ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 124 (1996), S. 44-54 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Olivine grain boundaries and phase boundaries in xenoliths from San Carlos have been investigated by high-resolution transmission electron microscopy (HREM) and analytical electron microscopy (AEM). Thin amorphous intergranular layers with variable width (1–2 nm) were detected along olivine grain boundaries. The Al2O3, TiO2 and CaO concentrations of the amorphous layers increase with increasing width of the layer. The composition of the amorphous intergranular layers depends on the interface type – grain or phase boundary. Morphology, amorphous state and chemical composition of the intergranular layer suggest the presence of a melt film at olivine grain boundaries. Since the composition of the amorphous phase strongly depends on the type of interface, the melt must have been generated at the grain boundary. Also, the melt chemistry is different from the composition of partial melts produced from possible hydrous phases, such as phlogopite or amphibole, and from the host basanite. The mobility of very thin melt films is assumed to be very limited due to the strong interface forces between the melt and the grain boundary. It is concluded that grain boundary melting occurred at the interfaces due to decompression during uplift. The melt wetted olivine grain boundaries as well as olivine-opx phase boundaries. The thin amorphous layers formed melt microsystems. Mixing of melts from different microsystems is suggested to occur in wider melt films, melt veins or melt pockets thus creating a magmatic melt that could be extracted from its source.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Optical microscopy and transmission electron microscopy (TEM) on a porphyroclastic high temperature spinel peridotite from the Rhön area reveal fine, irregular glass layers and pockets along mineral interfaces, cracks in olivine, inside olivine crystals and in spongy rims of clinopyroxene. The chemical composition of the glass deviates significantly from the composition of the host basanite. Electron diffraction technique confirms the amorphous nature of the glass, thus classifying it as a former melt. Every grain or phase boundary shows amorphous intergranular glass layers of variable thickness and characteristic chemical composition with distinct chemical inhomogeneities. Olivine grain boundaries, as the most common type of interfaces, exhibit two different types of melt glasses: (1) Type I melt at olivine grain boundaries, which is characterized by low contents of SiO2 (∼37 wt%) and Al2O3 (∼5 wt%) and elevated contents of MgO (∼31 wt%) and FeO (∼22 wt%), is supposed to have formed prior to or during the thermal overprint and the dynamic recrystallisation of the xenolith in the mantle. Melt inclusions inside olivine grains with an average composition of type I melt are suggested to be earlier melt droplets at olivine interfaces, overgrown by migrating olivine grain boundaries during recrystallization in the mantle prior to the uplift of the xenolith. (2) Type II melt, the most common type of melt in the xenolith, shows higher contents of SiO2 (∼48 wt%) and Al2O3 (∼17 wt%) but lower contents of MgO (∼20 wt%) and FeO (∼11 wt%). The observation of different types of glass within a single xenolith indicates the development of different chemical melt equilibria at interfaces or triple junctions in the xenolith. The absence of geochemical trends in bivariate plots excludes a unifying process for the genesis of these glasses. Melt inclusions in the spongy rims of clinopyroxene are interpreted to be the product of a potassium-rich metasomatism. The formation of most amorphous intergranular melt layers and pockets at the mineral interfaces including type II melt at olivine grain boundaries is suggested to result from decompression melting during the uplift with the basalt magma. We suggest that these glasses were produced by grain boundary melting due to lattice mismatch and impurity segregation. The observed intergranular amorphous layers or melts represent the very beginning of mineral melting by grain boundary melting.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Calcite in former aragonite–dolomite-bearing calc-schists from the ultrahigh-pressure metamorphic (UHPM) oceanic complex at Lago di Cignana, Valtournanche, Italy, preserved different kinds of zoning patterns at calcite grain and phase boundaries. These patterns are interpreted in terms of lattice diffusion and interfacial mass transport linked with a heterogeneous distribution of fluid and its response to a changing state of stress. The succession of events that occurred during exhumation is as follows: As the rocks entered the calcite stability field at T=530–550 °C, P ca. 1.2 GPa, aragonite occurring in the matrix and as inclusions in poikilitic garnet was completely transformed to calcite. Combined evidence from microstructures and digital element distribution maps (Mn-, Mg-, Fe- and Ca–Kα radiation intensity patterns) indicates that transformation rates have been much higher than rates of compositional equilibration of calcite (involving resorption of dolomite and grain boundary transport of Mg, Fe and Ca). This rendered the phase transformation an isochemical process. During subsequent cooling to T ca. 490 °C (where lattice diffusion effectively closed), grains of matrix calcite have developed diffusion-zoned rims, a few hundred micrometres thick, with Mg and Fe increasing and Ca decreasing towards the phase boundary. Composition profiles across concentrically zoned, large grains in geometrically simple surroundings can be successfully modelled with an error function describing diffusion into a semi-infinite medium from a source of constant composition. The diffusion rims in matrix calcite are continuous with quartz, phengite, paragonite