ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Sammlung
Erscheinungszeitraum
  • 11
    Publikationsdatum: 2020-10-26
    Beschreibung: A parameterization for the subgrid-scale cloud and precipitation fractions has been incorporated into the Predicted Particle Properties (P3) microphysics scheme for use in atmospheric models with relatively coarse horizontal resolution. The modified scheme was tested in a simple 1D kinematic model and in the Canadian Global Environmental Multiscale (GEM) model using an operational global NWP configuration with a 25-km grid spacing. A series of 5-day forecast simulations was run using P3 and the much simpler operational Sundqvist condensation scheme as a benchmark for comparison. The effects of using P3 in a global GEM configuration, with and without the modifications, were explored through statistical metrics of common forecast fields against upper-air and surface observations. Diagnostics of state variable tendencies from various physics parameterizations were examined to identify possible sources of errors resulting from the use of the modified scheme. Sensitivity tests were performed on the coupling between the deep convection parameterization scheme and the microphysics, specifically regarding assumptions in the physical properties of detrained ice. It was found that even without re-calibration of the suite of moist physical parameterizations, substituting the Sundqvist condensation scheme with the modified P3 microphysics resulted in some significant improvements to the temperature and geopotential height bias throughout the troposphere and out to day 5, but with degradation to error standard deviation towards the end of the integrations, as well as an increase in the positive bias of precipitation quantities. The modified P3 scheme was thus shown to hold promise for potential use in coarse-resolution NWP systems.
    Print ISSN: 0882-8156
    Digitale ISSN: 1520-0434
    Thema: Geographie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Publikationsdatum: 2020-10-30
    Beschreibung: In the original Predicted Particle Properties (P3) bulk microphysics scheme, all ice-phase hydrometeors are represented by one or more “free” ice categories, where the physical properties evolve smoothly through changes to the four prognostic variables (per category,) and with a 2-moment representation of the particle size distribution. As such, the spectral dispersion cannot evolve independently, which thus results in limitations in representation of ice – in particular hail – due to necessary constraints in the scheme to prevent excessive gravitational size sorting. To overcome this, P3 has been modified to include a 3-moment representation of the size distribution of each ice category through the addition of a fifth prognostic variable, the sixth moment of the size distribution. The details of the 3-moment ice parameterization in P3 are provided. The behavior of the modified scheme, with the single-ice-category configuration, is illustrated through simulations in a simple 1D kinematic model framework as well as with near large-eddy-resolving (250-m grid spacing) 3D simulations of a hail-producing supercell. It is shown that the 3-moment ice configuration controls size sorting in a physically-based way and leads to an improved capacity to simulate large, heavily-rimed ice (hail), including mean and maximum sizes and reflectivity, and thus an overall improvement in the representation of ice-phase particles in the P3 scheme.
    Print ISSN: 0022-4928
    Digitale ISSN: 1520-0469
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    Publikationsdatum: 2012-06-01
    Beschreibung: This paper investigates the level of complexity that is needed within bulk microphysics schemes to represent the essential features associated with deep convection. To do so, the sensitivity of surface precipitation is evaluated in two-dimensional idealized squall-line simulations with respect to the level of complexity in the bulk microphysics schemes of H. Morrison et al. and of J. A. Milbrandt and M. K. Yau. Factors examined include the number of predicted moments for each of the precipitating hydrometeors, the number and nature of ice categories, and the conversion term formulations. First, it is shown that simulations of surface precipitation and cold pools are not only a two-moment representation of rain, as suggested by previous research, but also by two-moment representations for all precipitating hydrometeors. Cold pools weakened when both rain and graupel number concentrations were predicted, because size sorting led to larger graupel particles that melted into larger raindrops and caused less evaporative cooling. Second, surface precipitation was found to be less sensitive to the nature of the rimed ice species (hail or graupel). Production of hail in experiments including both graupel and hail strongly depends on an unphysical threshold that converts small hail back to graupel, indicating the need for a more physical treatment of the graupel-to-hail conversion. Third, it was shown that the differences in precipitation extremes between the two-moment microphysics schemes are mainly related to the treatment of drop breakup. It was also shown that, although the H. Morrison et al. scheme is dominated by deposition growth and low precipitation efficiency, the J. A. Milbrandt and M. K. Yau scheme is dominated by riming processes and high precipitation efficiency.
