ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 37 (2001), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : With the increasing availability of digital and remotely sensed data such as land use, soil texture, and digital elevation models (DEMs), geographic information systems (GIS) have become an indispensable tool in preprocessing data sets for watershed hydrologic modeling and post processing simulation results. However, model inputs and outputs must be transferred between the model and the GIS. These transfers can be greatly simplified by incorporating the model itself into the GIS environment. To this end, a simple hydrologic model, which incorporates the curve number method of rainfall-runoff partitioning, the ground-water base-flow routine, and the Muskingum flow routing procedure, was implemented on the GIS. The model interfaces directly with stream network, flow direction, and watershed boundary data generated using standard GIS terrain analysis tools; and while the model is running, various data layers may be viewed at each time step using the full display capabilities. The terrain analysis tools were first used to delineate the drainage basins and stream networks for the Susquehanna River. Then the model was used to simulate the hydrologic response of the Upper West Branch of the Susquehanna to two different storms. The simulated streamflow hydrographs compare well with the observed hydrographs at the basin outlet.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 39 (2003), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : New formulas and procedures under the framework of the Rational Formula are presented that are applicable to flood design problems for a small basin if the geometry of the basin can be approximated as an ellipse or a rhombus. Instead of making the assumption in the traditional rational formula that the rainfall is uniformly distributed in the whole duration (Dw) of a design storm, the new method modifies that assumption as: the rainfall is uniformly distributed only in each time interval CD) of the design storm hyetograph, thus extending the rational formula applicable to the case that the rainfall duration is less than the basin concentration time (Tc). The new method can be applied to estimate the flood design peak discharge, and to generate the flood hydrograph simultaneously. The derivation of the formulas is provided in detail in this paper, and an example is also included to illustrate how to apply the new formulas to the flood design problems in small basins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 35 (1999), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : Understanding the effects of climate change on water resources requires coupling atmospheric and hydrologic models. With the wide array of hydrologic models, from simple empirical to complex physically based, it is not clear which is preferable to simulate hydrologic variations over long time scales. To address this issue, a black-box artificial neural network (ANN) model was compared to a distributed parameter conceptual Geographic Information System based Hydrologic Modeling System (GIS-HMS). Both models computed daily direct surface runoff in four sub-basins of the West Branch of the Susquehanna River Basin, Pennsylvania and were evaluated with five objective functions. Overall, results were comparable between models. However, the ANN was favored in the larger sub-basins, while GIS-HMS was more accurate in the smaller catchments. Both models were impaired by the poor spatial and temporal resolution of precipitation data and the simplified representation of antecedent soil-moisture conditions. In the context of climate change, where simulations are limited by computing power, results suggest that both models are appropriate. When detailed simulations are essential, GIS-HMS is a preferable model to use. On the other hand, the ANN model is more suitable when multiple scenarios require immediate analysis and the distributed qualities of runoff are not required.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 34 (1998), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : Hydrologic models have become an indispensable tool for studying processes and water management in watersheds. A physically-based, distributed-parameter model, Basin-Scale Hydro-logic Model (BSIIM), has been developed to simulate the hydrologic response of large drainage basins. The model formulation is based on equations describing water movement both on the surface and in the subsurface. The model incorporates detailed information on climate, digital elevation, and soil moisture budget, as well as surface-water and ground-water systems. This model has been applied to the Big Darby Creek Watershed, Ohio in a 28-year simulation of rainfall-runoff processes. Unknown coefficients for controlling runoff, storativity, hydraulic conductivity, and streambed permeability are determined by a trial-and-error calibration. The performance of model calibration and predictive capability of the model was evaluated based on the correlation between simulated and observed daily stream discharges. Discrepancies between observed and simulated results exist because of limited precipitation data and simplifying assumptions related to soil, land use, and geology.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Hydrogeology journal 7 (1999), S. 236-240 
    ISSN: 1435-0157
    Keywords: Key words laboratory experiments ; tracer tests ; hydrochemistry ; variable-density flow ; image processing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Résumé Au laboratoire, l'analyse d'images assistée par ordinateur est un moyen précis et efficace pour suivre certaines expériences de traçage. Ce papier présente comment sont déterminées dans le détail les distributions temporelles de la concentration en traceur au cours d'une expérience d'écoulement en réservoir au moyen de l'analyse de photographies de panaches de rhodamine à travers la paroi de verre du réservoir. La méthodologie développée dans cette expérience suit quatre étapes: (1) digitalisation par balayage des négatifs noir et blanc des prises de vue de l'expérience d'écoulement en réservoir; (2) calibration et normalisation de chaque image digitalisée par rapport à une échelle étalon de densité optique en déterminant la relation entre la densité optique et la valeur des pixels de chaque image; (3) étalonnage de concentrations prédéterminées (2 à 97 mg/L); et (4) conversion de la densité optique en concentration. La distribution spatiale des concentrations pour deux photos a été déterminée en appliquant ces procédures de calibration et de conversion à tous les pixels des images digitalisées. Cette approche est une façon efficace pour étudier la manière dont évoluent les panaches ainsi que les mécanismes de transport.
