ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2016-02-27
    Description: Ocean acidification (OA), caused by seawater CO 2 uptake, has significant impacts on marine calcifying organisms and phototrophs. However, the response of bacterial communities, who play a crucial role in marine biogeochemical cycling, to OA is still not well understood. Previous studies have shown that the diversity and structure of microbial communities change undeterminably with elevated p CO 2 . Here, novel phylogenetic molecular ecological networks (pMENs) were employed to investigate the interactions of native bacterial communities in response to OA in the Arctic Ocean through a mesocosm experiment. The pMENs results were in line with the null hypothesis that elevated p CO 2 /pH does not affect biogeochemistry processes. The number of nodes within the pMENs and the connectivity of the bacterial communities were similar, despite increased p CO 2 concentrations. Our results indicate that elevated p CO 2 did not significantly affect microbial community structure and succession in the Arctic Ocean, suggesting bacterioplankton community resilience to elevated p CO 2 . The competitive interactions among the native bacterioplankton, as well as the modular community structure, may contribute to this resilience. This pMENs-based investigation of the interactions among microbial community members at different p CO 2 concentrations provides a new insight into our understanding of how OA affects the microbial community.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...