    Print ISSN: 0027-0644
    Digitale ISSN: 1520-0493
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    Publikationsdatum: 2015-05-28
    Beschreibung: Numerical predictions of the 3 May 1999 Oklahoma City, Oklahoma, tornadic supercell are performed within a real-data framework utilizing telescoping nested grids of 3-km, 1-km, and 250-m horizontal spacing. Radar reflectivity and radial velocity from the Oklahoma City WSR-88D are assimilated using a cloud analysis procedure coupled with a cycled 3DVAR system to analyze storms on the 1-km grid for subsequent forecast periods. Single-, double-, and triple-moment configurations of a multimoment bulk microphysics scheme are used in several experiments on the 1-km and 250-m grids to assess the impact of varying the complexity of the microphysics scheme on the storm structure, behavior, and tornadic activity (on the 250-m grid). This appears to be the first study of its type to investigate single- versus multimoment microphysics within a real-data context. It is found that the triple-moment scheme overall performs the best, producing the smallest track errors for the mesocyclone on the 1-km grid, and stronger and longer-lived tornado-like vortices (TLVs) on the 250-m grid, closest to the observed tornado. In contrast, the single-moment scheme with the default Marshall–Palmer rain intercept parameter performs poorly, producing a cold pool that is too strong, and only weak and short-lived TLVs. The results in the context of differences in latent cooling from evaporation and melting between the schemes, as well as implications for numerical prediction of tornadoes, are discussed. More generally, the feedbacks to storm thermodynamics and dynamics from increasing the prognostic detail of the hydrometeor size distributions are found to be important for improving the simulation and prediction of tornadic thunderstorms.
    Print ISSN: 0027-0644
    Digitale ISSN: 1520-0493
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    Publikationsdatum: 2015-01-01
    Beschreibung: A method for the parameterization of ice-phase microphysics is proposed and used to develop a new bulk microphysics scheme. All ice-phase particles are represented by several physical properties that evolve freely in time and space. The scheme prognoses four ice mixing ratio variables, total mass, rime mass, rime volume, and number, allowing 4 degrees of freedom for representing the particle properties using a single category. This approach represents a significant departure from traditional microphysics schemes in which ice-phase hydrometeors are partitioned into various predefined categories (e.g., cloud ice, snow, and graupel) with prescribed characteristics. The liquid-phase component of the new scheme uses a standard two-moment, two-category approach. The proposed method and a complete description of the new predicted particle properties (P3) scheme are provided. Results from idealized model simulations of a two-dimensional squall line are presented that illustrate overall behavior of the scheme. Despite its use of a single ice-phase category, the scheme simulates a realistically wide range of particle characteristics in different regions of the squall line, consistent with observed ice particles in real squall lines. Sensitivity tests show that both the prediction of the rime mass fraction and the rime density are important for the simulation of the squall-line structure and precipitation.
    Print ISSN: 0022-4928
    Digitale ISSN: 1520-0469
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    Publikationsdatum: 2013-02-01
    Beschreibung: A method to predict the bulk density of graupel ρg has been added to the two-moment Milbrandt–Yau bulk microphysics scheme. The simulation of graupel using the modified scheme is illustrated through idealized simulations of a mesoscale convective system using a 2D kinematic model with a prescribed flow field and different peak updraft speeds. To examine the relative impact of the various approaches to represent rimed ice, simulations were run for various graupel-only and graupel-plus-hail configurations. Because of the direct feedback of ρg to terminal fall speeds, the modified scheme produces a much different spatial distribution of graupel, with more mass concentrated in the convective region resulting in changes to the surface precipitation at all locations. With a strong updraft, the model can now produce solid precipitation at the surface in the convective region without a separate hail category. It is shown that a single rimed-ice category is capable of representing a realistically wide range of graupel characteristics in various atmospheric conditions without the need for a priori parameter settings. Sensitivity tests were conducted to examine various aspects of the scheme that affect the simulated ρg. Specific parameterizations pertaining to other hydrometeor categories now have a direct impact on the simulation of graupel, including the assumed aerosol distribution for droplet nucleation, which affects the drop sizes of both cloud and rain, and the mass–size relation for snow, which affects its density and hence the embryo density of graupel converted from snow due to riming.
