ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (17)
Collection
Publisher
Language
  • English  (17)
Years
  • 1
    Publication Date: 2022-03-21
    Description: Sequestration of soil organic carbon (SOC) on cropland has been proposed as a climate change mitigation strategy to reduce global greenhouse gas (GHG) concentrations in the atmosphere, which is in particular needed to achieve the targets proposed in the Paris Agreement to limit the increase in atmospheric temperature to well below 2 °C. We here analyze the historical evolution and future development of cropland SOC using the global process-based biophysical model LPJmL, which was recently extended by a detailed representation of tillage practices and residues management (version 5.0–tillage2). We find that model results for historical global estimates for SOC stocks are at the upper end of available literature, with ~2650 Pg C of SOC stored globally in the year 2018, of which ~170 Pg C are stored in cropland soils. In future projections, assuming no further changes in current cropland patterns and under four different management assumptions with two different climate forcings, RCP2.6, and RCP8.5, results suggest that agricultural SOC stocks decline in all scenarios, as the decomposition of SOC outweighs the increase of carbon inputs into the soil from altered management practices. Different climate-change scenarios, as well as assumptions on tillage management, play a minor role in explaining differences in SOC stocks. The choice of tillage practice explains between 0.2 % and 1.3 % of total cropland SOC stock change in the year 2100. Future dynamics in cropland SOC are most strongly controlled by residue management, whether residues are left on the field or harvested. We find that on current cropland, global cropland SOC stocks decline until the end of the century by only 1.0 % to 1.4 % if residue-retention management systems are generally applied and by 26.7 % to 27.3 % in case of residues harvest. For different climatic regions, increases in cropland SOC can only be found for tropical dry, warm temperate moist, and warm temperate dry regions in management systems that retain residues.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-08
    Description: Soil organic carbon (SOC), one of the largest terrestrial carbon (C) stocks on Earth, has been depleted by anthropogenic land cover change and agricultural management. However, the latter has so far not been well represented in global C stock assessments. While SOC models often simulate detailed biochemical processes that lead to the accumulation and decay of SOC, the management decisions driving these biophysical processes are still little investigated at the global scale. Here we develop a spatially explicit data set for agricultural management on cropland, considering crop production levels, residue returning rates, manure application, and the adoption of irrigation and tillage practices. We combine it with a reduced-complexity model based on the Intergovernmental Panel on Climate Change (IPCC) tier 2 method to create a half-degree resolution data set of SOC stocks and SOC stock changes for the first 30 cm of mineral soils. We estimate that, due to arable farming, soils have lost around 34.6 GtC relative to a counterfactual hypothetical natural state in 1975. Within the period 1975–2010, this SOC debt continued to expand by 5 GtC (0.14 GtC yr−1) to around 39.6 GtC. However, accounting for historical management led to 2.1 GtC fewer (0.06 GtC yr−1) emissions than under the assumption of constant management. We also find that management decisions have influenced the historical SOC trajectory most strongly by residue returning, indicating that SOC enhancement by biomass retention may be a promising negative emissions technique. The reduced-complexity SOC model may allow us to simulate management-induced SOC enhancement – also within computationally demanding integrated (land use) assessment modeling.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-05-02
    Description: To satisfy the increasing global demand for agricultural products, the expansion of irrigation is an important intensification measure. At the same time, unsustainable water abstractions and cropland expansion pose a threat to biodiversity and ecosystem functioning. Irrigation potentials are influenced by local biophysical irrigation water availability and competition of different water users. Using a novel hydro-economic data processing routine that considers economic criteria of water allocation via a productivity ranking of grid cells and both land and water sustainability criteria, we estimate global irrigation potentials at a 0.5 ° spatial resolution. We show that there is considerable technical potential to expand irrigation within local water and land boundaries. In terms of potentially irrigated areas on all global land suitable for crop production, 2144 Mha could be irrigated within land and water environmental boundaries when only considering biophysical criteria. However, not all of these areas would actually be irrigated under consideration of irrigation costs. Of these, only 698 Mha (330 Mha) have a yield gain of more than 300 (600) USD ha-1 under the current crop mix valued at their current commodity price (economic irrigation potential).
