (from ∼75–95 m below the seafloor) that has strong variations in sediment strength and density. We infer that intervals of relatively low strength within this layer developed into the main sliding surface of the landslide. Additionally, results from within the landslide suggest that the process of landslide emplacement has induced a zone of weak sediments closer to the seafloor. Our study demonstrates how combining seismic images and drilling data helps to understand submarine landslide processes.
    Description: Key Points: We integrate scientific drilling data with seismic reflection data to investigate the submarine Tuaheni Landslide Complex. Basal shear zone of the landslide likely exploited a relatively low shear strength interval within an older (buried) mass transport deposit. Landslide emplacement seems to have induced an additional weak zone that is shallower than the interpreted base of the landslide deposit.
    Description: Marsden Fund (Royal Society of New Zealand Marsden Fund) http://dx.doi.org/10.13039/501100009193
    Description: European Consortium for Ocean Research Drilling
    Description: International Ocean Drilling Program, Science Support Program
    Description: New Zealand Ministry for Business Innovation and Employment
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: https://doi.pangaea.de/10.1594/PANGAEA.928073
    Keywords: ddc:622.15 ; ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-10-01
    Description: Active margins host more than half of submarine canyons worldwide. Understanding the coupling between active tectonics and canyon processes is required to improve modeling of canyon evolution and derive tectonic information from canyon morphology. In this paper we analyze high-resolution geophysical data and imagery from the Cook Strait canyon system (CS), offshore New Zealand, to characterize the influence of active tectonics on the morphology, processes, and evolution of submarine canyons, and to deduce tectonic activity from canyon morphology. Canyon location and morphology bear the clearest evidence of tectonic activity, with major faults and structural ridges giving rise to sinuosity, steep and linear longitudinal profiles, cross-sectional asymmetry, and breaks in slope gradient, relief, and slope-area plots. Faults are also associated with stronger and more frequent sedimentary flows, steep canyon walls that promote gully erosion, and seismicity that is considered the most likely trigger of failure of canyon walls. Tectonic activity gives rise to two types of knickpoints in the CS. Gentle, rounded and diffusive knickpoints form due to short-wavelength folds or fault breakouts. The more widespread steep and angular knickpoints have migrated through canyon-floor slope failures and localized quarrying and/or plucking. Migration is driven by base-level lowering due to regional margin uplift and deepening of the lower Cook Strait Canyon, and is likely faster in larger canyons because of higher sedimentary flow throughput. The knickpoints, nonadherence to Playfair’s Law, linear longitudinal profiles, and lack of canyon-wide, inverse power law slope-area relationships indicate that the CS is in a transient state, adjusting to perturbations associated with tectonic displacements and changes in base level and sediment fluxes. We conclude by inferring unmapped faults and regions of more pronounced uplift, and proposing a generalized model for canyon geomorphic evolution in tectonically active margins.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018
    Description: 〈p〉The southern Tuaheni Landslide Complex (TLC) at the Hikurangi subduction margin displays distinctive morphological features along its distribution over the Tuaheni slope offshore Gisborne, New Zealand. We here present first analyses of a gravity core transect that systematically samples surficial sediments from the source area to the toe of this landslide complex, thus providing important new insight into shallow lithological variation in the slide complex. Geophysical and geochemical core logs and core descriptions form the basis for a characterization of representative sediment successions that are indicative of the respective slope segment of recovery. Our results show that the lithology of surficial sediments varies significantly along the length of the landslide complex. Depending on the slope segment observed, this variation includes post-Last Glacial Maximum (LGM) outer-shelf sediments, and hemipelagic drape and near-surface reworked debris avalanche deposits, as well as multiple intercalated thinner turbidites and tephra layers at the distal end of the profile. Lithological downslope variability suggests ongoing mass transport events through the late Holocene that were likely to have been limited to small mud-turbidite flows. Integration with acoustic sub-bottom imagery reveals the presence of multiple stacked mass-transport deposits at depth, contrasting with previous interpretations of a single parent failure.〈/p〉 〈p〉〈b〉Supplementary material:〈/b〉 MSCL and XRF core-log data are made available through the PANGAEA database 〈a href="https://doi.pangaea.de/10.1594/PANGAEA.883867"〉https://doi.pangaea.de/10.1594/PANGAEA.883867〈/a〉〈/p〉
    Print ISSN: 0375-6440
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018
    Description: 〈p〉Lacustrine-tsunami risk from landslides can be significant yet for most locations globally the hazard remains unquantified. Lake Tekapo, in the tectonically active mountain belt of New Zealand's South Island, has been chosen to develop surveying and modelling techniques to assess the hazard from landslide tsunamis. Lake Tekapo is ideal for this study due to the high sedimentation rates, steep surrounds and the proximity to active faulting that indicate a high landslide potential. The shoreline tourist settlement and hydropower infrastructure mean the impact of any tsunami could be significant. In 2016 a survey was carried out to collect high-resolution (1 m grid) EM2040 multibeam bathymetry, high-resolution seismic reflection data (Boomer and chirp) and 6 m long sediment cores. These data reveal a diverse range of sedimentary processes in response to high sediment input and numerous landslides with varied styles of emplacement. For example, a one-off landslide initiated 40 m above the shoreline with debris deposits that have runout onto the lake floor to 100 m water depth contrasts with the Cass River delta on the western shore that has failed multiple times during the lake-basin infilling history. Landslide-generated tsunami scenarios are used to determine the relative hazard at different regions of the lake to guide development of a probabilistic tsunami model.〈/p〉