    Print ISSN: 0022-4928
    Digitale ISSN: 1520-0469
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    Publikationsdatum: 2015-01-01
    Beschreibung: A new microphysics scheme has been developed based on the prediction of bulk particle properties for a single ice-phase category, in contrast to the traditional approach of separating ice into various predefined species (e.g., cloud ice, snow, and graupel). In this paper, the new predicted particle properties (P3) scheme, described in Part I of this series, is tested in three-dimensional simulations using the Weather Research and Forecasting (WRF) Model for two contrasting well-observed cases: a midlatitude squall line and winter orographic precipitation. Results are also compared with simulations using other schemes in WRF. Simulations with P3 can produce a wide variety of particle characteristics despite having only one free ice-phase category. For the squall line, it produces dense, fast-falling, hail-like ice near convective updraft cores and lower-density, slower-falling ice elsewhere. Sensitivity tests show that this is critical for simulating high precipitation rates observed along the leading edge of the storm. In contrast, schemes that represent rimed ice as graupel, with lower fall speeds than hail, produce lower peak precipitation rates and wider, less distinct, and less realistic regions of high convective reflectivity. For the orographic precipitation case, P3 produces areas of relatively fast-falling ice with characteristics of rimed snow and low- to medium-density graupel on the windward slope. This leads to less precipitation on leeward slopes and more on windward slopes compared to the other schemes that produce large amounts of snow relative to graupel (with generally the opposite for schemes with significant graupel relative to snow). Overall, the new scheme produces reasonable results for a reduced computational cost.
    Print ISSN: 0022-4928
    Digitale ISSN: 1520-0469
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    Publikationsdatum: 2014-06-20
    Beschreibung: Two-moment multiclass microphysics schemes are very promising tools to be used in high-resolution NWP models. However, they must be adapted for coarser resolutions. Here, a twofold solution is proposed—namely, a simple representation of subgrid cloud and precipitation fraction—as well as a microphysical sub-time-stepping method. The scheme is easy to implement, allows supersaturation in ice cloud, and exhibits flexibility for adoption across model grid spacing. It is implemented in the Milbrandt and Yau two-moment microphysics scheme with prognostic precipitation in the context of a simple 1D kinematic model as well as a mesoscale NWP model [the Canadian regional Global Environmental Multiscale model (GEM)]. Sensitivity tests were performed and the results highlighting the advantages and disadvantages of the two-moment multiclass cloud scheme relative to the classical Sundqvist scheme. The respective roles of subgrid cloud fraction, precipitation fraction, and time splitting were also studied. When compared to the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)/CloudSat-retrieved cloud mask, cloud fraction, and ice water content, it is found that the proposed solutions significantly improve the behavior of the Milbrandt and Yau microphysics scheme at the regional NWP scale, suggesting that the subgrid cloud and precipitation fraction technique can be used across model resolutions.
    Print ISSN: 0022-4928
    Digitale ISSN: 1520-0469
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    Publikationsdatum: 2012-12-01
    Beschreibung: Accurate forecasting of precipitation phase and intensity was critical information for many of the Olympic venue managers during the Vancouver 2010 Olympic and Paralympic Winter Games. Precipitation forecasting was complicated because of the complex terrain and warm coastal weather conditions in the Whistler area of British Columbia, Canada. The goal of this study is to analyze the processes impacting precipitation phase and intensity during a winter weather storm associated with rain and snow over complex terrain. The storm occurred during the second day of the Olympics when the downhill ski event was scheduled. At 0000 UTC 14 February, 2 h after the onset of precipitation, a rapid cooling was observed at the surface instrumentation sites. Precipitation was reported for 8 h, which coincided with the creation of a nearly 0°C isothermal layer, as well as a shift of the valley flow from up valley to down valley. Widespread snow was reported on Whistler Mountain with periods of rain at the mountain base despite the expectation derived from synoptic-scale models (15-km grid spacing) that the strong warm advection would maintain temperatures above freezing. Various model predictions are compared with observations, and the processes influencing the temperature, wind, and precipitation types are discussed. Overall, this case study provided a well-observed scenario of winter storms associated with rain and snow over complex terrain.
    Print ISSN: 0882-8156
    Digitale ISSN: 1520-0434
    Thema: Geographie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...