ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1989-08-04
    Description: The crystal structure of glycogen phosphorylase a complexed with its substrates, orthophosphate and maltopentaose, has been determined and refined at a resolution of 2.8 angstroms. With oligosaccaride bound at the glycogen storage site, the phosphate ion binds at the catalytic site and causes the regulatory and catalytic domains to separate with the loss of stabilizing interactions between them. Homotropic cooperativity between the active sites of the allosteric dimer results from rearrangements in isologous contacts between symmetry-related helices in the subunit interface. The conformational changes in the core of the interface are correlated with those observed on covalent activation by phosphorylation at Ser14 (phosphorylase b----a).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goldsmith, E J -- Sprang, S R -- Hamlin, R -- Xuong, N H -- Fletterick, R J -- DK31507-05/DK/NIDDK NIH HHS/ -- GM00085-05/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Aug 4;245(4917):528-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2756432" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Site ; Amino Acid Sequence ; Binding Sites ; Catalysis ; Crystallization ; Crystallography ; Enzyme Activation ; Glucosephosphates/metabolism ; Glycogen/metabolism ; Macromolecular Substances ; Molecular Sequence Data ; Molecular Structure ; Oligosaccharides ; Phosphates/metabolism ; Phosphorylase a/*metabolism ; Phosphorylases/*metabolism ; Protein Conformation ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-01-07
    Description: The crystal structure of a soluble, catalytically active form of adenylyl cyclase in a complex with its stimulatory heterotrimeric G protein alpha subunit (Gsalpha) and forskolin was determined to a resolution of 2.3 angstroms. When P-site inhibitors were soaked into native crystals of the complex, the active site of adenylyl cyclase was located and structural elements important for substrate recognition and catalysis were identified. On the basis of these and other structures, a molecular mechanism is proposed for the activation of adenylyl cyclase by Gsalpha.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tesmer, J J -- Sunahara, R K -- Gilman, A G -- Sprang, S R -- DK38828/DK/NIDDK NIH HHS/ -- DK46371/DK/NIDDK NIH HHS/ -- GM34497/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Dec 12;278(5345):1907-16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75235-9050, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9417641" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Adenylyl Cyclase Inhibitors ; Adenylyl Cyclases/*chemistry/metabolism ; Amino Acid Sequence ; Binding Sites ; Catalysis ; Colforsin/metabolism ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Enzyme Activation ; GTP-Binding Protein alpha Subunits, Gs/*chemistry/metabolism ; Guanosine 5'-O-(3-Thiotriphosphate)/*chemistry/metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-01-07
    Description: The crystal structure of Gsalpha, the heterotrimeric G protein alpha subunit that stimulates adenylyl cyclase, was determined at 2.5 A in a complex with guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS). Gsalpha is the prototypic member of a family of GTP-binding proteins that regulate the activities of effectors in a hormone-dependent manner. Comparison of the structure of Gsalpha.GTPgammaS with that of Gialpha.GTPgammaS suggests that their effector specificity is primarily dictated by the shape of the binding surface formed by the switch II helix and the alpha3-beta5 loop, despite the high sequence homology of these elements. In contrast, sequence divergence explains the inability of regulators of G protein signaling to stimulate the GTPase activity of Gsalpha. The betagamma binding surface of Gsalpha is largely conserved in sequence and structure to that of Gialpha, whereas differences in the surface formed by the carboxyl-terminal helix and the alpha4-beta6 loop may mediate receptor specificity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sunahara, R K -- Tesmer, J J -- Gilman, A G -- Sprang, S R -- DK46371/DK/NIDDK NIH HHS/ -- GM34497/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Dec 12;278(5345):1943-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-9041, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9395396" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/chemistry/*metabolism ; Amino Acid Sequence ; Binding Sites ; Conserved Sequence ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Enzyme Activation ; GTP Phosphohydrolases/metabolism ; GTP-Binding Protein alpha Subunits, Gi-Go/chemistry/metabolism ; GTP-Binding Protein alpha Subunits, Gs/*chemistry/metabolism ; Guanosine 5'-O-(3-Thiotriphosphate)/*chemistry/metabolism ; Guanosine Triphosphate/metabolism ; Hydrolysis ; Magnesium/metabolism ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; Protein Structure, Secondary ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...