    Print ISSN: 0375-6440
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-08-02
    Description: The southern Tuaheni Landslide Complex (TLC) at the Hikurangi subduction margin displays distinctive morphological features along its distribution over the Tuaheni slope offshore Gisborne, New Zealand. We here present first analyses of a gravity core transect that systematically samples surficial sediments from the source area to the toe of this landslide complex, thus providing important new insight into shallow lithological variation in the slide complex. Geophysical and geochemical core logs and core descriptions form the basis for a characterization of representative sediment successions that are indicative of the respective slope segment of recovery. Our results show that the lithology of surficial sediments varies significantly along the length of the landslide complex. Depending on the slope segment observed, this variation includes post-Last Glacial Maximum (LGM) outer-shelf sediments, and hemipelagic drape and near-surface reworked debris avalanche deposits, as well as multiple intercalated thinner turbidites and tephra layers at the distal end of the profile. Lithological downslope variability suggests ongoing mass transport events through the late Holocene that were likely to have been limited to small mud-turbidite flows. Integration with acoustic sub-bottom imagery reveals the presence of multiple stacked mass-transport deposits at depth, contrasting with previous interpretations of a single parent failure. Supplementary material: MSCL and XRF core-log data are made available through the PANGAEA database https://doi.pangaea.de/10.1594/PANGAEA.883867
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-04-29
    Description: Lacustrine-tsunami risk from landslides can be significant yet for most locations globally the hazard remains unquantified. Lake Tekapo, in the tectonically active mountain belt of New Zealand's South Island, has been chosen to develop surveying and modelling techniques to assess the hazard from landslide tsunamis. Lake Tekapo is ideal for this study due to the high sedimentation rates, steep surrounds and the proximity to active faulting that indicate a high landslide potential. The shoreline tourist settlement and hydropower infrastructure mean the impact of any tsunami could be significant. In 2016 a survey was carried out to collect high-resolution (1 m grid) EM2040 multibeam bathymetry, high-resolution seismic reflection data (Boomer and chirp) and 6 m long sediment cores. These data reveal a diverse range of sedimentary processes in response to high sediment input and numerous landslides with varied styles of emplacement. For example, a one-off landslide initiated 40 m above the shoreline with debris deposits that have runout onto the lake floor to 100 m water depth contrasts with the Cass River delta on the western shore that has failed multiple times during the lake-basin infilling history. Landslide-generated tsunami scenarios are used to determine the relative hazard at different regions of the lake to guide development of a probabilistic tsunami model.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-03-15
    Description: Although the global flux of sediment and carbon from land to the coastal ocean is well known, the volume of material that reaches the deep ocean—the ultimate sink—and the mechanisms by which it is transferred are poorly documented. Using a globally unique data set of repeat seafloor measurements and samples, we show that the moment magnitude ( M w ) 7.8 November 2016 Kaikōura earthquake (New Zealand) triggered widespread landslides in a submarine canyon, causing a powerful "canyon flushing" event and turbidity current that traveled 〉680 km along one of the world’s longest deep-sea channels. These observations provide the first quantification of seafloor landscape change and large-scale sediment transport associated with an earthquake-triggered full canyon flushing event. The calculated interevent time of ~140 years indicates a canyon incision rate of 40 mm year –1 , substantially higher than that of most terrestrial rivers, while synchronously transferring large volumes of sediment [850 metric megatons (Mt)] and organic carbon (7 Mt) to the deep ocean. These observations demonstrate that earthquake-triggered canyon flushing is a primary driver of submarine canyon development and material transfer from active continental margins to the deep ocean.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2020-01-01
    Description: This volume focuses on underwater or subaqueous landslides with the overarching goal of understanding how they affect society and the environment. The new research presented here is the result of significant advances made over recent years in directly monitoring submarine landslides, in standardizing global datasets for quantitative analysis, constructing a global database and from leading international research projects. Subaqueous Mass Movements demonstrates the breadth of investigation taking place into subaqueous landslides and shows that, while events like the recent ones in the Indonesian archipelago can be devastating, they are at the smaller end of what the Earth has experienced in the past. Understanding the spectrum of subaqueous landslide processes, and therefore the potential societal impact, requires research across all spatial and temporal scales. This volume delivers a compilation of state-of-the-art papers covering topics from regional landslide databases to advanced techniques for in situ measurements, to numerical modelling of processes and hazards.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...