    Abstract: Resumen El análisis de imágenes por ordenador proporciona un método preciso y eficiente para estudiar los experimentos con trazadores en laboratorio. En este artículo se describe una metodología para la determinación detallada de las distribuciones temporales de concentración, en un ensayo de trazadores realizado en un tanque de flujo, a partir del análisis de fotografías de los penachos de Rodamina obtenidas a través de la pared transparente del tanque. La metodología comprende cuatro pasos: (1) Digitalización mediante escáner de los negativos en blanco y negro de las fotografías realizadas durante el experimento; (2) Calibración y normalización de cada una de las imágenes digitalizadas a una escala estándar de densidades ópticas, a través de la relación entre densidad óptica y el valor asignado a cada pixel en cada una de las imágenes; (3) Construcción de un estándar de concentraciones predeterminadas (2–97 mg/L); y (4) Conversión de las densidades ópticas a concentraciones de trazador. Mediante este procedimiento de calibración y conversión se determinó la distribución espacial de la concentración para dos fotografías. La metodología presentada proporciona un modo eficiente para estudiar la evolución de los penachos y los mecanismos de transporte.
    Notes: Abstract  In the laboratory, computer-assisted image analysis provides an accurate and efficient way to monitor tracer experiments. This paper describes the determination of detailed temporal concentration distributions of tracers in a flow-tank experiment by analyzing photographs of plumes of Rhodamine dye through the glass wall of the tank. The methodology developed for this purpose consists of four steps: (1) digitally scanning black and white negatives obtained from photographs of the flow–tank experiment; (2) calibrating and normalizing each digitized image to a standard optical-density scale by determining the relation between the optical density and pixel value for each image; (3) constructing standard curves relating the concentration in an optical density from five experimental runs with predetermined concentrations (2–97 mg/L); and (4) converting the optical density to concentration. The spatial distribution of concentration for two photographs was determined by applying these calibration and conversion procedures to all pixels of the digitized images. This approach provides an efficient way to study patterns of plume evolution and transport mechanisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-03-24
    Description: The regional terrestrial water cycle is strongly altered by human activities. Among them, reservoir regulation is a way to spatially and temporally allocate water resources in a basin for multi‐purposes. However, it is still not sufficiently understood how reservoir regulation modifies the regional terrestrial‐ and subsequently, the atmospheric water cycle. To address this question, the representation of reservoir regulation into the terrestrial component of fully coupled regional Earth system models is required. In this study, an existing process‐based reservoir network module is implemented into NOAH‐HMS, that is, the terrestrial component of an atmospheric–hydrologic modelling system, namely, the WRF‐HMS. It allows to quantitatively differentiate role of reservoir regulation and of groundwater feedback in a simulated ground‐soil‐vegetation continuum. Our study focuses on the Poyang Lake basin, where the largest freshwater lake of China and reservoirs of different sizes are located. As compared to streamflow observations, the newly extended NOAH‐HMS slightly improves the streamflow and streamflow duration curves simulation for the Poyang Lake basin for the period 1979–1986. The inclusion of reservoir regulation leads to major changes in the simulated groundwater recharges and evaporation from reservoirs at local scale, but has minor effects on the simulated soil moisture and surface runoff at basin scale. The performed groundwater feedback sensitivity analysis shows that the strength of the groundwater feedback is not altered by the consideration of reservoir regulation. Furthermore, both reservoir regulation and groundwater feedback modify the partitioning of the simulated evapotranspiration, thus affecting the atmospheric water cycle in the Poyang Lake region. This finding motivates future research with our extended fully coupled atmospheric–hydrologic modelling system by the community.