and dolomite in the matrix. This points to an effective mass transport on phase boundaries over a distance of several hundred micrometres, if matrix dolomite has supplied the Mg and Fe needed for incorporation in calcite. In contrast, diffusion rims are lacking at calcite–calcite and most calcite–garnet boundaries, implying that only very minor mass transport has occurred on these interfaces over the same T–t interval. From available grain boundary diffusion data and experimentally determined fluid–solid grain boundary structures, inferred large differences in transport rates can be best explained by the discontinuous distribution of aqueous fluid along grain/phase boundaries. Observed patterns of diffusion zoning indicate that fluid was distributed not only along grain-edge channels, but spread out along most calcite–white mica and calcite–quartz two-grain junctions. On the other hand, the inferred non-wetting of calcite grain boundaries in carbonate-rich domains is compatible with fluid–calcite–calcite dihedral angles 〉60° determined by Holness and Graham (1995) for a wide range of fluid compositions under the P–T conditions of interest. Whereas differential stress has been very low at the stage of diffusion zoning (T 〉 490 °C), it increased as the rocks were cooling below 440 °C (at 0.3–0.5 GPa). Dislocation creep and the concomitant increase of strain energy in matrix calcite induced migration recrystallisation of high-angle grain boundaries. For that stage, the compositional microstructure of recrystallised calcite grain boundary domains indicates significant mass transport along calcite two-grain junctions, which at the established low temperatures is likely to have been accomplished by ionic diffusion within a hydrous grain boundary fluid film (“dynamic wetting” of migrating grain boundaries).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract A detailed study based on textural observations combined with microanalysis [back scattered electron imaging (BSE) and electron microprobe analysis (EMPA)] and microstructural data transmission electron microscopy (TEM) has been made of K-feldspar micro-veins along quartz–plagioclase phase and plagioclase–plagioclase grain boundaries in granulite facies, orthopyroxene–garnet-bearing gneiss's (700–825 °C, 6–8 kbar) from the Val Strona di Omegna, Ivrea–Verbano Zone, northern Italy. The K-feldspar micro-veins are commonly associated with quartz and plagioclase and are not found in quartz absent regions of the thin section. This association appears to represent a localised reaction texture resulting from a common high grade dehydration reaction, namely: amphibole + quartz = orthopyroxene + clinopyroxene + plagioclase + K-feldspar + H2O, which occurred during the granulite facies metamorphism of these rocks. There are a number of lines of evidence for this. These include abundant Ti-rich biotite, which was apparently stable during granulite facies metamorphism, and total lack of amphibole, which apparently was not. Disorder between Al and Si in the K-feldspar indicates crystallisation at temperatures 〉500 °C. Myrmekite and albitic rim intergrowths in the K-feldspar along the K-feldspar–plagioclase interface could only have formed at temperatures 〉500–600 °C. Symplectic intergrowths of albite and Ca-rich plagioclase between these albitic rim intergrowths and plagioclase suggest a high temperature grain boundary reaction, which most likely occurred at the start of decompression in conjunction with a fluid phase. Relatively high dislocation densities (〉2 × 109 to 3 × 109/cm2) in the K-feldspar suggest plastic deformation at temperatures 〉500 °C. We propose that this plastic deformation is linked with the extensional tectonic environment present during the mafic underplating event responsible for the granulite facies metamorphism in these rocks. Lastly, apparently active garnet grain rims associated with side inclusions of K-feldspar and quartz and an exterior K-feldspar micro-vein indicate equilibrium temperatures within 20–30 °C of the peak metamorphic temperatures estimated for the sample (770 °C). Contact between these K-feldspar micro-veins and Fe-Mg silicate minerals, such as garnet, orthopyroxene, clinopyroxene or biotite along the interface, is observed to be very clean with no signs of melt textures or alteration to sheet silicates. This lends support to the idea that these micro-veins did not originate from a melt and, if fluid induced, that the water activity of these fluids must have been relatively low. All of these lines of evidence point to a high grade origin for the K-feldspar micro-veins and support the hypothesis that they formed during the granulite facies metamorphism of the metabasite layers in an extensional tectonic environment as the consequence of localised dehydration reactions involving the breakdown of amphibole in the presence of quartz to orthopyroxene, clinopyroxene, plagioclase, K-feldspar and H2O. It is proposed that the dehydration of the metabasite layers to an orthopyroxene–garnet-bearing gneiss over a 4-km traverse in the upper Val Strona during granulite facies metamorphism was a metasomatic event initiated by the presence of a high-grade, low H2O activity fluid (most likely a NaCl–KCl supercritical brine), related to the magmatic underplating event responsible for the Mafic Formation; and that this dehydration event did not involve partial melting.