ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-02-22
    Description: Both genome-wide genetic and epigenetic alterations are fundamentally important for the development of cancers, but the interdependence of these aberrations is poorly understood. Glioblastomas and other cancers with the CpG island methylator phenotype (CIMP) constitute a subset of tumours with extensive epigenomic aberrations and a distinct biology. Glioma CIMP (G-CIMP) is a powerful determinant of tumour pathogenicity, but the molecular basis of G-CIMP remains unresolved. Here we show that mutation of a single gene, isocitrate dehydrogenase 1 (IDH1), establishes G-CIMP by remodelling the methylome. This remodelling results in reorganization of the methylome and transcriptome. Examination of the epigenome of a large set of intermediate-grade gliomas demonstrates a distinct G-CIMP phenotype that is highly dependent on the presence of IDH mutation. Introduction of mutant IDH1 into primary human astrocytes alters specific histone marks, induces extensive DNA hypermethylation, and reshapes the methylome in a fashion that mirrors the changes observed in G-CIMP-positive lower-grade gliomas. Furthermore, the epigenomic alterations resulting from mutant IDH1 activate key gene expression programs, characterize G-CIMP-positive proneural glioblastomas but not other glioblastomas, and are predictive of improved survival. Our findings demonstrate that IDH mutation is the molecular basis of CIMP in gliomas, provide a framework for understanding oncogenesis in these gliomas, and highlight the interplay between genomic and epigenomic changes in human cancers.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3351699/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3351699/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Turcan, Sevin -- Rohle, Daniel -- Goenka, Anuj -- Walsh, Logan A -- Fang, Fang -- Yilmaz, Emrullah -- Campos, Carl -- Fabius, Armida W M -- Lu, Chao -- Ward, Patrick S -- Thompson, Craig B -- Kaufman, Andrew -- Guryanova, Olga -- Levine, Ross -- Heguy, Adriana -- Viale, Agnes -- Morris, Luc G T -- Huse, Jason T -- Mellinghoff, Ingo K -- Chan, Timothy A -- R01 CA154767/CA/NCI NIH HHS/ -- R01CA154767-01/CA/NCI NIH HHS/ -- U54 CA143798/CA/NCI NIH HHS/ -- U54-CA143798/CA/NCI NIH HHS/ -- England -- Nature. 2012 Feb 15;483(7390):479-83. doi: 10.1038/nature10866.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22343889" target="_blank"〉PubMed〈/a〉
    Keywords: Astrocytes/cytology/metabolism ; Cell Survival/genetics ; Cells, Cultured ; CpG Islands/genetics ; DNA Methylation/*genetics ; Epigenesis, Genetic ; Epigenomics ; Gene Expression Regulation ; Glioblastoma/genetics/pathology ; Glioma/*genetics/pathology ; HEK293 Cells ; Histones/metabolism ; Humans ; Isocitrate Dehydrogenase/*genetics/metabolism ; Metabolome/genetics ; Mutation/*genetics ; *Phenotype ; Tumor Cells, Cultured
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-22
    Description: Recurrent mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 have been identified in gliomas, acute myeloid leukaemias (AML) and chondrosarcomas, and share a novel enzymatic property of producing 2-hydroxyglutarate (2HG) from alpha-ketoglutarate. Here we report that 2HG-producing IDH mutants can prevent the histone demethylation that is required for lineage-specific progenitor cells to differentiate into terminally differentiated cells. In tumour samples from glioma patients, IDH mutations were associated with a distinct gene expression profile enriched for genes expressed in neural progenitor cells, and this was associated with increased histone methylation. To test whether the ability of IDH mutants to promote histone methylation contributes to a block in cell differentiation in non-transformed cells, we tested the effect of neomorphic IDH mutants on adipocyte differentiation in vitro. Introduction of either mutant IDH or cell-permeable 2HG was associated with repression of the inducible expression of lineage-specific differentiation genes and a block to differentiation. This correlated with a significant increase in repressive histone methylation marks without observable changes in promoter DNA methylation. Gliomas were found to have elevated levels of similar histone repressive marks. Stable transfection of a 2HG-producing mutant IDH into immortalized astrocytes resulted in progressive accumulation of histone methylation. Of the marks examined, increased H3K9 methylation reproducibly preceded a rise in DNA methylation as cells were passaged in culture. Furthermore, we found that the 2HG-inhibitable H3K9 demethylase KDM4C was induced during adipocyte differentiation, and that RNA-interference suppression of KDM4C was sufficient to block differentiation. Together these data demonstrate that 2HG can inhibit histone demethylation and that inhibition of histone demethylation can be sufficient to block the differentiation of non-transformed cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478770/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478770/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Chao -- Ward, Patrick S -- Kapoor, Gurpreet S -- Rohle, Dan -- Turcan, Sevin -- Abdel-Wahab, Omar -- Edwards, Christopher R -- Khanin, Raya -- Figueroa, Maria E -- Melnick, Ari -- Wellen, Kathryn E -- O'Rourke, Donald M -- Berger, Shelley L -- Chan, Timothy A -- Levine, Ross L -- Mellinghoff, Ingo K -- Thompson, Craig B -- R01 CA078831/CA/NCI NIH HHS/ -- R01 CA105463/CA/NCI NIH HHS/ -- U54CA143798/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Feb 15;483(7390):474-8. doi: 10.1038/nature10860.