ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature biotechnology 21 (2003), S. 1266-1267 
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] To the editor: Growth and multiplication of specific cells and organisms occurs within narrow physico-chemical conditions. Despite the fundamental importance of one (or at most two) cellular functions that determine the growth range of a cell or an organism, in most cases we have little idea of ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The chemical composition of the Bannock basin has been studied in some detail. We recently showed that unusual microbial populations, including a new division of Archaea (MSBL1), inhabit the NaCl-rich hypersaline brine. High salinities tend to reduce biodiversity, but when brines come into ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: For preliminary screening of human impact on Antarctic coasts, the compositions of microbial communities were analyzed in seawater at two sites located in the Terra Nova Bay of Antarctica (Ross Sea) by a combination of 16S rRNA gene sequencing and culture techniques. The bacterial community in the sample from the Rod Bay site, located at the proximity to the Italian Station, was characterized by a high abundance of 16S rRNA gene sequences belonging to the microflora typically found in soil and freshwater environments. In contrast, the seawater sample from the Adelie Cove station, a pristine reference site, contained 16S rRNA gene sequences typically found in marine areas affected by algal blooms and sea ice decay. The addition of crude oil to the Rod Bay seawater sample rapidly induced a shift in the composition of the bacterial community with appearance of novel taxonomic groups and a dramatic increase in the relative abundance of γ-Proteobacteria sequences, whereas no significant changes were detected in the bacterial community of the Adelie Cove sample under the same conditions. Bacteria-exhibiting features with potential interest for industrial and environmental applications were isolated from the Rod Bay oil-enriched sample. In particular, hydrocarbon-degrading, cold-adapted bacteria were selectively enriched, isolated and screened for their ability to synthesize polyunsaturated fatty acids. Twenty two bacterial strains were isolated from the oil enrichment culture and identified. Eighteen isolates were found to be members of γ-Proteobacteria, while the remainder were representatives of α-Proteobacteria, CFB and high G + C divisions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] Alcanivorax borkumensis is a cosmopolitan marine bacterium that uses oil hydrocarbons as its exclusive source of carbon and energy. Although barely detectable in unpolluted environments, A. borkumensis becomes the dominant microbe in oil-polluted waters. A. borkumensis SK2 has a streamlined genome ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-03-26
    Description: The geological, biological and geochemical features of a particular field of hydrothermal vents, discovered in the Panarea Volcanic Complex during a research survey carried out in 2015, are described for the first time. The site, located at 70-80 m depth off the South-western coast of the islet of Basiluzzo, was named Smoking Land for the presence of a large number of wide and high active chimneys and was characterized in terms of dissolved benthic fluxes, associated macrofauna and megafauna communities and preliminary mineralogy and geochemistry of chimney structures. On the whole field, a total of 39 chimneys, different in size and shape, were closely observed and described; 14 of them showed emission of low temperature hydrothermal fluids of marine origin characterized by acidified chemical conditions. The CTD and benthic chamber measurements highlighted that the Smoking Land is able to form a sea water bottom layer characterized by variable acidity and high DIC and trace elements concentrations; these characteristics weaken moving away from the chimney mouths. The SEM-EDS analysis of the collected solid samples revealed a chimney structure principally composed by amorphous and low crystalline Fe-oxyhydroxides of hydrothermal origins. The ROV explorations revealed a wide coverage of red algae (Peyssonnelia spp.) colonized by the green algae Flabiella petiolata and by suspension feeders, mainly sponges, but also bryozoans, and tubicolous polychaetes. Although novent-exclusive species were identified, the benthic communities found in association to the chimneys included more taxa than those observed in the surrounding no-vent rocky areas. These first findings evidence a submarine dynamic habitat where geological, chemical and biological processes are intimately connected, making the Smoking Land an important site in terms of marine heritage that should be safeguarded and protected.
    Description: Published
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: hydrothermal fluids ; marine environment ; new shallow water hydrothermal vents over the Panarea volcanic area
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 129 (2016): 213-222, doi:10.1016/j.dsr2.2014.10.020.
    Description: Obtaining an accurate picture of microbial processes occurring in situ is essential for our understanding of marine biogeochemical cycles of global importance. Water samples are typically collected at depth and returned to the sea surface for processing and downstream experiments. Metatranscriptome analysis is one powerful approach for investigating metabolic activities of microorganisms in their habitat and which can be informative for determining responses of microbiota to disturbances such as the Deepwater Horizon oil spill. For studies of microbial processes occurring in the deep sea, however, sample handling, pressure, and other changes during sample recovery can subject microorganisms to physiological changes that alter the expression profile of labile messenger RNA. Here we report a comparison of gene expression profiles for whole microbial communities in a bathypelagic water column sample collected in the Eastern Mediterranean Sea using Niskin bottle sample collection and a new water column sampler for studies of marine microbial ecology, the Microbial Sampler – In Situ Incubation Device (MS-SID). For some taxa, gene expression profiles from samples collected and preserved 33 in situ were significantly different from potentially more stressful Niskin sampling and 34 preservation on deck. Some categories of transcribed genes also appear to be affected by sample 35 handling more than others. This suggests that for future studies of marine microbial ecology, 36 particularly targeting deep sea samples, an in situ sample collection and preservation approach 37 should be considered.
    Description: This research was funded by NSF OCE-1061774 to VE and CT, NSF DBI-0424599 to CT and NSF OCE-0849578 to VE and colleague J. Bernhard. Cruise participation was partially supported by Deutsche Forschungsgemeinschaft (DFG) grant STO414/10-1 to T. Stoeck.
    Keywords: Metatranscriptomics ; Microbial sampler ; In Situ icubation device ; Pressure effects
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Microbiology 13 (2013): 150, doi:10.1186/1471-2180-13-150.