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Olivine in spinel peridotite xenoliths from the Bismarck Archipelago northeast of Papua New Guinea, which were transported to the surface by Quaternary basalts, shows spinel inclusions up to 25 μm long and 200 nm wide. These inclusions mainly occur as inhomogeneously distributed needles and subordinately as octahedral grains in olivine of veined metasomatic peridotites as well as peridotites without obvious metasomatism. The needles very often occur in swarms with irregular spacing in between them. Similar spinel inclusions in olivine have only previously been reported from ultramafites of meteoritic origin. Composition and orientation of the spinel inclusions were determined by transmission electron microscopy (TEM) and analytical electron microscopy (AEM). Both the needles and the grains display a uniform crystallographic orientation in the host olivine with [001]O1//[1¯10]Spl and (100)Ol// (111)Spl. The needles eare elongated parallel [010] in olivine, which is the same in all olivine grains. As these needles have no relation to the metasomatic sections in the peridotite, it is concluded that they are primary features of the rock. Although the composition of the spinel needles is often very similar to the large chromian spinel octahedra in the matrix, the small octahedral spinel inclusions in olivine are in part Mg-rich aluminous spinel and sometimes almost pure magnetite. The spinel needles are suggested to have formed by exsolution processes during cooling of Al- and Cr-rich, high-temperature olivine during the initial formation of the lithospheric mantle at the mid-ocean ridge. The Al-rich spinel octahedra probably formed by the breakdown of an Al-rich phase such as phlogopite or by metasomatism, whereas the magnetite was generated by oxidizing fluids. These oxidizing fluids may either have been set free by dehydration of the underlying, subducted plate or by the Quaternary magmatism responsible for the transport of the xenoliths to the seafloor.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-03-29
    Description: Transmission electron microscopy and 3D focused ion beam/scanning electron microscope nanotomography are applied to grain and phase boundaries between quartz, plagioclase, K‐feldspar, clinopyroxene, amphibole, and calcite. The samples come from metamorphic, plutonic and volcanic rocks, and hydrothermal quartz, and experienced cooling and decompression after highly variable P–T peak conditions. Most of the boundaries are partially open in the range of up to several hundred nanometres and partly to totally filled with secondary minerals, such as actinolite, biotite, chlorite, sheet silicates, and quartz, as well as with amorphous matter. Cracking and opening of boundaries are suggested to be related to anisotropic thermoelastic response of crystals to cooling. It starts below the brittle–ductile transition of the involved minerals. The partially open grain and phase boundaries, together with dissolution‐generated cavities, can form porosity of more than 2 vol.% and permeability under conditions of at least lowermost greenschist facies. Such networks of partially open or partially refilled boundaries potentially affect properties of crystalline rocks and processes in the upper crust, such as metasomatism, weathering, migration of radionuclides through bedrock of geological repositories of nuclear waste, and deformation in nature and in experiment.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:552.8
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-04-06
    Description: Zircon (ZrSiO4) is the most commonly used geochronometer, preserving age and geochemical information through a wide range of geological processes. However, zircon U–Pb geochronology can be affected by redistribution of radiogenic Pb, which is incompatible in the crystal structure. This phenomenon is particularly common in zircon that has experienced ultra-high temperature metamorphism, where ion imaging has revealed submicrometer domains that are sufficiently heterogeneously distributed to severely perturb ages, in some cases yielding apparent Hadean (〉4 Ga) ages from younger zircons. Documenting the composition and mineralogy of these Pb-enriched domains is essential for understanding the processes of Pb redistribution in zircon and its effects on geochronology. Using high-resolution scanning transmission electron microscopy, we show that Pb-rich domains previously identified in zircons from East Antarctic granulites are 5–30 nm nanospheres of metallic Pb. They are randomly distributed with respect to zircon crystallinity, and their association with a Ti- and Al-rich silica melt suggests that they represent melt inclusions generated during ultra-high temperature metamorphism. Metallic Pb is exceedingly rare in nature and previously has not been reported in association with high-grade metamorphism. Formation of these metallic nanospheres within annealed zircon effectively halts the loss of radiogenic Pb from zircon. Both the redistribution and phase separation of radiogenic Pb in this manner can compromise the precision and accuracy of U–Pb ages obtained by high spatial resolution methods.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-04-01
    Description: Iron carbides in association with native iron, graphite, and magnetite were identified in a crystal of diamond from the Juina area, Brazil, that contains a series of other, deep-mantle mineral inclusions. Among the iron carbides, Fe3C, Fe2C ("chalypite"), and Fe23C6 (haxonite) are present; the two latter phases are identified in the terrestrial environment for the first time. Some of the analyzed iron carbide grains contain 7.3-9.1 at.% N and are, in fact, nitrocarbide. We suggest, on the basis of the high-pressure mineral parageneses previously observed in the diamond and experimental data on the system Fe-C, that "chalypite" crystallized within a pressure interval of 50-130 GPa from an iron-carbon melt rich in nitrogen. Following crystallization, iron carbides and native iron were partially oxidized to magnetite, and encapsulated in diamond along with other high-pressure minerals. The finds of various iron carbides, some of which are rich in nitrogen, in lower-mantle diamond confirm a significant role of carbides and nitrogen in the Earth's interior.