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22343901" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3-L1 Cells ; Adipocytes/cytology/drug effects/metabolism ; Animals ; Astrocytes/cytology/drug effects ; Cell Differentiation/drug effects/*genetics ; Cell Line, Tumor ; Cell Lineage/genetics ; DNA Methylation/drug effects ; Enzyme Induction/drug effects ; Gene Expression Regulation/drug effects ; Glioma/enzymology/genetics/pathology ; Glutarates/metabolism/pharmacology ; HEK293 Cells ; Histones/*metabolism ; Humans ; Isocitrate Dehydrogenase/antagonists & inhibitors/*genetics/metabolism ; Jumonji Domain-Containing Histone Demethylases/antagonists & ; inhibitors/deficiency/genetics/metabolism ; Methylation/drug effects ; Mice ; Mutation/*genetics ; Neural Stem Cells/metabolism ; Promoter Regions, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-05-09
    Description: ATP is the dominant energy source in animals for mechanical and electrical work (for example, muscle contraction or neuronal firing). For chemical work, there is an equally important role for NADPH, which powers redox defence and reductive biosynthesis. The most direct route to produce NADPH from glucose is the oxidative pentose phosphate pathway, with malic enzyme sometimes also important. Although the relative contribution of glycolysis and oxidative phosphorylation to ATP production has been extensively analysed, similar analysis of NADPH metabolism has been lacking. Here we demonstrate the ability to directly track, by liquid chromatography-mass spectrometry, the passage of deuterium from labelled substrates into NADPH, and combine this approach with carbon labelling and mathematical modelling to measure NADPH fluxes. In proliferating cells, the largest contributor to cytosolic NADPH is the oxidative pentose phosphate pathway. Surprisingly, a nearly comparable contribution comes from serine-driven one-carbon metabolism, in which oxidation of methylene tetrahydrofolate to 10-formyl-tetrahydrofolate is coupled to reduction of NADP(+) to NADPH. Moreover, tracing of mitochondrial one-carbon metabolism revealed complete oxidation of 10-formyl-tetrahydrofolate to make NADPH. As folate metabolism has not previously been considered an NADPH producer, confirmation of its functional significance was undertaken through knockdown of methylenetetrahydrofolate dehydrogenase (MTHFD) genes. Depletion of either the cytosolic or mitochondrial MTHFD isozyme resulted in decreased cellular NADPH/NADP(+) and reduced/oxidized glutathione ratios (GSH/GSSG) and increased cell sensitivity to oxidative stress. Thus, although the importance of folate metabolism for proliferating cells has been long recognized and attributed to its function of producing one-carbon units for nucleic acid synthesis, another crucial function of this pathway is generating reducing power.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104482/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104482/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fan, Jing -- Ye, Jiangbin -- Kamphorst, Jurre J -- Shlomi, Tomer -- Thompson, Craig B -- Rabinowitz, Joshua D -- P01 CA104838/CA/NCI NIH HHS/ -- P30 CA072720/CA/NCI NIH HHS/ -- P50 GM071508/GM/NIGMS NIH HHS/ -- R01 AI097382/AI/NIAID NIH HHS/ -- R01 CA105463/CA/NCI NIH HHS/ -- R01 CA163591/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jun 12;510(7504):298-302. doi: 10.1038/nature13236. Epub 2014 May 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Chemistry and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA [2]. ; 1] Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA [2]. ; Department of Chemistry and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA. ; 1] Department of Chemistry and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA [2] Department of Computer Science, Technion - Israel Institute of Technology, Haifa 32000, Israel. ; Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24805240" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carbon/metabolism ; Cell Line ; Cell Line, Tumor ; Cytosol/enzymology/metabolism ; Folic Acid/*metabolism ; Glutathione/metabolism ; Glycine/metabolism ; HEK293 Cells ; Humans ; Isoenzymes/deficiency/genetics/metabolism ; Leucovorin/analogs & derivatives/metabolism ; Methylenetetrahydrofolate Dehydrogenase (NADP)/deficiency/genetics/metabolism ; Mice ; Mitochondria/enzymology/metabolism ; NADP/*biosynthesis/metabolism ; Oxidation-Reduction ; Oxidative Stress ; Pentose Phosphate Pathway ; Serine/metabolism ; Tetrahydrofolates/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...