    Description: Deep hypersaline anoxic basins (DHABs) are isolated habitats at the bottom of the eastern Mediterranean Sea, which originate from the ancient dissolution of Messinian evaporites. The different basins have recruited their original biota from the same source, but their geological evolution eventually constituted sharp environmental barriers, restricting genetic exchange between the individual basins. Therefore, DHABs are unique model systems to assess the effect of geological events and environmental conditions on the evolution and diversification of protistan plankton. Here, we examine evidence for isolated evolution of unicellular eukaryote protistan plankton communities driven by geological separation and environmental selection. We specifically focused on ciliated protists as a major component of protistan DHAB plankton by pyrosequencing the hypervariable V4 fragment of the small subunit ribosomal RNA. Geospatial distributions and responses of marine ciliates to differential hydrochemistries suggest strong physical and chemical barriers to dispersal that influence the evolution of this plankton group. Ciliate communities in the brines of four investigated DHABs are distinctively different from ciliate communities in the interfaces (haloclines) immediately above the brines. While the interface ciliate communities from different sites are relatively similar to each other, the brine ciliate communities are significantly different between sites. We found no distance-decay relationship, and canonical correspondence analyses identified oxygen and sodium as most important hydrochemical parameters explaining the partitioning of diversity between interface and brine ciliate communities. However, none of the analyzed hydrochemical parameters explained the significant differences between brine ciliate communities in different basins. Our data indicate a frequent genetic exchange in the deep-sea water above the brines. The “isolated island character” of the different brines, that resulted from geological events and contemporary environmental conditions, create selective pressures driving evolutionary processes, and with time, lead to speciation and shape protistan community composition. We conclude that community assembly in DHABs is a mixture of isolated evolution (as evidenced by small changes in V4 primary structure in some taxa) and species sorting (as indicated by the regional absence/presence of individual taxon groups on high levels in taxonomic hierarchy).
    Description: This work was funded by NSF grants OCE-0849578 and OCE- 1061774 to VE and support from Carl Zeiss fellowship to AS and from the Deutsche Forschungsgemeinschaft (grants STO414/3-2 and STO414/7-1) to TS.
    Keywords: Ciliates ; Hypersaline ; Deep-sea anoxic basins ; DHABs ; Brine ; Species sorting ; Environmental filtering ; Niche separation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/vnd.ms-powerpoint
    Format: application/pdf
    Format: application/vnd.ms-excel
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Extremophiles 13 (2009): 151-167, doi:10.1007/s00792-008-0206-2.
    Description: Environmental factors restrict the distribution of microbial eukaryotes but the exact boundaries for eukaryotic life are not known. Here we examine protistan communities at the extremes of salinity and osmotic pressure, and report rich assemblages inhabiting Bannock and Discovery, two deep-sea superhaline anoxic basins in the Mediterranean. Using a rRNA-based approach, we detected 1538 protistan rRNA gene sequences from water samples with total salinity ranging from 39 g/kg to 280 g/Kg, and obtained evidence that this DNA was endogenous to the extreme habitats sampled. Statistical analyses indicate that the discovered phylotypes represent only a fraction of species actually inhabiting both the brine and the brine-seawater interface, with as much as 82% of the actual richness missed by our survey. Jaccard indices (e.g., for a comparison of community membership) suggest that the brine/interface protistan communities are unique to Bannock and Discovery basins, and share little (0.8-2.8%) in species composition with overlying waters with typical marine salinity and oxygen tension. The protistan communities from the basins’ brine and brine/seawater interface appear to be particularly enriched with dinoflagellates, ciliates and other alveolates, as well as fungi, and are conspicuously poor in stramenopiles. The uniqueness and diversity of brine and brine-interface protistan communities make them promising targets for protistan discovery.
    Description: This study was supported by grant grant STO414/2-4 of the Deutsche Forschungsgemeinschaft, the EuroDEEP program of the European Science Foundation under 06-EuroDEEP-FP-004 MIDDLE project and NSF-grant MCB- 0348341
    Keywords: Anoxic ; Brine ; Community structure ; Deep-sea ; DHAB ; Hypersaline ; Molecular diversity ; Protists
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-18
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in GigaScience 4 (2015): 27, doi:10.1186/s13742-015-0066-5.
    Description: Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.
    Description: This work was supported by the Micro B3 project, which is funded from the European Union’s Seventh Framework Programme (FP7; Joint Call OCEAN.2011‐2: Marine microbial diversity – new insights into marine ecosystems functioning and its biotechnological potential) under the grant agreement no 287589.
    Keywords: Ocean sampling day ; OSD ; Biodiversity ; Genomics ; Health index ; Bacteria ; Microorganism ; Metagenomics ; Marine ; Micro B3 ; Standards
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-06-21
    Description: A global census of marine microbial life has been underway over the past several decades. During this period, there have been scientific breakthroughs in estimating microbial diversity and understanding microbial functioning and ecology. It is estimated that the ocean, covering 71% of the earth's surface with its estimated volume of about 2 × 1018 m3 and an average depth of 3800 m, hosts the largest population of microbes on Earth. More than 2 million eukaryotic and prokaryotic species are thought to thrive both in the ocean and on its surface. Prokaryotic cell abundances can reach densities of up to 1012 cells per millilitre, exceeding eukaryotic densities of around 106 cells per millilitre of seawater. Besides their large numbers and abundance, marine microbial assemblages and their organic catalysts (enzymes) have a largely underestimated value for their use in the development of industrial products and processes. In this perspective article, we identified critical gaps in knowledge and technology to fast-track this development. We provided a general overview of the presumptive microbial assemblages in oceans, and an estimation of what is known and the enzymes that have been currently retrieved. We also discussed recent advances made in this area by the collaborative European Horizon 2020 project 'INMARE'.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...