    Print ISSN: 0008-4476
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-05-01
    Description: Fluid-assisted mass transport reactions by dissolution-precipitation, where a precursor mineral reacts with a fluid, play an important role in metamorphism and metasomatism. We investigated titanite growth on rutile in time series experiments between one and 107 days at constant P-T conditions of 600 °C and 400 MPa in the system TiO2-CaO-SiO2-Na2O-HCl-H2O. A two-capsule assemblage allows for transport of Ca and Si from dissolving wollastonite to dissolving rutile, the Ti-source, in a NaCl-bearing aqueous fluid, according to the general reaction CaSiO3 + TiO2 = CaTiSiO5. Complete overgrowth of rutile by titanite occurred after just one day of experiment. Fine-grained lozenge-shaped titanite crystals of short-time runs (up to 14 days) reorganize to larger predominantly prismatic crystals after 〉14 days.After investigation by scanning electron microscopy, the titanite overgrowth was removed from the rutile by hydrofluoric acid, to provide a three-dimensional view of the dissolution-reaction front on the rutile surface. The morphology of the rutile surface is dominated by humps or ridges beneath the central region of a titanite crystal and valleys at the grain boundaries between adjacent titanite crystals. The dissolution pattern on the rutile surface mimics the titanite overgrowth and changes with changing grain size and shape of the titanite with longer run times. The preferred dissolution of rutile in the valleys is clearly linked to the position of the titanite grain boundaries, which served as pathways for fluid-assisted element transport. Rutile-titanite and titanite-titanite boundaries show a significant porosity in transmission electron microscopy images of foils prepared by focused ion beam milling. The large-scale dissolution pattern on the rutile surface is independent of the crystallographic orientation of the rutile and entirely dominated by the arrangement of titanite crystals in the overgrowth. Dissolution features on a scale smaller than ~1 μm are dominated by stepwise dissolution and etch-pits following the crystallographic orientation of the rutile. Similar observations were made in experiments with an additional Al-source, although these experiments result in a different overgrowth pattern; i.e., an exposed rutile surface is always present and solitary titanite crystals are accompanied by partial overgrowths. Quantitative characterization of the surface morphology by white-light interference microscopy demonstrates that, with increasing grain size of titanite, dissolution of rutile is strongly enhanced at the titanite grain boundaries.Natural examples of titanite overgrowths on rutile show the same relations between element pathways, arrangement of titanite crystals and 3D dissolution pattern on rutile as in the experimental systems. We conclude that the transport of Ti away from the rutile and of Ca + Si into the reaction rim occurred in a grain boundary fluid, the composition of which must have been strongly different from the composition of the bulk fluid in the experiment, as well as in the natural system. The reaction progress depends on the availability of a fluid, and relicts of rutile in titanite indicate restricted availability of fluid in the natural system (e.g., a fluid pulse that was consumed by the reactions). The reaction examined here can serve as a proxy for other reactions of the conversion of oxide minerals (e.g., spinel or corundum) into silicates.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-04-01
    Description: In this study, a natural Th-absent xenotime [(Y+HREE)PO4], is enriched in specific areas with respect to Th + Si utilizing a series of alkali-bearing fluids that included 2 N NaOH, 2 N KOH, Na2Si2O5 + H2O, and NaF + H2O, in addition to ThO2 and SiO2. Charge and fluid were sealed in Au capsules and placed in the piston-cylinder apparatus (CaF2 assemblies) at 1000 MPa and 900 °C (8 to 25 days) or in cold-seal autoclaves on a hydrothermal line at 500 MPa and 600 °C (23 days). BSE imaging, EMP analysis, and TEM indicate that a fraction of the xenotime grains in the 2 N KOH, Na2Si2O5 + H2O, and NaF + H2O experiments have altered areas enriched in Th + Si. No reaction was observed in the 2 N NaOH experiments. The altered areas occur as a series of curvilinear intergrowths with sharp compositional boundaries that extend from the edge of the xenotime grain into the interior. Formation of these Th + Si enriched areas is interpreted as a consequence of fluid-mediated coupled dissolution-reprecipitation.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...