ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Numerical results obtained with direct simulation Monte Carlo and Navier-Stokes methods are presented for a Mach-20 nitrogen flow about a 70-deg blunted cone. The flow conditions simuulated are those that can be obtained in existing low-density hypersonic wind tunnels. Three sets of flow conditions are considered with freestream Knudsen numbers ranging from 0.03 to 0.001. The focus is on the wake structure: how the wake structure changes as a function of rarefaction, what the afterbody levels of heating are, and to what limits the continuum models are realistic as rarefaction in the wake is progressively increased. Calculations are made with and without an afterbody sting. Results for the after body sting are emphasizes in anticipation of an experimental study for the current flow conditions and model configuration. The Navier-Stokes calculations were made with and without slip boundary conditions. Comparisons of the results obtained with the two simulation methodologies are made for both flowfield structure and surface quantities.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 7; p. 1399-1406
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Numerical results obtained with direct simulation Monte Carlo and Navier-Stokes methods are presented for a Mach-20 nitrogen flow about a 70-deg blunted cone. The flow conditions simulated are those that can be obtained in existing low-density hypersonic wind tunnels. Three sets of flow conditions are considered with freestream Knudsen numbers ranging from 0.03 to 0.001. The focus is on the wake structure: how the wake structure changes as a function of rare faction, what the afterbody levels of heating are, and to what limits the continuum models are realistic as rarefunction in the wake is progressively increased. Calculations are made with and without an afterbody sting. Results for the afterbody sting are emphasized in anticipation of an experimental study for the current flow conditions and model configuration. The Navier-Stokes calculations were made with and without slip boundary conditions. Comparisons of the results obtained with the two simulation methodologies are made for both flowfield structure and surface quantities.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 7; p. 1399-1406
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Keywords: AERODYNAMICS
    Type: Journal of Spacecraft and Rockets (ISSN 0022-4650); 29; 6; p. 780-785.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 30; 10, O; 2447-245
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-19
    Keywords: COMPUTER SYSTEMS
    Type: Journal of Thermophysics and Heat Transfer (ISSN 0887-8722); 5; 292-300
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-19
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 27; 315-322
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: The behavior of two different models of gas-surface interactions is studied using the Direct Simulation Monte Carlo (DSMC) method. The DSMC calculations examine differences in predictions of aerodynamic forces and heat transfer between the Maxwell and the Cercignani-Lampis-Lord (CLL) models for flat plate configurations at freestream conditions corresponding to a 140 km orbit around Venus. The size of the flat plate represents one of the solar panels on the Magellan spacecraft, and the freestream conditions correspond to those experienced during aerobraking maneuvers. Results are presented for both a single flat plate and a two-plate configuration as a function of angle of attack and gas-surface accommodation coefficients. The two-plate system is not representative of the Magellan geometry but is studied to explore possible experiments that might be used to differentiate between the two gas-surface interaction models. The Maxwell and CLL models produce qualitatively similar results for the aerodynamic forces and heat transfer on a single flat plate. However, the flow fields produced with the two models are qualitatively different for both the single-plate and two-plate calculations. These differences in the flowfield lead to predictions of the angle of attack for maximum heat transfer in a two plate configuration that are distinctly different for the two gas-surface interactions models.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-110205 , NAS 1.15:110205 , NIPS-95-06529
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-05
    Description: Two different grid methodologies are studied for application to DSMC simulations about reusable launch vehicles. One method uses an unstructured, tetrahedral grid while the other uses a structured, variable-resolution Cartesian grid. The relative merits of each method are discussed in terms of accuracy, computational efficiency, and overall ease of use. Both methods are applied to the computation of a low-density, hypersonic flow about a winged single-stage-to-orbit reusable launch vehicle concept at conditions corresponding to an altitude of 120 km. Both methods are shown to give comparable results for both surface and flowfield quantities as well as for the overall aerodynamic behavior. For the conditions simulated, the flowfield about the vehicle is very rarefied but the DSMC simulations show significant departure from free-molecular predictions for the surface friction and heat transfer as well as certain aerodynamic quantities.
    Keywords: Launch Vehicles and Launch Operations
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: This paper describes a method for doing direct simulation Monte Carlo (DSMC) calculations using parallel processing and presents some results of applying the method to several hypersonic, rarefied flow problems. The performance and efficiency of the parallel method are discussed. The applications described are the flow in a channel and the flow about a flat plate at incidence. The results show significant advantages of parallel processing over conventional scalar processing and demonstrate the scalability of the method to large problems.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 91-0772
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: A complex shock interaction is calculated with direct simulation Monte Carlo (DSMC). The calculation is performed for the near-continuum flow produced when an incident shock impinges on the bow shock of a 0.1 in. radius cowl lip for freestream conditions of approximately Mach 15 and 35 km altitude. Solutions are presented both for a full finite-rate chemistry calculation and for a case with chemical reactions suppressed. In each case, both the undisturbed flow about the cowl lip and the full shock interaction flowfields are calculated. Good agreement has been obtained between the no-chemistry simulation of the undisturbed flow and a perfect gas solution obtained with the viscous shock-layer method. Large differences in calculated surface properties when different chemical models are used demonstrate the necessity of adequately representing the chemistry when making surface property predictions. Preliminary grid refinement studies make it possible to estimate the accuracy of the solutions.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA PAPER 92-2862
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...