    Description: An existing process‐based reservoir network module is implemented into the terrestrial component NOAH‐HMS of the atmospheric–hydrologic modelling system WRF‐HMS. The inclusion of reservoir regulation leads to major changes in the simulated groundwater recharges and evaporation from reservoirs at local scale, but does not alter the strength of the groundwater feedback. Reservoir regulation and groundwater feedback play different roles in modifying the regional terrestrial water cycle for the Poyang Lake basin, particularly with respect to the partitioning of the simulated evapotranspiration.
    Description: German Federal Ministry of Science and Education
    Description: German Research Foundation http://dx.doi.org/10.13039/501100001659
    Description: National Key R&D Program of China
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Keywords: ddc:551.49
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-25
    Description: Assessments of water and energy security over historical and future periods require hydrologic models that can accurately simulate reservoir operations. However, scare reservoir operation data limits the accuracy of current reservoir representations in simulating reservoir behaviors. Furthermore, the reliability of these representations under changing inflow regimes remains unclear, which makes their application for long future planning horizons questionable. To this end, we propose a synergistic framework to predict the release, storage, and hydropower production of ungauged reservoirs (i.e., reservoirs without in‐situ inflow, release, storage, and operating rules) by combining remotely sensed reservoir operating patterns and model‐simulated reservoir inflow with conceptual reservoir operation schemes within a land surface‐hydrologic model. A previously developed reservoir operation scheme is extended with a storage anomaly based calibration approach to accommodate the relatively short time series and large time intervals of remotely sensed data. By setting up controlled experiments in the Yalong River Basin in China, we show that remote sensing can improve the parameter estimation and simulations of ungauged reservoirs for all selected reservoir operation schemes, thereby improving the downstream flood and streamflow simulations. However, most of these schemes show degraded accuracies of reservoir operation simulations under a changing inflow regime, which could lead to unreliable assessments of future water resources and hydropower production. In comparison, our newly extended reservoir operation scheme can be more adaptable to flow regime variations. Our study provides a practical framework for reservoir impact assessments and predictions with the ongoing satellite altimetry projects such as Surface Water and Ocean Topography.
    Description: Key Points: Satellite remote sensing can improve the representation of ungauged reservoirs and streamflow simulations in hydrologic models. A reservoir operation scheme for ungauged reservoirs is extended and tailored to the use of remotely sensed reservoir operation data. Reservoir operation schemes with storage‐based model structures can be more reliable in reservoir simulations under a changing flow regime.
    Description: National Key Research and Development Program of China http://dx.doi.org/10.13039/501100012166
    Description: Belt and Road Special Foundation of the State Key Laboratory of Hydrology‐Water Resources and Hydraulic Engineering
    Description: German Research Foundation
    Description: German Federal Ministry of Science of Education
    Description: https://doi.org/10.5281/zenodo.7190469
    Description: https://global-surface-water.appspot.com/download
    Description: https://doi.org/10.18738/T8/DF80WG
    Description: https://aviso-data-center.cnes.fr/
    Keywords: ddc:551.48 ; reservoir operation schemes ; remote sensing ; satellite altimetry ; SWOT ; hydrologic prediction ; hydrologic simulation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-10-06
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-12-01
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-01-28
    Print ISSN: 0236-5731
    Electronic ISSN: 1588-2780
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...