ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Langmuir 11 (1995), S. 373-374 
    ISSN: 1520-5827
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Langmuir 10 (1994), S. 974-975 
    ISSN: 1520-5827
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 85 (1985), S. 191-198 
    ISSN: 1432-1424
    Keywords: isolated protoplasts ; plasma membrane ; freezing injury ; freeze-induced electrical transients ; Workmann-Reynolds effect
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Evidence is presented to support the hypothesis that electrical potentials generated during the freezing of aqueous solutions (the Workman-Reynolds effect) may contribute to the destabilization of the plasma membrane and cryoinjury of isolated protoplasts. Specifically. (1) electric potential diffrences of sufficient magnitude to cause lysis of the plasma membrane occur during the rapid freezing of isolated protoplasts suspended in sorbitol: (2) survival of protoplasts is inversely correlated with the magnitude of the potential difference and (3) cold acclimation increases the stability of the plasma membrane to applied electric fields. A discussion is given of the different physical phenomena though to be involved in the Workman-Reynolds effect. The basis equations for these phenomena are outlined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1424
    Keywords: membrane mechanics ; plant protoplasts ; osmotic expansion ; cold acclimation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The stress and strain (surface tension and fractional change in area) in the plasma membrane of protoplasts isolated from rye leaves (Secale cereale L. cv Puma) were measured during osmotic expansions from isotonic into a range of more dilute solutions. The membrane surface tension increases rapidly to a maximum and then decreases slowly with some protoplasts lysing in all phases of the expansion. The maximum surface tension is greater for rapid expansions, and protoplasts lyse earlier during rapid expansion. Over the range of expansion rates investigated, the area at which lysis occurs is not strongly dependent on expansion rate. The value of the maximum tension is determined by the expansion rate and the rate at which new material is incorporated into the membrane. During osmotic expansion, protoplasts isolated from cold-acclimated plants incorporate material faster than do those from nonacclimated plants and thus incur lower membrane tensions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1424
    Keywords: membrane mechanics ; plant protoplasts ; osmotic expansion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The plasma membrane of protoplasts isolated from rye leaves (Secale cereale L. cv. Puma) can withstand a maximum elastic stretching of about 2%. Larger area expansions involve the incorporation of new material into the membrane. The dynamics of this process during expansion from isotonic solutions and the probable frequency of lysis have been measured as a function of membrane tension in populations of protoplasts isolated from both cold-acclimated and nonacclimated plants. To a first approximation, both increase exponentially with tension. An analytical solution is reported for the membrane tension as a function of time during an arbitrary expansion in area.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 96 (1987), S. 129-139 
    ISSN: 1432-1424
    Keywords: membranes ; electrical breakdown ; lysis ; electromechanical deformation ; dielectrophoresis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary We analyze the electrical and mechanical stress in the bounding membrane of a cell (or vesicle) in suspension which is deformed by an external applied field. The membrane is treated as a thin, elastic, initially spherical, dielectric shell and the analysis is valid for frequencies less than the reciprocal of the charging time (i.e. less than MHz), or for constant fields. A complete analytic solution is obtained, and expressions are given which relate the deformation, the surface tension and the transmembrane potential difference to the applied field. We show that mechanical tensions in the range which lyse membranes are induced at values of the external field which are of the same order as those which are reported to lyse the plasma membranes of cells in suspension.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    European biophysics journal 21 (1992), S. 363-367 
    ISSN: 1432-1017
    Keywords: 2HNMR ; D2O ; Motional narrowing ; Gel-fluid phase transition ; Phospholipids ; Low hydration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract The reduction in spectral splitting, or motional narrowing, of the deuterium spectra of D2O/phos-pholipid mixtures near the main chain melting phase transition was studied for palmitoyloleoylphosphatidylcholine (POPC), palmitoyloleoylphosphatidylethanolamine (POPE) and equimolar mixtures of the two at 10% hydration. For POPC the splitting was about 1700 Hz in both the fluid and gel phases, dropping to zero near the phase transition (as reported previously). For POPE the splitting remained approximately constant above the phase transition. Below the phase transition the spectrum showed a single broad line whose linewidth varied between 100 Hz and 800 Hz. This was interpreted as being due to small domains of water within a weakly hydrated crystal. POPC:POPE (1:1) samples exhibited motional narrowing behaviour similar to that for POPC except that the splitting above the phase transition was approximately twice that below the transition. The relatively broad temperature range (∼20 K) of the transition is explained using a simple physical model involving lipid fluctuations near the phase transition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    European biophysics journal 21 (1992), S. 223-232 
    ISSN: 1432-1017
    Keywords: Phase separations ; Membrane dehydration ; Phospholipid phases ; Lamellar phase ; Inverse hexagonal phase ; Mixed chain lipids ; Deuterium NMR
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract An experimental investigation of the low hydration phase properties of phospholipid mixtures is described. 2H (D2O) NMR, X-ray diffraction and differential scanning calorimetry have been used to elucidate the phase properties of mixtures of the mixed chain phospholipids palmitoyloleoylphosphatidylcholine (POPC) and palmitoyloleoylphosphatidylethanolamine (POPE). At 10% hydration pure POPE exhibited a HII phase above 330 K, a fluid lamellar phase below 315 K, and a minimally hydrated crystalline phase below 300 K. For the 1:1 mixture, the samples exhibited only gel or fluid phases between 270 K and 360 K for hydrations in the range 15% to 30%. Below 15% hydration the mixture exhibited two fluid phases with different repeat spacings, as predicted previously.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 427 (2004), S. 116-116 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Sopranos can sing at frequencies that are rather higher than the normal values for the lowest resonance of their vocal tract, but failure to use this resonance would reduce both their vocal power and homogeneity in timbre. We have directly measured the resonance frequencies of the vocal tract ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 6 (1983), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. Slightly vacuolated cells, i.e. microalgae and meristematic cells of vascular plants, maintain low Cl− and Na+ concentrations even when exposed to a highly saline environment. The factors regulating the internal ion concentration are the relative rate of volume expansion, the membrane permeability to ions, the electrical potential, and the active ion fluxes.For ion species which are not actively transported, a formula is developed which relates the internal concentration to the rate of expansion of cell volume, the permeability of membranes to that ion, and the electrical potential. For example, when the external concentration of Cl− is high, and Cl− influx is probably mainly passive, the formula predicts that rapid growth keeps the internal Cl− concentration lower than that in a non-growing cell with the same electrical potential; this effect is substantial if the plasmalemma has a low permeability to Cl−.For ion species which are actively transported, the rate of pumping must be considered. For instance Na+ concentrations are kept low mainly by an efficient Na+ extrusion pump which works against the electric field across the membrane. The requirement for Na+ extrusion is related to the external Na+ concentration, the rate of expansion of cell volume, the membrane permeability, and the electrical potential. It is possible that microalgae have a more positive electrical potential than many other plant cells; if so, requirements for high rates of active Na+ extrusion will be lower. The required rates of Na+ extrusion are lower during rapid growth, provided that the permeability of the plasmalemma to Na+ is low.The energy required for the regulation of Cl− and Na+ concentrations is low, especially in rapidly expanding cells where Na+ extrusion requires only 1–2% of the energy normally produced in respiration. The exclusion of these ions, however, must be accompanied by the synthesis of enough organic compounds to provide adequate osmotic solutes for the increases in volume accompanying growth. This process reduces the substrates available for respiration and synthesis of cell constituents, but the reduction is not prohibitively large—even for cells growing in 750 mol m−3 NaCl, the carbohydrate accumulated as osmotic solute is only 10% of that consumed in respiration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...