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-07-27
    Description: Potential climate-related impacts on future crop yield are a major societal concern. Previous projections of the Agricultural Model Intercomparison and Improvement Project’s Global Gridded Crop Model Intercomparison based on the Coupled Model Intercomparison Project Phase 5 identified substantial climate impacts on all major crops, but associated uncertainties were substantial. Here we report new twenty-first-century projections using ensembles of latest-generation crop and climate models. Results suggest markedly more pessimistic yield responses for maize, soybean and rice compared to the original ensemble. Mean end-of-century maize productivity is shifted from +5% to −6% (SSP126) and from +1% to −24% (SSP585)—explained by warmer climate projections and improved crop model sensitivities. In contrast, wheat shows stronger gains (+9% shifted to +18%, SSP585), linked to higher CO2 concentrations and expanded high-latitude gains. The ‘emergence’ of climate impacts consistently occurs earlier in the new projections—before 2040 for several main producing regions. While future yield estimates remain uncertain, these results suggest that major breadbasket regions will face distinct anthropogenic climatic risks sooner than previously anticipated.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-09-01
    Description: We present the Land Input Generator (LandInG) version 1.0, a new toolbox for generating input datasets for terrestrial ecosystem models (TEMs) from diverse and partially conflicting data sources. While LandInG 1.0 is applicable to process data for any TEM, it is developed specifically for the open-source dynamic global vegetation, hydrology, and crop growth model LPJmL (Lund–Potsdam–Jena with managed Land). The toolbox documents the sources and processing of data to model inputs and allows for easy changes to the spatial resolution. It is designed to make inconsistencies between different sources of data transparent so that users can make their own decisions on how to resolve these should they not be content with the default assumptions made here. As an example, we use the toolbox to create input datasets at 5 and 30 arcmin spatial resolution covering land, country, and region masks, soil, river networks, freshwater reservoirs, irrigation water distribution networks, crop-specific annual land use, fertilizer, and manure application. We focus on the toolbox describing the data processing rather than only publishing the datasets as users may want to make different choices for reconciling inconsistencies, aggregation, spatial extent, or similar. Also, new data sources or new versions of existing data become available continuously, and the toolbox approach allows for incorporating new data to stay up to date.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-10-11
    Description: All relevant model outputs to reproduce main analyses and figures in Sakschewski et al. 2021: Variable tree rooting strategies are key to model distribution, productivity and evapotranspiration of tropical evergreen forests, Biogeosciences; https://doi.org/10.5194/bg-2020-97
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-10-11
    Description: Model code of LPJmL4.0-VR as used in Sakschewski et al. 2021: Variable tree rooting strategies are key to model distribution, productivity and evapotranspiration of tropical evergreen forests, Biogeosciences; https://doi.org/10.5194/bg-2020-97
    Language: English
    Type: info:eu-repo/semantics/other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-10-11
    Description: A variety of modelling studies have suggested tree rooting depth as a key variable to explain evapotranspiration rates, productivity and the geographical distribution of evergreen forests in tropical South America. However, none of those studies have acknowledged resource investment, timing and physical constraints of tree rooting depth within a competitive environment, undermining the ecological realism of their results. Here, we present an approach of implementing variable rooting strategies and dynamic root growth into the LPJmL4.0 (Lund-Potsdam-Jena managed Land) dynamic global vegetation model (DGVM) and apply it to tropical and sub-tropical South America under contemporary climate conditions. We show how competing rooting strategies which underlie the trade-off between above- and below-ground carbon investment lead to more realistic simulation of intra-annual productivity and evapotranspiration and consequently of forest cover and spatial biomass distribution. We find that climate and soil depth determine a spatially heterogeneous pattern of mean rooting depth and below-ground biomass across the study region. Our findings support the hypothesis that the ability of evergreen trees to adjust their rooting systems to seasonally dry climates is crucial to explaining the current dominance, productivity and evapotranspiration of evergreen forests in tropical South America.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-09-26
    Description: Climate change is expected to impact crop yields and alter resource availability. However, the understanding of the potential of agricultural land-use adaptation and its costs under climate warming is limited. Here, we use a global land system model to assess land-use-based adaptation and its cost under a set of crop model projections, including CO2 fertilization, based on climate model outputs. In our simulations of a low-emissions scenario, the land system responds through slight changes in cropland area in 2100, with costs close to zero. For a high emissions scenario and impacts uncertainty, the response tends toward cropland area changes and investments in technology, with average adaptation costs between −1.5 and +19 US$05 per ton of dry matter per year. Land-use adaptation can reduce adverse climate effects and use favorable changes, like local gains in crop yields. However, variance among high-emissions impact projections creates challenges for effective adaptation planning.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-10-04
    Description: Starting and plotting scripts to replicate Figures and runs for the Climate change-driven global land-use system adaptation under CMIP6-based crop model projections. Updated Version that includes color-blind friendly palettes and additional scripts compared to Version 1.
    Language: English
    Type: info:eu-repo/semantics/other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...